
120 
 

 

Developing a model for pricing and control the inventory of 

perishable products with exponential demand 
 

Mostafa Setak1*, Nazanin fozooni1, Hamed daneshvari1 

1Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran 

setak@kntu.ac.ir, nazaninfozooni@gamil.com, daneshvari_hd@yahoo.com 

 

Abstract 

Pricing and controlling the inventory of perishable products have key roles in 

determining the level of profit for those involved in the supply chains. Chain profit 

can be increased by increasing sales during the product life via the application of 
pricing strategies, avoiding the loss of value of perishable products over time. In this 

research, sales profit was maximized by presenting a mathematical model to determine 

the price change points (using the Hsien function) and the optimal price and order 
quantity for perishable products with an exponential and price- and time-dependent 

distributed demand. Due to the complexity of the problem, the solution method used 

in this study was the genetic algorithm. The analysis of the effect of different 
parameters and optimal solution results showed that a 2% increment in decay rate 

would lead to a 10% reduction in profits, and other analyses recommended for 

managers at the end of the article.  

Keywords: pricing, inventory, perishable products, exponential demand. 

 

1- Introduction 
   Nowadays, the management and control of deteriorating inventories is of special importance in many 

industrial units. In 2006, the global sales of grocery retail units was more than 1,000 billion, and over one 
third of this figure was related to deteriorating products such as fruits, vegetables, meat, and dairy 

(Broekmeulen and Van Donselaar 2009). In today's world, customers look for more diversity, especially 

in the case of decaying products with limited life spans. This leads to further out-of-date inventories, 
making the prediction of the demand function more difficult. Also, often in the real world, to control the 

demand rate, more cost-cutting policies are employed by managers as the product nears its expiration 

date. Sometimes, depending on the type of product, the deteriorated items are removed from the 
warehouse. Considering such factors, the issue is more difficult to mathematically model in comparison to 

modeling the inventory control of non-perishable products. The purpose of is the present study was to 

propose a mathematical model for determining both the optimum time for changing the price and the 

optimal price in order to maximize profits. In addition, the issue of pricing and inventory control for 
perishable products was reviewed. In this research, we are looking for a new approach to simultaneously 

optimize the price and control the inventory of decay items, where demand is a function of time and sales 

price. In this study, Decline in the rate of corruption is considered constant.    
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   One of the obvious features of this study is that Utilizing pricing strategies and discounting the prices of 
these products can increase the profitability by increasing sales over the life of the product. Another 

feature of this study is considering demand as exponential distribution and considering maintenance costs 

as nonlinear functions. In this research we seek to answer the following basic questions. 

 Optimizing Marketing Factors (Sales Price) 

 Optimizing of inventory control factors (amount of economic order) 

 Improve system performance and increase profitability 

 The Effect of Exponential Distribution Demand. 

   We are also looking for a new approach to optimize the timing of marketing actions, including 

determining sales prices and controlling inventory of degradable products. Obviously, the low demand 

rate in addition to reducing company revenue due to the deterioration of inventory is considered very 
unpleasant in the system. Consequently, considering the issue of inventory control and pricing is of 

particular importance. 

2- Literature review 
   The problem of pricing and controlling the inventory of perishable products has been studied over half a 

century ago, and it can almost be claimed that most of its parts are covered by researchers. For this 

reason, in order to be new in this article, we succeeded in finding the research gaps and vacuum available 
in the article, which we'll cover at the bottom of this section. 

 Pricing, which is a major factor affecting the level and types of demand faced by a chain, becomes more 

important when the product is perishable. With proper pricing solutions, one can manage the demand for 

corrupt items to a large extent and prevent the loss of funds due to product perishability. Many factors 
play a role in determining the price of a commodity, one of the most important of which is the time of 

product spoilage. If this point is not considered in pricing, the set price will result in an incorrect increase 

in profits. The price of perishable products is the main factor affecting demand based on economic and 
marketing theories. In addition, demand is the key factor in inventory systems. Generally, there are two 

types of demand functions (Lee and Dye 2012): definite demand and probable demand. In definite 

demand, the types of demand are fixed demand, time-dependent demand, inventory-related demand, 
price-dependent demand, and a combination of these. On the other hand, probable demand has two parts; 

the first part is a distinct distribution function, and the second part is an optional demand distribution 

function. Articles focusing on the definite demand make up 80% of the studies. Also, 15% of studies 

about probable demand have considered the mode of a given distribution function, and only 5% have 
considered the optional distribution function. There are very few articles on fuzzy demand. In this 

research, a mathematical model of demand, which is a function of time, sales price, and exponential 

distribution, is employed. Research on perishable commodities began with (Covert and Philip 1973). 
They considered fashion goods that become obsolete at the end of a period. The issue of product 

perishability was presented in the form of a mathematical model for the first time by (Cave 1963) who 

studied the model of the economic order value for perishable items with a constant rate of spoilage. Also 
in 1963, (Rao, Goyal et al. 1963)presented a comprehensive overview of the studies on inventory models 

of perishable goods, and used the Taylor series to solve the model. The problem of determining the 

inventory policy for perishable goods was first studied by (Whitin 1957). After that, (Ghare 1963) showed 

that perishable products are closely related to the negative exponential function of time. He suggested the 

following equation for modeling perishable inventory: )()(
)(

tftI
dt

tdI
 . This inventory model 

formed the basis of most studies conducted after 1963 for perishable commodity inventory systems. 
(Donaldson 1977) investigated the inventory control model while considering the linear demand for the 

first time. Models of inventory control have been investigated in various studies, including (Bahari-

Kashani 1989), (Goswami and Chaudhuri 1992), and (Chung and Ting 1994). Furthermore, (Shah and 
Jaiswal 1977) presented an inventory control model for products with a constant rate of deterioration. In 
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addition, (Aggarwal 1978) reviewed and modified the model proposed by (Shah and Jaiswal 1977). Elion 
and Malaya (1970) were the first to review the pricing of perishable goods. They assumed that goods had 

a useful life and their deterioration did not occur before the expiration date. Moreover, (Shane 1996) 

developed the pricing and inventory control of perishable goods by considering delays in payments and 

the issue of discounts in transportation. (San José, Sicilia et al. 2006) examined the pricing and inventory 
control of perishable goods such that a downward demand would be a two-criterion function. 

Furthermore, (Skouri and Papachristos 2003) considered the pricing and inventory control in a time-

dependent rate of demand and corruption. (Hwang and Shinn 1997) solved the pricing and inventory 
control of perishable goods by considering the exponential deterioration. (Su, Xiao et al. 1999) re-solved 

the models proposed by (Hwang and Shinn 1997) while considering fixed demand. Later, (Chang, Hung 

et al. 2002) studied the inventory and pricing model for perishable goods, taking into account linear price 
dependency and delays in payments. (Mishra and Mishra 2008) investigated the pricing of goods for the 

inventory model of perishable goods. (He, Prasad et al. 2007) focused on the problem of determining the 

optimal inventory policy for the EOQ of perishable goods in the case of multiple markets. Moreover, 

(Chang, Hung et al. 2002) determined inventory policy for perishable goods, taking into account the VMI 
inventory management model. (Avinadav, Herbon et al. 2013) also examined the problem of inventory 

and pricing policy for obsolete goods in a state that demand function was considered simultaneously 

dependent on time and price. An interesting point in this article was that the three-variable objective 
function of the paper had become a function of one variable using mathematical methods, and, 

accordingly, the quasi-convexity of the objective function was proven. (He, Prasad et al. 2007) examined 

the policy of re-filling and pricing by taking into account the price-dependent demand which declines 
over time. Moreover, (Mo, Mi et al. 2009) studied the inventory and pricing model in terms of demand 

dependence on price and inventory levels. Also, (Hsieh, Dye et al. 2010) investigated a problem similar to 

that examined by (Mo, Mi et al. 2009), with the difference that the demand function gradually decreased, 

ultimately reaching zero. Furthermore, (Teng, Ouyang et al. 2007) Studied the pricing and size of the 
economic order problem for deteriorating products. Assumptions such as a constant rate of deterioration 

and price of time-dependent maintenance were considered in that study. The researchers presented a 

comparison against the model developed by (Abad 2003) in terms of profit per unit time. (Urban 1995) 
developed the model presented by (Alfares 2007) by releasing the assumption that the inventory becomes 

zero at the end of the re-processing period. In fact, he considered the possibility of positive stock at the 

end of each period. Thus, for each product, the remainder of the product at the end of each period of the 

sales price was less than the sales price during the sales period. Wu proposed a challenge for dairy 
products in 2018, which resulted in reduced wastes from dairy products(Wu, Lu et al. 2018). In 2019, 

Rohmer evaluated the supply chain in chain stores(Rohmer, Claassen et al. 2019). In recent years, a 

definitive inventory model has been proposed for corrosive commodities with a price-dependent demand, 
in which the demand rate and the rate of deterioration of continuous and differentiable functions are based 

on price and time, respectively. liu consider a new decision issue for perishable products in production 

inventory with pricing and promotion for a single-vendor multi-buyer system comprising one 
manufacturer and multiple retailers. First, a centralized decision model with a vendor managed inventory 

(VMI) control system under a just-in-time shipment policy is developed (Liu, Zhang et al. 2018). Table 1 

presents a summary of selected articles on the inventory control and pricing of perishable products that 

are most relevant to the present research.  
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Table 1. Summary of selected papers 

 Coordinated 

Pricing and 

Inventory 

Exponential 

Dependent 

Demand 

Discount Deteriorating 

Items 

Variable 

deterioration 

rate 

The present study + + + + + 

Benkherouf (1995) - - + - - 

Mishra and Singh (2010) - - + - - 

Brockmeulen and ven Donselaar 
(2009) 

- - + - - 

Rajan and Steinberg (1992) + + - + - 

Abad (1996) + - + + - 

Mo et al. (2009) - - + - + 

Mishra (2008) - - + - - 

Huang and Shin (1997) + - - - + 

Chu et al. (1998) - - - + + 

Shah and Jizwall(1977) + - - - + 

San Jose et al. (2006) + - - + - 

Kaya (2016) + - - + - 

 
   The present study aimed to propose and evaluate a model for ways to reduce wastes from dairy 

products. To this end, a model was developed for determining the optimal price and inventory control for 

products with a constant rate of deterioration and demand, depending on time and cost with an 

exponential distribution. The proposed model was utilized due to increasing the seller's profit, increasing 
sales, reducing the losses caused by spoilage, and giving suitable discounts to buyers. One of the research 

gaps in the existing literature is the study of degenerate products under uncertain time. While researchers 

and managers have paid considerable attention to the development and use of inventory models for 
decaying products, But in most developed models, time is assumed to be a parameter with a constant 

interval. In this research, by providing a model before the product reaches the expiration date over 

different time periods, the discount is considered, so that the inventory end of the period is zero. By using 

the discount, creates a craving for the customer and sells more products. One of the features of this model 
is to consider the rate of corruption as constant. Scientists like Kaya have taken the demand in a linear 

function, In this study, looking at demand has made it closer to the real world. Considering the non-linear 

maintenance cost for modeling inventory models for degradable products, especially corrosive products 
(products with a certain lifecycle), it is interesting to note that its applicability has been shown in various 

ways. In this study, using the nonlinear maintenance cost of the model makes it very difficult for us to 

solve it. For this purpose, the model is described in section 2, and the model’s assumptions and symbols 
used are explained in section 2-1. Then, the method of developing an inventory model is discussed in 

section 3, and they way to solve it is expressed in section 4. Section 5 describes the sensitivity analysis of 

the model, and section 6 provides the conclusions and suggestions for future research.  

 

2-1- Degradation modeling approach in developed models 
   By studying the developed inventory models in the field of perishable products, the existing research 
can be classified into three categories according to how the process of product degradation is modeled. 

This classification is schematically shown in figure. 1.  
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Fig1. Different approaches to modeling degradation  

   Few articles have been devoted to modeling the product decay process using the decay rate function in 

the inventory function statement in hand (Category 1 features) as well as non-linear maintenance 

(Category 2 features). Goyal and Giri (2003) considered the fixed decay rate and maintenance cost as a 
general function of time, demand depending on sales prices, and minor backward demand to minimize the 

cost of a production system. In the present study, a mathematical model was presented by taking into 

account a fixed decay rate and nonlinear maintenance cost. As already mentioned, the goal of the model 
was to maximize profits. To this end, the total cost was first determined, and the expected profit was 

obtained by lowering the earnings. 

 

3- Notations and assumptions 
For convenience, the following notations and assumptions are adopted throughout the entire paper. 
 

3-1- Parameters: 
C: Purchasing cost per unit. 
h: Holding or carrying cost per unit per unit of time. 

m: Maximum life time in units of time. 

S: Salvage price per unit. 
D (t, p): demand rate is denoted by D(t, p) or D.  

a(t): the age-dependent freshness at time t.                     

 : decay rate of products.   

N : the number of different prices used in an inventory cycle. 

 

3-2- Decision variables 
T: Replenishment cycle time in units of time. 

R : total revenue in an inventory cycle. 

P: Price per unit 

3-3- Assumptions 

 Perishable products cannot be repaired or replaced during the time period. 

 Deduction is not allowed. 

 The stock reaches zero at the end of the period. 

Category 1 

Inventory Function: 

)()()()(
)(

tDtPtIt
dt

tdI
  

Holding Cost: 

htIH   

 

 

 

Degradation modeling approach in 

developed models 

Category 2 

Inventory Function: 

)()(
)(

tDtP
dt

tdI
  

Holding Cost: 

 

Category 3 

Inventory Function: 

)()()()(
)(

tDtPtIt
dt

tdI
  

Holding Cost: 

),( ItZH   
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 The demand rate D is proportional to an exponential function of the price P. Thus, 

p

i e
m

tm
tpD  
),(  

 θ has a constant rate independent of the other products. 

 

3-4- Mathematical model 

   In this study, given the demand for 
p

i e
m

tm
tpD  
),(  which has an exponential distribution, in 

terms of price and time, it is trying to get closer to reality. One of the research gaps in the existing 

literature is the study of degenerate products under uncertain time. While researchers and managers have 

paid considerable attention to the development and use of inventory models for decaying products but in 
most developed models, time is assumed to be a parameter with a constant interval. In this research, by 

providing a model before the product reaches the expiration date over different time periods, the discount 

is considered, so that the inventory end of the period is zero. Using the discount, it creates a desire for the 

customer and sells the product more. One of the features of this model is to consider the rate of corruption 
as constant. In this chapter, by presenting a mathematical model, we study the optimum time for price 

changes, optimal prices, optimum order quantity, and also the analysis of the effect of different 

parameters in the optimal solution. 
The most prominent feature of this model is: 

 Limited planning horizon 

 Nonlinear maintenance cost (corrosive products) / single product / 
 Non-deterministic conditions: probable time-demand has exponential distribution, depending on 

price and time 

In order to determine the desired parameters, including the price, the amount, and the time of each order, 

it is necessary to correctly express the behavior of the system under study in terms of mathematical 
formulas, as shown in figure 2 (Kaya and Polat 2017). 

 
Fig 2. Illustration of inventory process 

   We describe the inventory function I (t) by the differential equation (1) which consists of the decay rate 

and the price- and time-dependent demand rate, D(p, t), such that: 
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I(t)
D(p (t) , t) I(t)

t



 


                                                                                                                (1) 

   Since the inventory function changes every time the price is changed, we let Ii(t) denote the inventory 

function for any time t ∈ [ti-1, ti). We also let I (ti) denote the inventory level at the end of the time period 

[ti-1, ti). Note that the inventory level Ii(t) will be equal to the inventory consumed from time t to ti due to 

sales and decay plus I (ti) as stated below: 

it
t s t

i i

t

I (t) e e D(p ,s) ds ce                                                                                                              (2) 

From now on, in order to obtain explicit analytical results, we use the exponential demand function that is 

commonly used in literature (Feng, Chan et al. 2017), and depends on both price and time: 

p

i e
m

tm
tpD  
),(                                                                                                                             (3) 

Using the exponential demand function, the inventory equation can be written as: 

)()()()(
tttsp

t

t

i
i

i

ecdsee
m

sm
tI

 


 
                                                                                           (4) 

Let us solve equation (3) using integration by parts: 
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2
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                            (5) 

   We note that since at the end of the cycle, all the inventory would be consumed (otherwise, it would not 

be an optimal solution and ordering one less at time zero would yield a better result), i.e., I (tN) = 0, thus 

by using the above equation and going backwards, one can explicitly find all I(ti)values and Ii(t) 

equations. Similarly, we can find the order level Q = I(t0) where t0 = 0 from the above equation. 

Explicitly, we can write Q and I(ti) as follows: 

  1111 1
11

1)(
2

1 ttptp
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e
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                                                              (6) 
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We let Si denote the sales amount of the product at ith interval: 
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   Then, we find the revenue in an interval by multiplying the demand by the price in that cycle, and the 

total revenue in an inventory cycle would be the sum of all the revenues earned at each interval. The total 

revenue, R, can be determined as follows:                                             

                                                                                                                                                                     (9) 
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   We also calculate the inventory cost, H, in the system by calculating the area under the inventory curve 

shown in figure 2.                                                                                                                                                                                                                                               
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   Finally, the profit per unit time function is obtained by taking the difference between total revenue and 

total cost during an inventory cycle and dividing that value by the length of an inventory cycle. As a 

result, we can write our problem as follows: 
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At the end, the optimal sales price is obtained by taking into account the limitations with this equation 

(11). 
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3-5- Proof of the convexity of the objective function 
   One common and traditional approach to proving the convexity of a function that is twice-differentiable 

by decision variables is to form a Hessian matrix and prove that the matrix is positive. Many researchers 

such as (Goh 1994) and (Chen and Chang 2010) have used this approach to solve inventory models. 
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   The number of decision variables in the objective function is limited to two and, therefore the 

dimensions of the Hessian matrix are 2*2. However, due to various parameters, relative complexity, and 
the relatively long form of target function, we cannot directly utilize this approach. In order to find the 

optimal solution, in the first step, the goal function has to be proved, and in the next step, optimal 

solutions are obtained using the proposed algorithm. This matrix actually represents the degree of local 
curvature of the function in question for its variables. In this study, to derive convexity, derivatives 

derived from the Hessian matrix are placed in the problem limits and only if convexity conditions are 

satisfied. 

4- Genetic algorithm 
   The genetic algorithm is a programming technique that employs genetic evolution as a problem-solving 

model. The problem which needs to be solved has some inputs that are converted into solutions from the 

genetic evolution by the genetically engineered benchmarked process. Then, the solutions are evaluated 
as candidates by the fitness function and, if the exit condition of the problem is provided, the algorithm 

ends. Generally, an algorithm is based on repetition and most of its processes are selected at random, 

composed of the fitting, display, selection, and change functions. The genetic algorithm is an optimization 
method based on naturally inspired genetic operations. It uses selection, mutation, and crossover 

operations to achieve its optimization goal. A chromosome in our model is an array with N values where 

the element at i denotes the value of it .Since N is a decision variable, the algorithm was applied for 

different N values, and the optimal N was obtained through enumeration. We then applied crossover 

operations to generate new populations using one-point variable-length crossovers. Next, we formed a 

mating pool with the offspring and the original population. Then, by generating random numbers, 
chromosomes with higher fitness values were selected in the next generation. Afterwards, we took two 

parents, cut them at a random position, and then swapped them. For each chromosome pair, the 

probability of crossover was random. Therefore, during each iteration, 15 pairs were created and 
crossover was applied if the default crossover probability was less than the random number generated by 

the code as the crossover probability. The pseudo-code for our algorithm is as follows: 

Pseudo-Code for the Genetic Algorithm 

Step 1: The given answer is represented as a matrix with one row and N columns, and its elements are in 

the form of continuous numbers between 0 and a predetermined upper limit for variable it . An 

example of this matrix for N=6 is presented in table 2. 
 

Table 2. Sample Answer Display 

18.52 19.25 19.02 19.31 18.06 17.78 Chromosome 

Based on the above matrix, variable it  is calculated as described in the evaluation function section. 

Step 2: The evaluation function is the only criterion for guiding the genetic algorithm while searching to 

find an appropriate response. In this research, the objective function of the problem is the 
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algorithm evaluation function. First, we need to make some corrections to the display of the result 
so that we can calculate the variables and also calculate the amount of the target function. 

Because the proposed model has a limit  1 ii tt , to satisfy this limitation, it suffices to arrange 

the generated matrix in the display section of the answer from small to large. 

Step 3: Selection of chromosomes from the current population is also performed in a variety of ways. We 

have used the selection of roulette wheels in this research. The general principles of selection in 

this method are that, in the first step, for each chromosome of the present population, we assign 
the probability that shows the chances of selecting that chromosome for transmission to the 

intersection. In the second step, using a method and according to the probability of the 

chromosomes, we select some of them for transfer to the intersection. Keep in mind that 
probabilities are assigned to chromosomes in a distributed form. In other words, the total 

probability for all chromosomes should be equal to 1. 

Step 4: The latter side of Darwin's theory states that, after the production of the offspring’s chromosomes, 

random mutations may occur in some of the produced chromosomes, resulting in better or worse 
chromosomal optimization. We also use this property of genetic algorithms and create mutations 

in the answers generated for the problem. This method is implemented in different ways 

depending on the algorithm designer's innovation. 

Step 5: In this research, the criterion for maximum generation was employed as a stopping criterion. 

Using this rule, the genetic algorithm stops after a certain number of generations. 

 

4-1- Setting the Parameter of the Genetic Algorithm 
   To control the parameters of the proposed genetic algorithm, the Taguchi method, from the Minitab 

software, was used. The effective parameters of the genetic algorithm were the maximum number of 
repetitions, intersection rate, mutation rate, and population. For each of these factors, three levels were 

defined as follows: 
 

Table 3. Parameters and levels for setting the parameter of the genetic algorithm 

  
Low(1) Medium(2) High(3) 

 
Parameters 1 2 3 

A MaxIt 200 300 400 

B Npop 150 200 250 

C Pc 0.7 0.8 0.9 

D Pm 0.01 0.05 0.1 

E TS 3 4 5 

 

The number of tests required for 5 factors and 3 levels was 27. The tests for the parameters of the genetic 

algorithm were as follows: 
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Table 4. Tests designed to adjust the parameter by Taguchi method 

Run A B C D E Run A B C D E 

1 1 1 1 1 1 15 2 2 3 1 3 

2 1 1 1 1 2 16 2 3 1 2 1 

3 1 1 1 1 3 17 2 3 1 2 2 

4 1 2 2 2 1 18 2 3 1 2 3 

5 1 2 2 2 2 19 3 1 3 2 1 

6 1 2 2 2 3 20 3 1 3 2 2 

7 1 3 3 3 1 21 3 1 3 2 3 

8 1 3 3 3 2 22 3 2 1 3 1 

9 1 3 3 3 3 23 3 2 1 3 2 

10 2 1 2 3 1 24 3 2 1 3 3 

11 2 1 2 3 2 25 3 3 2 1 1 

12 2 1 2 3 3 26 3 3 2 1 2 

13 2 2 3 1 1 27 3 3 2 1 3 

14 2 2 3 1 2       

   After performing the experiments for a specific problem using the presented genetic algorithm, the 

following results were obtained: 

 

Table 5. Results of experiments designed to set the parameters of the genetic algorithm by Taguchi method 

Run Obj. Fun Run Obj. Fun Run Obj. Fun 

1 -185.2 11 -0.6 21 -116.4 

2 -160.1 12 -24.4 22 12.4 

3 -109.4 13 -84.7 23 78.9 

4 -61.5 14 -6.8 24 -26.3 

5 -23.1 15 -163.4 25 -38.7 

6 -81.7 16 -4.1 26 -83.3 

7 -15.5 17 -97.4 27 81.3 

8 0.2 18 -48.0   

9 12.8 19 -73.8   

10 -20.2 20 32.3   

 

   It is noteworthy that the results obtained from the experiments must be converted to the same 

dimensions. A method for this conversion is the RPD method. 
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RPD=| Method sol - Best Sol |*100/ |Best Sol | 

   In the above statement, Method Sol is the amount of the results obtained from the implementation of the 
algorithm, and Best Sol is the best answer obtained from 27 experiments. After the above conversion, the 

results of tests were modified according to the following table: 

Table 6. Normalized results for adjusting the parameter of the genetic algorithm by Taguchi method  

Run Obj. Fun Run Obj. Fun Run Obj. Fun 

1 327.87 11 100.77 21 243.16 

2 297.00 12 129.98 22 84.72 

3 234.62 13 204.16 23 2.88 

4 175.62 14 108.36 24 132.31 

5 128.37 15 301.02 25 147.67 

6 200.55 16 105.05 26 202.48 

7 119.07 17 219.89 27 0.00 

8 99.72 18 159.02   

9 84.26 19 190.74   

10 124.87 20 60.30   

After analysis using the Taguchi method in Minitab for the genetic algorithm, the following results were obtained: 

 

Fig 3. Results from Minitab Software for Genetic Algorithms 

   The general rule about the shape of the graph is that, whenever the value of the vertical axis is greater, 
the value of the objective function is better and, therefore, we can introduce the parameter level with the 

highest value as the selective parameter. For example, for a population, we can choose a population of 

250 as a selective parameter. After performing the analysis and based on the tests for the genetic 
algorithm, the optimal levels for the parameters of maximum repetition of the algorithm, initial 
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population, intersection rate, mutation rate, and racing choice algorithm were 1, 3, 1, 2, and 2, 
respectively. 

Table 7. Results from Minitab Software for Genetic Algorithms 

 
 

Low(1) Medium(2) High(3) 

 
Parameters 1 2 3 

A MaxIt 200 300 400 

B Npop 150 200 250 

C Pc 0.7 0.8 0.9 

D Pm 0.4 0.5 0.6 

E TS 3 4 5 

 

5- Computational studies 
   In this section, the issue of pricing and inventory control was analyzed using the 950 g yogurt product 

produced by Kaleh factory (Iran) over a given time period. The related data used was maximum number 
of potential consumers α = 200, the price efficiency of demand λ = 0.1, c=$20/unit, h=$5/unit/year, 

m=0.06 years, the decay rate of products θ= 0.05, and the fixed order cost A= 5000.  

   In addition, when N prices are used in an inventory cycle, it means that N - 1 price changes are made; 

thus we use a linear cost function C(N) = (N - 1) f for changing prices. The proposed algorithm was 
applied to obtain the optimal solution for the case study. 

                                      033.12TN,   1186.45* Q 

   To evaluate the behavior of the proposed model proportional to its parameters, the sensitivity analysis 
of various parameters and functions was performed. The sensitivity analysis was conducted such that each 

parameter in every execution remained constant except for one parameter, which underwent enough 

changes of different magnitudes.  
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Table 8. Sensitivity analysis 

TN Price Order Size Profit  

12.0339 

35.1498 

33.7475 
32.2343 
30.8079 
29.3415  

45.1186 173.267 200  

12.079 

35.1307 
33.723 
32.3159 
30.8768 
29.418  

48.8686 135.0615 250    

12.0936 

35.1572 
33.7378 
32.323 
30.8628 

29.3382  

51.6387 141.9801 4c  

19.931 

38.1434 
36.5144 
34.8514 
33.1784 

31.2488  

30.6192 1769.5528 6c  

19.9904 

28.7602 
27.8768 
27.0064 

26.1155 
25.1971  

51.8343 148.2361   = 0. 6  

12.7977 

34.2411 
32.521 
30.7833 

29.0323 
27.2877  

24.4563 409.4848   = 0.2 

12.5455 

29.4296 
28.2841 

27.1339 
25.9581 
24.7605  

27.9599 538.2133 2.0H  

19.9974 

29.0617 
28.2498 

27.421 
26.4764 
25.5914  

35.0105 819.6388 05.0H  

12.6662 

29.1906 

28.2649 
27.3271 
26.3595 
25.3388  

35.566 721.526 6000A  

12.7708 

29.1905 
28.2534 
27.3183 
26.3227 
25.3311  

31.843 957.6063 4000A  
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   The results of sensitivity analysis indicated that, when the deterioration rate increases, the time rate 
decreases and the sales price increases. Also, reducing the rate of deterioration should be put on the 

retailer's agenda. The results demonstrated that, by increasing the deterioration rate by 2%, the purchase 

cost increases by 5%, implying that the manufacturer would increase his/her sales price to reduce the 

effect of deterioration, which would further increase his/her profit. Nevertheless, this approach does not 
seem very rational because the increase in the producer's price may result a reduction in the retailer’s 

order and, as a result, have a negative effect on the producer's profit. Therefore, similar to the retailer, the 

manufacturer should seek to reduce deterioration in the system. If the rate of decay   increases by 2%, 

then the period of time decreases, and the sales price increases by 3%. When the value of C increases, the 

sales price also increases. An increase of 2000 in the amount of startup cost A would lead to a 6% 

decrease in the profit value of the target function and the sales price of the producer. By keeping   and λ 

constant, when t increases, the amount of economic order and total system profits will increase and the 
optimal sales price will decrease. By increasing the value of the deterioration rate and keeping the other 

parameters constant, the amount of economic order, total profit of the system, and optimal price increases. 

Based on the analysis made, managers can consider marketing measures such as product discounts by 
examining the expiry date of perishable products. Also, managers can increase product sales by using a 

number of breakpoints or periods of discounts. Managers can control inventory by controlling the 

maintenance cost, purchase cost, and the order amount. In this study, by analyzing the sensitivity of 
important parameters, we determine the relationship between the parameters and, in view of the demand, 

bridge the gap between the model and the real world. 

 

Fig 4. Profit function display 

5-1- Effect of the number of price changes on profit 
   In the present study, sales could be increased by increasing the number of discount points. In addition, 
the number of discount points, the optimal sales price, and the total profit of the system decrease with an 

increase in the price elasticity index. The reason is that, with an increase in the amount of alpha, there is a 

decrease in demand which, in turn, leads to a decrease in the amount of economic order, followed by a 
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decrease in system profits. Using the model presented in this research, decision makers in different areas 
of perishable product marketing can determine the number of breakpoints and or price levels for their 

products in a way that maximizes their profits. For example, in the numerical example presented, the 

number of proposed points comprised five price levels. 

 
Table 10. Effect of the number of price changes on profit 

10 9 8 7 6 5 4 3 2 1 N 

187.80 187.78 187.03 187.93 186.37 186.65 186.81 185.71 185.30 184.79 Profit 

 

6- Conclusion and future research 
   Inventory control and pricing are known as two pillars of supply chain management. That is why, in 

recent years, pricing and inventory control issues in the supply chain management of perishable products 
has attracted much more attention than before. In the present research, by developing a mathematical 

model to price and control the inventory of perishable products, optimal-order quantities and points of 

price changes were determined. For the first time, the demand distribution for perishable products was 
considered exponentially. Also, to satisfy the condition of decreasing the price chart over time, the 

convexity of the objective function was added to the model as a constraint. Due to the complexity of the 

problem, the method used in this study was the genetic algorithm. By analyzing the effect of different 

parameters and the optimal solution, the results showed that, by increasing the decay rate by 2%, the 
amount of purchase cost increases by 5%, implying that the manufacturer will increase their sales price to 

reduce the effect of deterioration, thereby increasing profit. However, this approach does not seem to be a 

logical behavior because increasing the price may result in a reduction in the retailer’s ordered quantity, 
and, as a result, have a negative effect on the producer's profit. Therefore, similar to the retailer, the 

manufacturer should seek to reduce the decay rate of perishable goods in the system. When decay rate   

increases by 2%, the time period shortens, and the sales price increases by 3%. Moreover, the sales price 

increases when the value of per unit cost C increases. Finally, the results and findings of this study are: 

 By maintaining the problem variables and increasing the maintenance cost (h), the optimal 

reappraisal period, the total profits of the inventory system increase. These results indicate that 

when the cost of maintaining a unit of goods increases, the retailer prefers to order a lower 
amount of goods and maintain that amount of goods for a shorter time. This indicates the 

decrease in the amount of economic order, which results from the model also reflects on this 

issue. 

 By keeping the problem variables constant, when t increases, The amount of economic order

 *

wQ  and total profit of the system increase and the optimal sales price decreases. 

 With the increase in the value of the deterioration rate and the remaining parameters remaining, 

the amount of economic order, the total profit of the system and the optimal sales price increase. 

The number of discount points, The optimal sales price and overall system profits are reduced by 
increasing the price elasticity index. The reason is that with increasing the amount of alpha, there is a 

decrease in demand. The decline in demand results in a reduction in the amount of economic order, 

followed by a decrease in the system profits. 
Based on the results obtained and the study of previous research, the following suggestions can be made 

for future research: 

 The application of fuzzy concepts and the demand function in general for improvement in the 

mathematical model 
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 The combination of closed-loop supply chain and corrupt products that, After expiration they 
have the ability to turn into other products, such as turning fruits into fruit juice. 

 By applying five levels, retailers, manufacturers, customers, recycling, distributor to develop the 

model and solve it publicly (all products). As shown in the results of numerical examples, decay 

rates have a high impact on all optimization parameters. By investing in maintenance 
technologies, the decay rate can be controlled, so considering the amount of investment in path 

maintenance technologies will be for future studies. 

 Considering the periods when they follow the statistical functions, followed by the development 
of the model by addressing the cost of space, the cost of the shortage, and the introduction of a 

locational discussion. 
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