

129

Robust scheduling for three-machine robotic cell using interval data

Saiedeh Gholami1*, Faezeh Deymeh1

1Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

s_gholami@kntu.ac.ir, faezeh.daymeh@gmail.com

Abstract
In reality, due to the lack of adequate environmental information, uncertainty is a

common practice. In order to provide good and acceptable solutions, development of

systematic methods for solving problems of uncertainty is important. One of these
methods is based on robust optimization. This type of planning is to find a solution

that is not sensitive to parameter fluctuations. In this article, a new way is represented

to solve a three-machine robotic cell problem. An intervallic processing time is

concerned as the problem being discussed. Different scenarios are defined by using
robust optimization; afterwards, applying min-max regret method, robust counterpart

of original problem is specified. Since the problem is NP-hard, a metaheuristic is

applied to solve it. Genetic Algorithm (GA) as a population-based metaheuristic is
employed. Cycle time and program operating time are calculated for different number

of parts. It is demonstrated that by increasing the part numbers, gap between the

robust and original cycle time increases. It is observed that both the cycle time and
algorithm operating time increase.

Keywords: Robust optimization, min-max regret, cycle time, genetic algorithm

 1-Introduction
 Due to the intense competition established in industry, producers should reduce costs and increase

efficiency to survive in this market. Material handling systems (between production stages) make great

benefits like, increasing efficiency and processing rate, decreasing labor cost, and environmental
contamination. Robots are used in many modern industries to displace parts in a cell (robotic cell). Many

studies have been conducted about robotic cell concentrated on cell design, robot sequencing, and part

scheduling.
 In one of the primary works about robotic cells, a heuristic method for optimizing the working cycle of

an industrial robot with two arms was presented (Bedini et al. 1979). Mioman and Nof (1985) studied

cells with multiple robots. Wilhelm classified the computational complexity of assembly cells

(Wilhelm, 1987). In the first studies, simulation was used to calculate cycle time. Kondoleon (1979) used
computerized modeling for the simulation of robot movements. Claybourne (1983) used simulation to

analyze effects of robot sequence on throughput. Agnetis (2000) found the optimal schedule for no-wait

cells with two or three machines. Then, a polynomial algorithm was used to find an optimal two unit
cycle with identical parts or with two different part types (Che et al. 2003). Lenver et al. (1997) studied

no-wait cells with multiple robots. In one of the first works about interval robotic cell, branch and bound

search was used (Lei and Wang, 1994).

*Corresponding author

ISSN: 1735-8272, Copyright c 2014 JISE. All rights reserved

Journal of Industrial and Systems Engineering

Vol. 7, No. 1, pp. 129- 140

Autumn 2014

mailto:s_gholami@kntu.ac.ir
mailto:faezeh.daymeh@gmail.com

130

 Branch and bound, linear programming, and two-valued graphs were used to find the optimal one-unit
cycle (Chen et al. 1998); then, these techniques were applied for multi-unit cycles (Che et al. 2002).

Based on the pickup criterion, cells are divided into free pickup, no-wait, and interval. Lenver et al.

(1997) developed an algorithm which produces a one-unit cycle in a no-wait cell.

 Manufacturing systems generally run in environments of high uncertainty with production schedules
that are not fulfilled which are attributed to random interruptions, e.g. curtailed or imprecise job data,

machine breakdowns, job cancellations, and rush orders. Although uncertainty is a highly realistic issue in

developing jobs in shop floors, the majority of prior existing investigations employ deterministic models,
which do not take uncertain deviations into consideration. The ignorance of uncertainty is regarded as a

key source of the gap between theories and practice of classical scheduling. Consequently, some earlier

studies suggested reactive or proactive methods to manage uncertainty in job scheduling (Sabuncuoglu
and Goren 2009). The original job progression is adjusted or a new job sequence is generated on time

when uncertainty occurs by using reactive techniques, whereas a robust initial schedule is generated

before uncertainty occurrence by proactive approaches. As a result, proactive methods aiming to find

results defiant to deviations, in contrary to those that passively react to uncertain disruptions, are more
tending. Actually, robust scheduling aims to find a schedule that minimizes the effects of uncertainty on

the objective function.

 In dealing with robust approach a scenario set that contains all possible realizations of the parameters is
defined. Numerous robust criteria can be employed to pick a solution (Roy, 2010). The most

straightforward one is the min–max criterion, in which we select a solution minimizing the largest cost

over all scenarios. A less conservative criterion is the min–max regret, in which a solution which
minimizes the largest deviation from optimum over all scenarios is selected. Both criteria have been

widely used in decision making under uncertainty (Luce and Raiffa, 1957). The scenario set can be

specified in several ways. In this article the number of scenarios is a part of the input.

 In this paper, a robotic cell in uncertain condition is considered. Three-machine robotic cell problem is

formulated; afterwards, a genetic algorithm is used to calculate cycle time when processing time has a

uniform distribution in [l, u] interval, this problem is also solved using worst case technique. Finally, the

cycle time and algorithm running time for these two methods for different number of parts are compared.

 2-Problem definition
 As in the classification method for common scheduling problems, three elements must be determined:

machine environment (𝛼), processing characteristics (𝛽), and objective function (𝛾) (Aytug et al. 2005).

2-1-Notation
The following notations are used to describe a robotic cell:

𝑀1, 𝑀2 , 𝑀3 : Machines in a Robotic cell

𝑀0 : Input buffer

𝑀4 : Output buffer

𝛿 : Robot travel time between two adjacent machines, i and i+1

𝜖 : Time required for loading/ unloading at each machine

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
0 𝑒𝑙𝑠𝑒

131

𝐴𝑖: The i-th robot activity (which is defined as unloading machine i, transfers a part from machine i to

machine i+1, and loading machine i+1)

𝑇𝑆1
 : Cycle time obtained via 𝑆1,3 robot movement cycle

𝑇𝑆2
 : Cycle time obtained via 𝑆2,3 robot movement cycle

𝑇𝑆3
 : Cycle time obtained via 𝑆3,3 robot movement cycle

𝑇𝑆4
 : Cycle time obtained via 𝑆4,3 robot movement cycle

𝑇𝑆5
 : Cycle time obtained via 𝑆5,3 robot movement cycle

𝑇𝑆6
 : Cycle time obtained via 𝑆6,3 robot movement cycle

 Three machines in a robotic cell with a single gripper robot used to move parts in a cell are considered

here. The arrangement of machines in the cell is linear. No buffer is considered for intermediate storage.

In this cell, n parts with different processing times are considered. Robot travel time between two

adjacent machines is constant and equal to 𝛿. Time required for loading/ unloading a part at each stage is

a constant value equal to 𝜖.

 It is assumed that for many reasons parts processing time on a machine is not predictable and each part

has a uniform distribution between 1 and 10 (𝑈~[1,10]). Robust optimization is used to optimize
objective function (minimize objective function) when processing time is intervallic.

 There are many robot movement cycles for a three-machine robotic cell which produces one part type.

Among these cycles, for simplicity we considered only one-unit cycles.

 For three-machine robotic cell, there are six single-unit cycles (𝑆1, 𝑆2 , 𝑆3, 𝑆4 , 𝑆5, 𝑆6). These cycles and

their processing times are defined below.

𝑺𝟏Cycle: The first possible movement cycle named as 𝑆1, in which robot has the following movement

(𝐴0𝐴1𝐴2𝐴3). In this cycle, the first part is placed on the first machine, and robot waits for its processing

on the first machine; afterwards, it transfers the part to the second and third machine, respectively. The
cycle time for this kind of robot movement is:

𝑇𝑆1
= 2𝛼 + 𝑎 + 𝑏 + 𝑐

Where a, b, and c are processing time on the first, second, and third machine, respectively. 𝛼 is equal

to4𝛿 + 4𝜖.

𝑺𝟐 Cycle: The second possible movement cycle is known as 𝑆2 , in which robot has the following

movement (𝐴0𝐴2𝐴1𝐴3). In this cycle, the first part is placed on the second machine. Robot loads a part on

the first machine; next, it waits for the second machine to finish processing the part and unloads the

second machine, transfers the part to the third machine; then, the third machine is loaded. Afterwards,
robot unloads the first machine, transfers the part to the second machine and loads the second machine.
The cycle time for this kind of robot movement is:

𝑇𝑆2
= 𝛼 + max [𝛽, 𝑏, 𝛽 2⁄ + 𝑎, 𝛽 2⁄ + 𝑐, (𝑎 + 𝑏 + 𝑐) 2⁄]

(1)

(2)

132

Where a, b, and c are processing time on the first, second, and third machine, respectively. 𝛼 and 𝛽 are

defined as follows: 𝛼=4𝛿 + 4𝜖, 𝛽 = 8𝛿 + 4𝜖.

𝑺𝟑 Cycle: In 𝑆3 cycle the robot movement can be explained as (𝐴0𝐴1𝐴3𝐴2). At the beginning of this

cycle, there is a part on the third machine. The robot takes a part from input buffer, transfers it to the first
machine, loads the machine, and waits for the first machine to finish processing. Afterwards, it unloads

the first machine and takes the part to the second machine then goes to third machine. Next, the third

machine is unloaded and the part is transferred to the output buffer, then the robot returns to the second
machine. Later, the robot unloads the second machine and transfers the part to the third machine and
loads it. The cycle time for this kind of robot movement is:

𝑇𝑆3
= 𝛼 + max [𝑐, 𝛼 + 𝑎 + 2𝛿, 𝛼 2⁄ + 𝑎 + 𝑏]

𝑺𝟒 Cycle: In 𝑆4 cycle, the robot movement can be explained as (𝐴0𝐴3𝐴1𝐴2). At the beginning of this

cycle, there is a part on the third machine. The robot takes a part from input buffer, transfers it to the first

machine, then robot goes to the third machine and unloads it. Then, the robot goes to the output buffer
and places the part in the output buffer. The robot returns to the first machine, unloads it and transfers the

part to the second machine and waits for its processing. Afterwards, the robot unloads the second machine
and loads the third machine. The cycle time for this kind of robot movement is:

𝑇𝑆4
= 𝛼 + max[𝛽 + 𝑏, 𝛼 2⁄ + 𝑎 + 𝑏, 𝛼 2⁄ + 𝑏 + 𝑐]

𝑺𝟓 Cycle: In 𝑆5 cycle, the robot movement can be explained as (𝐴0𝐴2𝐴3𝐴1). As this cycle starts, there is
a part on the second machine. The robot takes a part from input buffer, transfers it to the first machine and

loads it. Then, the robot goes to the second machine and unloads it. The robot takes the part to the third

machine and waits for it to finish processing. The robot unloads the third machine and transfers the part to
the output buffer. Later, the robot returns to the first machine, unloads it and transfers the part to the
second machine and loads it. The cycle time for this kind of robot movement is:

𝑇𝑆5
= 𝛼 + max [𝑎, 𝛼 + 𝑐 + 2𝛿, 𝛼 2⁄ + 𝑏 + 𝑐]

𝑺𝟔 Cycle: In 𝑆6 cycle, the robot movement can be described as (𝐴0𝐴3𝐴2𝐴1). Firstly, there are two parts

on the second and third machines. The robot takes a part from input buffer and transfers it to the first

machine then loads the machine. Next, the robot goes to the third machine and unloads it. The part is
taken to the output buffer. Subsequently, the robot goes back to the second machine, unloads it and

transfers the part to third machine. Afterwards, the robot returns to the first machine and unloads it; the
robot goes to the second machine and loads it. The cycle time for this kind of robot movement is:

𝑇𝑆6
= 𝛼 + max {𝛽, 𝑎, 𝑏, 𝑐}

2-2-Problem Formulation
 According to the above mentioned definitions, the following mathematical formulation is presented:

P ∶ min 𝑍 = 𝐶

𝑠. 𝑡:

𝐶 = 𝑚𝑖𝑛{𝑇1, 𝑇2 , 𝑇3 , 𝑇4, 𝑇5, 𝑇6}

𝑎 = ∑ 𝑥1𝑗𝑝𝑗
𝑛
𝑗=1

(3)

(4)

(5)

(6)

(7)

(8)

(9)

133

𝑏 = ∑ 𝑥2𝑗𝑝𝑗
𝑛
𝑗=1

𝑐 = ∑ 𝑥3𝑗𝑝𝑗
𝑛
𝑗=1

𝑥1𝑗 + 𝑥2𝑗 + 𝑥3𝑗 = 1 ∀ 𝑗

𝑇𝑆1
= 2𝛼 + 𝑎 + 𝑏 + 𝑐

𝑇𝑆2
= 𝛼 + max [𝛽, 𝑏, 𝛽 2⁄ + 𝑎, 𝛽 2⁄ + 𝑐, (𝑎 + 𝑏 + 𝑐) 2⁄

𝑇𝑆3
= 𝛼 + max [𝑐, 𝛼 + 𝑎 + 2𝛿, 𝛼 2⁄ + 𝑎 + 𝑏]

𝑇𝑆4
= 𝛼 + max[𝛽 + 𝑏, 𝛼 2⁄ + 𝑎 + 𝑏, 𝛼 2⁄ + 𝑏 + 𝑐]

𝑇𝑆5
= 𝛼 + max [𝑎, 𝛼 + 𝑐 + 2𝛿, 𝛼 2⁄ + 𝑏 + 𝑐

𝑇𝑆6
= 𝛼 + max {𝛽, 𝑎, 𝑏, 𝑐}

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
0 𝑒𝑙𝑠𝑒

 The first equation is the objective function aiming to minimize the cycle time. The second constraint

defines the cycle time. Constraints from 9 to 11 calculate processing time on machines 1 to 3,

respectively. Constraint 12 means that each part is processed on only one machine. Constraints 13 to 18

calculate the cycle time according to different robot movements. Constraint 19 defines 𝑥𝑖𝑗as a binary

variable.

3-Formulation of the robust three-machine robotic cell
 In real world scheduling, there are uncertainties that cannot be predicted. One of these uncertain

parameters is processing time. Whenever the probability distribution is not known, one of the best

methods to deal with uncertainty is robust optimization.
 In this paper, it is considered that there is uncertainty in processing time. Uncertainty is described

through a set of scenarios. Each scenario describes a unique set of processing time.

 If 𝑝𝑗
𝜆 shows the processing time for job j in 𝜆 scenario, then the vector 𝑃𝜆 = {𝑝𝑗

𝜆 ∶ 𝑗 = 1,2, … , 𝑛} shows

the corresponding processing time of 𝜆 scenario.

 If Ω shows the set of robot movement sequences, we haveΩ = {𝜎(1), 𝜎(2), … , 𝜎(6)}, in which

𝜎(𝑖) = 𝑠𝑖. In this condition, φ(𝜎, 𝑃𝜆)shows the cycle time for 𝜎 cycle, while having 𝜆scenario.

 The best robot movement sequence, which has 𝑃𝜆 for processing time vector, must satisfy the following
equation:

𝑧𝑙 = 𝜑(𝜎𝜆
∗, 𝑃𝜆) = min

𝜎∈Ω
𝜑(𝜎, 𝑃𝜆)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

134

 Here, objective function is defined as the minimization of the maximum regret for a specific part
sequence. Regret for a set of processing times and for a certain movement sequence is defined as the
difference between the best cycle time and the existing cycle time. So the robust schedule is defined as:

min
𝜎∈Ω

𝑚𝑎𝑥{𝜑(𝜎, 𝑃𝜆) − 𝜑(𝜎𝜆
∗, 𝑃𝜆)}

 Different scenarios are defined as follows. For the j-th job in job sequence and all the jobs processed

beforehand, the processing time is considered equal to the lower bound; for job 𝑗 + 1, … 𝑛 the processing

time is considered equal to the upper bound (Luce and Raiffa, 1957).

If 𝑘 = 1,2, … , 𝑛 is the counter of scenario, the robust counterpart for the mentioned problem is as follows:

P𝑐 ∶ min 𝑍 = 𝑚𝑎𝑥𝐶2

𝑠. 𝑡:

𝐶 = 𝑚𝑖𝑛{𝑇1, 𝑇2 , 𝑇3 , 𝑇4, 𝑇5, 𝑇6}

𝐶2 = 𝑇𝑖 − 𝐶 ∀ 𝑖 = 1, … ,6

𝑎 = ∑ 𝑥1𝑗𝑙 + ∑ 𝑥1𝑗𝑢𝑛
𝑗=𝑘+1

𝑘
𝑗=1

𝑏 = ∑ 𝑥2𝑗𝑙 + ∑ 𝑥2𝑗𝑢𝑛
𝑗=𝑘+1

𝑘
𝑗=1

𝑐 = ∑ 𝑥3𝑗𝑙 + ∑ 𝑥3𝑗𝑢𝑛
𝑗=𝑘+1

𝑘
𝑗=1

𝑥1𝑗 + 𝑥2𝑗 + 𝑥3𝑗 = 1 ∀ 𝑗

𝑇𝑆1
= 2𝛼 + 𝑎 + 𝑏 + 𝑐

𝑇𝑆2
= 𝛼 + max [𝛽, 𝑏, 𝛽 2⁄ + 𝑎, 𝛽 2⁄ + 𝑐, (𝑎 + 𝑏 + 𝑐) 2⁄

𝑇𝑆3
= 𝛼 + max [𝑐, 𝛼 + 𝑎 + 2𝛿, 𝛼 2⁄ + 𝑎 + 𝑏]

𝑇𝑆4
= 𝛼 + max[𝛽 + 𝑏, 𝛼 2⁄ + 𝑎 + 𝑏, 𝛼 2⁄ + 𝑏 + 𝑐]

𝑇𝑆5
= 𝛼 + max [𝑎, 𝛼 + 𝑐 + 2𝛿, 𝛼 2⁄ + 𝑏 + 𝑐

𝑇𝑆6
= 𝛼 + max {𝛽, 𝑎, 𝑏, 𝑐}

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
0 𝑒𝑙𝑠𝑒

(21)

(22)

(23)

(24)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(25)

(26)

(27)

(28)

135

 The first equation specifies the objective function (min-max regret), and constraint 24 defines regret.
Constraints 25 to 27 calculate the processing time on machines according to different scenarios. All other
constraints are like those for problem P.

4-Genetic algorithm
 Genetic algorithm is used to solve the original problem and its robust counterpart.

4-1-Solution representation
 The first step in applying a genetic algorithm is to represent a solution as a chromosome. In this article

each chromosome consists of n genes. Each gene can get one of the values of 1, 2 or 3. If j-th job is

performed on i-th machine, the j-th gene gets the value of i. An example of solution coding is showed in

figure 1.

4-2-Initial population

 After determining how to convert a solution to a chromosome, an initial population must be

generated. In this article, the initial population is generated randomly.

4-3-Fitness function
 For a certain solution (chromosome), the fitness function calculates its objective function. For the

original problem fitness function is defined as the minimization of the cycle time and for its robust

counterpart, fitness function is determined as the minimization of the maximum regret.

4-4-Selection methods

 The selection method used in this article is roulette wheel. In this method, a chromosome with a greater

fitness function has a greater probability to be chosen.

 The selection process for roulette wheel can be explained as follows:

a. The selection probability, corresponding to each chromosome, is calculated as follows:

𝑃𝑧 = (
1

𝐹𝑧
)/𝑠𝑢𝑚(

1

𝐹𝑧
)

where, 𝑃𝑧 relates to the selection probability of z chromosome.

b. Chromosomes are arranged according to the value of 𝑃𝑧 and the cumulative value of 𝑃𝑧 is

calculated.

c. A random number between zero and one is generated. If the random number belongs to each

interval of cumulative𝑃𝑧, the chromosome corresponding to that interval is selected.

4-5-Genetic algorithm operators
 Here, some operators are used to produce new solutions.

 Cross over: After the selection process, an initial population of chromosomes is produced. Cross over
operator can be used to create new solutions. For this operator, two random chromosomes are

chosen first; secondly a position is chosen randomly for the cross over. In the third step, the

chromosome values are replaced according to the cross over point.

3 2 1 1 2 2

Fig 1. Solution representation

(36)

136

Mutation: Mutation operator is used not to intensify rapidly, and prevent getting captured at local
optimums. In this article, to mutate a chromosome (solution) a gene is chosen randomly; then a random

number among 1, 2 or 3 is chosen and its value is replaced with the initial value of gene.

The schematic of GA used in this article is shown in figure 2.

Fig 2. GA schematic

Start generation

Create initial random

population

Fitness evaluation of

each individual in

population

Counter <

maximum iteration

Select genetic

operator

Best fitness

chromosome storage

Counter =

Counter+1
No

Yes

Perform crossover:

single-point crossover

Perform mutation:

Select one individual

and change its value

randomly

𝑝𝑐 𝑝𝑚

137

5-Results
 To solve this problem it is considered that (robot loading/unloading time) and (robot travel time)
are fixed and equal to 0.5 and 2, respectively. It is assumed that processing time is a random number

between a lower bound and upper bound. The assumptions for the GA parameters are stated in table 1.

Table 1. GA parameters value

Population size 50

P cross over 0.8

P mutation 0.1

Number of jobs 5-50

 The proposed solution methods have been examined in terms of both solution quality and CPU time. A

laptop with an Intel Core i5 CPU and 4 Gb RAM was used to solve the
problem. The algorithm was encoded using Matlab R2008a. The algorithm was implemented 100 times

for each number of parts. The results are shown in table 2. For a better comparison, the results are

depicted on figures 1 and 2.

Table 2. GA results (OFV=Objective Function Value)

Problem name number of parts best OFV worst OFV average OFV average running

time (seconds)

P 5 24 28 26.130927 4.392338

Pc (minmax regret) 35.5912 50 43.790275 12.422024

P 10 28 35.9046 29.47995 4.466567

Pc (minmax regret) 55.408 76.4319 65.937225 21.45274

P 15 31.6146 4.6572 38.161759 4.463692

Pc (minmax regret) 76.3041 103.7656 90.323025 31.37196

P 20 38.2328 4.5596 46.8046 4.349605

Pc (minmax regret) 87.6124 130.0544 112.24127 45.78947

P 25 47.3136 4.6117 56.498416 4.472772

Pc (minmax regret) 115.1484 158.4332 136.427879 74.135499

P 30 55.4134 77.7449 64.98958182 4.474119

Pc (minmax regret) 137.3227 107.8956 159.719371 92.254558

P 35 62.1198 89.1647 73.957285 4.487917

Pc (minmax regret) 157.1999 198.4047 182.294121 112.101008

P 40 69.4966 4.6041 83.189408 4.501832

Pc (minmax regret) 177.4728 229.3319 205.356919 95.86956

P 45 77.0744 4.6103 93.753539 4.535005

Pc (minmax regret) 205.9645 257.504 230.746583 112.362817

P 50 87.8246 117.632 102.200716 4.686501

Pc (minmax regret) 223.5369 159.5506 250.35459 139.392433

138

Fig 3. The gap of cycle time for the original and robust counterpart problem

Fig 4. The gap of running time for the original and robust counterpart problem

0

50

100

150

200

250

300

5 10 20 15 25 30 35 40 45 50

C
y
c
le

 t
im

e

Number of parts

Problem P

Problem Pc

0

20

40

60

80

100

120

140

160

5 10 20 15 25 30 35 40 45 50

R
u

n
n

in
g

 t
im

e

Number of parts

Running time for problem P
Running time for problem Pc

139

6-Conclusion and discussion
 In this article a new three-machine robotic cell problem has been considered. This problem deals with

an intervallic processing time. Later, the original and the robust form of the

problem have been formulated. The two problems are solved, using genetic algorithm. For different

number of parts the cycle time and program passing time, have been calculated. Both cycle time and

algorithm running time has increased. It is shown that by increasing the part numbers, the gap between
the two methods increases. Since a robust solution worsens the performance measure, considering a

multi-criteria objective function, which minimizes the cycle time and maximizes the benefit, can be a

good choice for future studies.

 References

Agnetis A. (2000), Scheduling No-Wait Robotic Cells with Two and Three Machines; European Journal
of Operational Research 123;303–314.

Aytug H., Lawley M.A., McKay K., Mohan S., Uzsoy R. (2005), Executing production schedules in the

face of uncertainties: A review and some future directions; European Journal of Operational

Research161;86–110.

Bedini R., Lisini G.G., Sterpos P. (1979), Optimal Programming of Working Cycles for Industrial

Robots; Journal of Mechanical Design. Transactions of the ASME 101; 250–257.

Che A., Chu C., Chu F. (2002), Multicyclic Hoist Scheduling with Constant Processing Times; IEEE

Transactions on Robotics and Automation18; 69–80.

Che A., Chu C., Levner E.(2003), A Polynomial Algorithm for 2-degree Cyclic Robot

Scheduling; European Journal of Operational Research 145;31–44.

Chen H., Chu C., Proth J. (1998), Cyclic Scheduling with Time Window Constraints; IEEE Transactions

on Robotics and Automation 14;144–152.

Claybourne B.H. (1983), Scheduling Robots in Flexible Manufacturing Cells; CME Automation 30;36–
40.

Kondoleon A.S. (1979), Cycle Time Analysis of Robot Assembly Systems; Proceedings of the Ninth

Symposium on Industrial Robots;575–587.

Lei L., Wang T.J. (1994), Determining Optimal Cyclic Hoist Schedules in a Single- Hoist Electroplating

Line; IIE Transactions 26;25–33.

Levner E., Kats V., Levit V. (1997), An Improved Algorithm for Cyclic Flowshop Scheduling in a

Robotic Cell; European Journal of Operational Research 97;500–508.

Luce R.D., Raiffa H. (1957), Games and Decisions: Introduction and Critical Survey; Dover Publications
Inc.

Maimon O.Z., Nof S.Y. (1985), Coordination of Robots Sharing Assembly Tasks; Journal of Dynamic

Systems Measurement and Control. Transactions of the ASME 107; 299–307.

140

Roy B. (2010), Robustness in operational research and decision aiding: A multi-faceted issue; European
Journal of Operational Research200; 629–638.

Sabuncuoglu I., Goren S. (2009), Hedging production schedules against uncertainty in manufacturing

environment with a review of robustness and stability research. International Journal of Computer

Integrated Manufacturing22; 138–57.

Wilhelm W.E. (1987), Complexity of Sequencing Tasks in Assembly Cells Attended by One or Two

Robots; Naval Research Logistics 34;721–738.

