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Abstract 
Nowadays, scholars do their best to study more practical aspects of classical 
problems. Job shop Scheduling Problem (JSSP) is an important and interesting 

problem in scheduling literature which has been studied from different aspects so 

far. Considering assumptions like learning effects, flexible maintenance activities 

and transportation times can make this problem more close to the real life, 
however these assumptions have rarely been studied in this problem. This paper 

aims to provide a mathematical model of JSSP which covers these assumptions. 

MILP model is suggested, Three different sizes of instances are generated 
randomly,  and this model has been solved for small-sized problems exactly by 

GAMS software and the effects of learning on reducing the value of objective 

function is shown. Due to the complexity of the problem, in order to obtain near 
optimal solutions, medium and large instances are solve by applying Ant Colony 

Optimization for continuous domains(ACOR) and Invasive weed Optimization 

(IWO) algorithm, finally results are compared. 

Keywords: Job shop scheduling problem, learning effects, flexible maintenance, 
transportation times.  
 

      

1-Introduction 

   The mystery that lies behind the survival of any organization is the provision of high-quality, low-price 
services. A factor effective on the quality and price of providing services and goods is the time when they 

are provided. The sequencing and scheduling of operations along the time for performing a set of jobs has 

been one of the concerns of decision-makers in the fields of industry and service. In today’s competitive 
world, efficient scheduling and sequencing is of great importance in survival of an organization in the 

competitive market. The problem of job shop scheduling is a versatile, important problem in the field of 

scheduling, considered by researchers from various aspects so far. The objective of the problem is to find 

an optimal scheduling where n jobs, each containing L operations, are processed on m machines, each 
with k positions, based on a predetermined sequence, and each job can be placed on each machine at most 

once. This paper seeks to present a more comprehensive and practical model of JSSP by making 

assumptions which have been rarely been taken into consideration in this problem, including, inter-
machine transportation times, availability constraints as flexible maintenance activities and learning 
effects.  
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2-Literature review 
   In classical scheduling, it is often assumed that the machines are always available, while they may 

become unavailable in the real world for certain reasons. One of these potential reasons is preventive 
maintenance activities planned to avoid accidental failure and to increase the useful lives of the machines. 

Preventive maintenance operations are of two types: fixed and flexible. In the former case, the machine 

becomes unavailable for performing maintenance operations after performing a number of predetermined 

operations, and in the latter case, the maintenance operations must be performed in a specific time 
window. Ma (2010) provided a comprehensive review of scheduling problems with availability 

constraints. Dehnar saidy and Taghavi-Fard (2008) have been studied availability constraints in different 

scheduling environments for both stochastic and deterministic cases. Meanwhile there are few studies on 
consideration of maintenance operations in the job shop environment. For example, Lei D. (2010) 

addressed fixed preventive maintenance operations in the fuzzy job shop problem. Lei D. (2013) 

investigated a multi-objective job shop problem in a nondeterministic environment by considering 
flexible maintenance operations, and solved it using the multi-objective artificial bee colony algorithm 

without presenting a mathematical model. Two-machine JSSP with predetermined maintenance activities 

on one machine was considered by Benttaleb et al. (2018), who presented and solved two mixed integer 

linear programming models using an efficient branch and bound algorithm. For minimization of 
makespan, a disjunctive graph model for the JSSP was presented by Tamssaouet et al. (2018) where 

machines are unavailable in the entire planning horizon. They used Tabu Search and Simulated Annealing 

for solving the problem 
   Vahedi Nouri et al. (2013) propose a mathematical model for flow shop scheduling problem by 

consideration of learning effects and flexible maintenance activities, in this study, each machine is 

assumed to contain a number of flexible maintenance activities, such that each maintenance activity must 
be done in a predetermined time window. A maintenance activity will be considered as delayed if 

completed later than its earliest possible finish time.  

   On the other hand, unlike in classical scheduling, where processing times are assumed to be fixed ,in the 

real production environment, repetition of a job by the operator, whether manual or semi-automatic, or of 
a job related to set-up in a fully-automatic environment increases the operator’s experience, and decreases 

operation processing times or set-up times. This phenomenon is called learning effects, first considered in 

scheduling problems in 1999 by Biskup. He divided learning effects into two general classes: position-
based in which learning depends on the number of jobs are processed and sum-of-processing times-based 

in which processing time is considered for already-processed jobs. A large number of studies have been 

conducted on learning effects in single-machine and flow shop environments. Vahedi nouri et al. (2014), 

Amiriand and sahraeian (2015), Behnamian and Zandieh (2013), and Mousavi et al. (2018) are amongst 
them.  Biskup (2008) and Azzur (2018) provided a comprehensive review of these studies. According to 

that paper, the effects of learning in the job shop environment have not yet been investigated. 

   Inter-machine transportation times of jobs have been ignored for simplicity in most of the studies 
conducted in JSSP. Transportation times can be either job-dependent or job-independent. Transportation 

time depends in the former case on the distance between the two machines and the job to be replaced, 

while it depends in the latter case only on the distance between the two machines. On the other hand, the 
transportation system may be multi- or single-transporter. There are an unlimited number of transporters 

in a multi-transporter system, while there are a limited number of them in a single-transporter system 

(Ahmadizar, 2014).As far as we know our paper is the first paper which considers all above mentioned 

assumptions together in JSSP to present a model with high compatibility with the real world.   
 

3-Model description 
   In this section, assumptions, notations, parameters, scalars, decision variables and mathematical model 

of problem are defined: 
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3-1- Assumptions 

• All jobs and machines are available at time zero. 

• Preemption is not allowed. 

• A job cannot be processed on a machine more than once. 
• Processing times of jobs are affected by classical position-based learning effects. 

•.The processing times include the set-up times. 

• Multiple predefined flexible maintenance activities must be done on each machine. 
• Transportation times between machines are assumed to be job-dependent. 

• Transporters don’t have any limitation. 

 

3-2- Notations 
i: Machine index 

j: Job index 
k: Position index 

r: Maintenance index 

L: Operation index 

 

3-3-Parameters and scalars 
n: Number of jobs 

m: Number of machines 
V: A large positive number 

r: Number of maintenance activities performed on each machine 

𝑃𝑖𝑗 : Normal processing time of job 𝐽𝑗  on machine 𝑀𝑖 

𝑃𝑖𝑗𝑘: Processing time of job 𝐽𝑗 on the kth position of machine 𝑀𝑖  

𝛼𝑖: Job processing learning index on machine 𝑀𝑖 (𝛼𝑖 ≤ 0) 

𝑃𝑀𝑖𝑟: r
th maintenance activity on machine 𝑀𝑖  

𝐸𝐹𝑖𝑟: Earliest possible finish time of maintenance activity 𝑃𝑀𝑖𝑟 

𝐿𝐹𝑖𝑟: Latest possible finish time of maintenance activity 𝑃𝑀𝑖𝑟 

𝑡𝑖𝑟: Runtime of 𝑃𝑀𝑖𝑟  

𝑟𝑖𝑗𝑙: A binary parameter that is 1 if the lth operation of the jth job is processed on machine𝑀𝑖, and is 0 

otherwise 

𝑡𝑝𝑖𝑗𝑖’: Time needed for transfer of job 𝐽𝑗 from machine 𝑀𝑖 to machine 𝑀𝑖′  

 

3-4- Decision variables 
𝑋𝑖𝑗𝑘: A binary variable that is 1 if job 𝐽𝑗 is processed on the kth position of machine𝑀𝑖, and is 0 otherwise 

𝐶𝑖𝑗𝑘 : Completion time of job 𝐽𝑗 if scheduled on the kth position of machine 𝑀𝑖 and 0 otherwise 

𝐶𝑚𝑎𝑥: Makespan 

𝑍𝑖𝑗𝑟: A binary variable that is 1 if maintenance activity 𝑃𝑀𝑖𝑟 is performed after jo𝑏𝑗  is processed on the 

kth position of machine𝑀𝑖 , and is 0 otherwise 

𝐹𝑀𝑖𝑟: Finish time of maintenance activity 𝑃𝑀𝑖𝑟 

 

3-5- mathematical model 

   In this problem, A set of n jobs {𝐽1, 𝐽2, …, 𝐽𝑛 } each containing L operations must be processed in a 

predetermined order on a set of m machines {M1, M2, …, Mm}. Each job can be processed only on one 

machine at a time, and each machine can process only one job at a time. Interruption is not allowed, and 

there are no precedence constraints between jobs. All the jobs are available at time zero, and there are no 

buffer constraints between the machines. Each job 𝐽𝑗 has a predetermined normal processing time of 

𝑝𝑖𝑗on machine𝑀𝑖. The jobs are affected by classical position-based learning process which was 
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formulated by Biskup (1999). The real processing time of job 𝐽𝑗 on machine 𝑀𝑖 depends on the position 

of the job in the sequence k and learning index 𝛼𝑖  ≤ 0, which is obtained from the equation 𝑝𝑖𝑗𝑘 = 𝑝𝑖𝑗𝑘𝛼𝑖 .  

Machine 𝑀𝑖  requires r maintenance activities, such that the rth maintenance operation 𝑃𝑀𝑖𝑟is completed 

in a time window of [𝐸𝐹𝑖𝑟 , 𝐿𝐹𝑖𝑟] where r = 1, 2, …, r. transportation times between machines have been 

taken into account as job-dependent transportation times without any limitation. Based on above 

mentioned assumptions, Wagner's mathematical model for   JSSP has been developed to minimize 

makespan and sum of delays of maintenance activities as follows:  

𝑀𝑖𝑛 𝑍 = 𝐶𝑚𝑎𝑥 + ∑ ∑ (𝐹𝑀𝑖𝑟 − 𝐸𝑀𝑖𝑟)𝑟
𝑟=1

𝑚
𝑖=1                                                                                           (1) 

    (2)      ∀ i = 1, … , m    , j = 1, … , n ∑ 𝑋𝑖𝑗𝑘

𝑘

= 1 

(3) ∀ j = 1, … , n    , k = 1, … , n ∑ 𝑋𝑖𝑗𝑘

𝑗

= 1 

(4) 
∀ i = 1, … , m 

, k = 1, … , n − 1 

∑ Cijk

j

+ ∑ Xij k+1

j

× Pij k+1 ≤ ∑ Cij k+1

j

 

(5) 

∀ j = 1, … , n 

, k = 1, … , n 

,l= 1, … , m-1 

∑ rijl

i

× Cijk + ∑ ríj l+1

í

× X íjk × Píjk + ∑ ∑ rijl

íi

× ríj l+1 × tpijí

≤ V × (1 − ∑ rijl

i

× Xijk) + V

× (1 − ∑ ríj l+1

í

× Xíjk) + ∑ ríj l+1

í

× Cíjk 

(6) 

∀ i = 1, … , m 

, j = 1, … , n 

, r = 1, … , r 

∑ Cijk

k

− ∑ Xijk

k

× Pijk − 𝐹𝑀𝑖𝑟 + 𝑍𝑖𝑗𝑟 × v ≥ 0 

(7) 

∀ i = 1, … , m 

, j = 1, … , n 

, r = 1, … , r 

𝐹𝑀𝑖𝑟 − 𝑡𝑖𝑟 + 𝑉(1 − 𝑍𝑖𝑗𝑟) ≥ ∑ 𝐶𝑖𝑗𝑘

𝑘

 

(8) 

∀ i = 1, … , m 

, j = 1, … , n 

 

𝐶𝑖𝑗𝑘 ≤ 𝑉 × 𝑋𝑖𝑗𝑘 

 



111 
 

(9) ∀ j = 1, … , n ∑ 𝐶[1]𝑗𝑘

𝑘

≥ ∑ 𝑋[1]𝑗𝑘

𝑘

× 𝑃[1]𝑗𝑘 

(10) ∀ j = 1, … , n 𝐶𝑗 ≥ ∑ 𝐶[𝐿𝑎𝑠𝑡 𝑚𝑎𝑐ℎ𝑖𝑛𝑒]𝑗𝑘

𝑘

 

(11) ∀ j = 1, … , n 𝐶𝑚𝑎𝑥 ≥ 𝐶𝑗 

(12) ∀ i = 1, … , m , r = 1, … , r 𝐸𝐹𝑖𝑟 ≤ 𝐹𝑀𝑖𝑟 

(13) ∀ i = 1, … , m , r = 1, … , r 𝐹𝑀𝑖𝑟 ≤ 𝐿𝐹𝑖𝑟 

(14) ∀𝑗 = 1, … , 𝑛 Cj و ≥ 0 

(15) ∀𝑖 = 1, … , 𝑚  , 𝑗 = 1, … , 𝑛, r = 1, … , r X𝑖j, 𝑍𝑖𝑗𝑟   ∈ {0,1} 

   In this model, the first equation is the objective function to minimize makespan and sum of delays of 
maintenance activities. Constraints 2 and 3 state that each job can assign to one position and each position 

can involve one job. Constraint 4, calculates completion time of jobs on each position of machines 

regarding to learning effects. Constraint 5 is the precedence constraint and considers transportation times, 

Constraints 6 and 7 determine finish time of maintenance activities. Constraint 8 express that the 

completion time of job 𝐽𝑗 is 1 if it is scheduled in the kth position of machine 𝑀𝑖, and is 0 otherwise; 

constraints 9-11 compute completion time of each job and makespan as well. Constraints 12 and 13 
indicate time window for each maintenance activity. Finally two last constraints reveal positive and 

binary variables.  

4-Data generation 
   Due to the novelty of the proposed model and lack of benchmarks in the literature, three types of 

problems in small, medium, and large sizes are randomly generated. If a, b, and c represent the number of 

machines, jobs, and maintenance operations, respectively, the borders of these three groups have been 
considered 30 and 60 regarding to the CPU times of solution methods which have been gained by trial 

and error. In this way, small-sized problems lie in the range a.b.c ≤ 30, Medium-sized problems lie in the 

range 30 ≤ a.b.c ≤ 60, and a.b.c > 60 in large-sized problems. Table 1 illustrates the quality of data 

generation for random instances. It is worth mentioning that formulations for 𝐸𝐹𝑖𝑟 and 𝐿𝐹𝑖𝑟  have been 

generated by trial and error, based on vahedi-Nouri et al. (2013). 

Table 1. Data Generation 

parameter Notation Value 

n Number of jobs {2…12} 

m Number of machines {3…14} 

r Number of maintenance on each machine 2 

𝛼𝑖  Learning index of machine Mi Uniform distribution(-0.9 , -0.1) 

𝑡𝑖𝑟    maintenance execution time  Uniform distribution(5,35) 

𝐸𝐹𝑖𝑟  Earliest possible finish time of 

maintenance activity 𝑃𝑀𝑖𝑟 

K(∑ 𝑃𝑖𝑗
𝑛
𝑗=1 ) ∕ (k+1) + 30(i-1) 

𝐿𝐹𝑖𝑟  Latest possible finish time of maintenance 

activity 𝑃𝑀𝑖𝑟 

K(∑ 𝑃𝑖𝑗
𝑛
𝑗=1 ) ∕ (k+1) + 30(i) 

𝑡𝑝𝑖𝑗𝑖′ Transportation  times Uniform distribution (1,40) 

𝑃𝑖𝑗  Processing time of job 𝐽𝑗 on machine 𝑀𝑖 Uniform distribution (10,120) 
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5-Proposed solution methods 
   Since the JSSP is a strongly NP-hard problem, the presented MILP model is solved using the solver of 

CPLEX of  GAMS 24.8.5 for small-sized problems, and two metaheuristic algorithms are applied for 
finding near-optimal solutions in medium and large-sized problems, where the exact methods are 

incapable of finding optimal solutions within logical time. MATLAB 2015 and a PC with a Core i5 

2.5GHz CPU, 3MB cache, and 4GB RAM have been used for coding these algorithms. 

5-1- metaheuristic algorithms 
   To handle medium and large instances, two metaheuristic algorithms i.e. ACOR which is Ant Colony 

Optimization (ACO) algorithm extended for continuous domains and Invasive Weed Optimization 

(IWO). The ant colony algorithm was introduced by Colorni et al. (1992). It is a population-based 
metaheuristic that can find near-optimal solutions in complex hybrid optimization problems based on the 

behavior patterns of ants. For the algorithm to be utilized, artificial ants progressively generate solutions 

by moving on the graphs. The process of generating solutions is random, and is biased using the 

pheromone model. The algorithm uses a discrete structure for specification of solutions. That is, each of 
the decision variables is divided into a specific number of modes in the defined range. The discretization 

of the variable space restricts the algorithm, which in turn reduces its accuracy. Bilchev and Parmee 

(1995), proposed the ACOR algorithm. A probability density function (PDF) is used in the algorithm to 
make the space continuous in the decision variables. Mehrabian and Lucas (2006) introduced a random 

optimization algorithm inspired by colonizing weeds. They state that weeds are wild plants with 

aggressive growth habits, which makes them a serious threat to desired plants, disordering agriculture. 
They have indicated the great capability of adaptation to the environment and stability. IWO algorithm 

seeks to present a simple, efficient method for solving problems by imitating the stability, adaptation, and 

random behavior in the weed colony. Noteworthy is to mention that parameters of these algorithms have 

been tuned by trial and error. Figure1 shows flowchart of IWO 

5-2- Solution representation 

   JSSP is a NP-hard problem (Fattahi, 2017). A dimension which is added to it by the learning effects 

makes it more complicated. Therefore, we should seek for appropriate and efficient solution methods to 

solve medium and large instances. In this way, a string of decimal numbers is used for presentation of the 
solution. The solution representation should represent only one solution to the problem. The string is as 

long as "the number of machines" × "the number of jobs". Each string is divided into number of 

machines, and each section is arranged in ascending order. In each section, the sequence of jobs that each 
machine is assigned is specified by the sequence of arranged numbers for that machine. Figure 2 
demonstrates this procedure. 
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Fig 1. Flowchart of IWO (Velmurugan, 2016) 

 

Fig 2. Solution representation 
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   Noteworthy is to mention that, for gaining the feasible solutions, an initial solution for the problem is 
created at the beginning of the algorithm with a heuristic method that generates the first feasible solution 

for each machine greedily. Figure 3 depicts this procedure. 

 

 
 

 

  

                                                                                                         
  

 

 

 

 

 

 

Fig 3.  Generating an initial solution 

(Sequence of jobs processed on machine M1) 

 

   As figure 4 Depicts, The following section of the solution representation of length "the number of 

machines" ×  "the number of maintenance activities"  × "the number of positions" concerns specification 

of maintenance operations r performed at position k after processing 𝐽𝑗on machine 𝑀𝑖. Here, the highest 

value of k is specified for every machine and maintenance activity. This value of k specifies where the 

maintenance operations are performed on the machine. 

6-Comparison of the solutions 
   To compare the solution methods, three metrics have been applied. The first one is Relative Percentage 

Deviation (RPD). Equivalent RPD of each solution is calculated by equation (16), where 𝐴𝑙𝑔𝑠𝑜𝑙 the 

objective value is obtained by solving an instance using the considered solution method, and  𝑀𝑖𝑛𝑠𝑜𝑙 is 

the minimum objective value obtained by solving that instance using solution methods. The value of RPD 
for each solution method shows the ability of solution method to find more appropriate solutions such that 

the less value of RPD indicates that solution method has been managed to find the less value of objective 

function.  Furthermore, Imp (Improvement)  as the second metric indicates the amounts of improvement 

occurred in the initial solution, obtained by equation (17), where 𝐴𝑙𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑜𝑙  is the objective value of the 

initial solution of the solution method, and 𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙  is the objective value of its final solution. CPU 

time of each solution method is the third metric for comparison the efficiency of each method.  

 

RPD =
𝐴𝑙𝑔𝑠𝑜𝑙−𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑖𝑛𝑠𝑜𝑙
 × 100                                                                                                                  (16) 

Imp =
𝐴𝑙𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑜𝑙−𝐴𝑙𝑔𝑓𝑖𝑛𝑎𝑙𝑠𝑜𝑙

𝐴𝑙𝑔𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑜𝑙
 × 100                                                                                                          (17) 
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Fig 4. Determining the position of maintenance activity 

7-Computational results 
   To validate the model and investigate the effects of learning on the objective function value and to 

ensure that metaheuristic methods function correctly, four small-sized examples are solved using GAMS 

and metaheuristic methods at three different rates of learning, and the results are shown in table 2. 
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Table 2. Computational results for small-sized instances with different learning rates 

 
   As table 2 shows the values of RPD for exact and metaheuristic methods are 0, consequently the ability 
of ACOR and IWO is confirmed to obtain optimal solutions for small problems, moreover we are 

convinced about the validity of these algorithms to find near optimal solutions for medium and large 

problems. On the other hand results indicate that by increasing the learning rate, the value of objective 
function is reduced, it means that the more learning in environment can decrease the value of objective 

function and improve the productivity. 

 

 

 

 

Instance (Machine ˟ Job ˟ 

Maintenance)   

Learning rate 

 α (%) 

RPD Objective Function 

Value 

                 Exact MIP 
                

 
             

                  IWO 
 3 ˟3 ˟ 2          

 
 
 

                 ACOR 

 
70 

80 
90 
 

70 
80 
90 

 
 

70 
80 
90 

 
0 

0 
0 
 
0 
0 
0 
 

       

          0 
          0 
          0 

 
  345.28 

  337.66 
  326.87 

   
  345.28 
  337.66 
  326.87 

 
 

  345.28   
  337.66   
  326.87 

              Exact MIP 
                
 

               IWO 
3 ˟  4  ˟ 2        

 
 
 

                 ACOR 

 
70 
80 
90 
 

70 
80 
90 
 
 

70 
80           
90 

 
0 
0 
0 
 

0 
0 
0 
 

          
          0 
          0 
          0 

 
191.86 
181.12 
160.14 

 

191.86 
181.12 
160.14 

 
 

191.86 
181.12 
160.14 

 
              Exact MIP 

                
 

               IWO 
    
4 ˟  4  ˟ 2    

 
              ACOR 

 
70 
80 
90 
 

70 
80 

90 
 
 
                 70 

80 
90 

 
0 
0 
0 
 
0 
0 

0 
 

          
          0 
          0 
          0 

 

  
 288.41 
241.1 

  224.34 
 

288.41 
241.1 

224.34 
 
 

                           288.41 
241.1 
224.34 
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Table 3. Computational results for medium and large instances 

                      IWO 

 

                   ACOR 

Representation RPD CPU time 

(s) 

Imp RPD CPU time 

(s) 

Imp 

4 × 5 × 2 0 153.152 0.141 0 226.77 0.136 

5 × 5 × 2 0 186.45 0.188 0.0003 234.26 0.187 

5 × 6 × 2 0 198.63 0.09 0.0130 287.34 0.276 

6 × 7 × 2 0 206.45 0.283 0.0486 337.45 0.30 

8 × 9 × 2 0 217.69 0.4284 0.115 362.72 0.392 

10 × 9 × 2 0 726.54 0.470 0.0895 1085.23 0.563 

12 × 10 × 2 0 809.55 0.373 0.102 1261.08 0.454 

14 × 12 × 2 0 965.43 0.410 0.179 1636.54 0.437 

Mean 0 409.70 0.297 0.0683 678.91 0.343 

                  

   Table 3 shows the results of solving model by IWO and ACOR for 8 medium and large instances. 
Figure 5 illustrates mean CPU times for these instances, as this figure shows IWO enjoy less CPU time. 

As figure 6 reveals, regarding to the mean values of RPD, both algorithms find semi same results but 

IWO can find rather better solutions, although difference between mean RPD of IWO and ACOR is less 
than 1 percent. As figure7 demonstrates ACOR create more improvement in proportion to the initial 

solution, this difference is less than 0.05. 

                                             

Fig 5. "Mean CPU times" for IWO and ACOR                             Fig. 6- Mean values of "RPD" for IWO and ACOR 

 

Fig 7. Mean values of "Imp" for IWO and ACOR 
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8-Conclusion 
   In this paper a novel position-based model has been suggested for the JSSP in which practical 

assumptions contain learning effects, flexible maintenance activities and transportation times have been 
taken into account. We have shown that consideration of learning effects can improve objective function 

and consequently production costs can be reduced. Proposed MILP model has been solved in small scale 

by GAMS software moreover for solving this model in large scale two metaheuristic algorithms i.e. 

Invasive Weed Optimization (IWO) and Ant Colony Algorithm for continues domains (ACOR) have 
been applied, finally results have been compared based on three metrics, and meanwhile IWO can gain 

better results mildly. For future researches, considering issues like sequence –dependent set up times, 

other types of learning effects and fixed maintenance activities in JSSP and other production 
environments can be appealing.  
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