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Abstract 
Most of the inventory control models assume that quality defect never happens, which 
means production process is perfect. However, in real manufacturing processes, the 
production process starts its operation in the in-control state; but after a period of time, 
shifts to the out-of-control state because of occurrence of some disturbances. In this 
paper, in order to approach the model to real manufacturing conditions, a process is 
considered in which quality defect and machine deterioration may occur. Since the 
adaptive control charts detect the occurrence of assignable cause quicker than the 
traditional control charts, an adaptive non-central chi-square control chart is designed, 
which monitors the process mean and variance, simultaneously. In addition, to reduce 
the failure rate of the machine, two types of maintenance policies consisting of 
reactive and preventive are planned. Then, the particle swarm optimization algorithm 
is employed to minimize the overall cost per cycle involving inventory cost, quality 
loss cost, inspection cost and maintenance cost subject to statistical quality constraints. 
Finally, to demonstrate the effectiveness of the suggested approach, two comparative 
studies are presented. The first one confirms that integration of production planning, 
maintenance policy and statistical process monitoring leads to a significant increase in 
the cost savings. The second one indicates superiority of the developed adaptive 
control chart in comparison with the control chart with the fixed parameters.  
Keywords: Production planning, maintenance policy, economic-statistical design, 
non-central chi-square chart, adaptive control chart. 

 

1-Introduction 
   The economic production quantity (EPQ) model has been widely investigated in recent years. Most of 
the existing models were made based on this assumption that all of the produced items are of perfect 
quality. However, in real conditions the operating state of production process may shift from the in-
control state to the out-of-control state due to occurrence of an assignable cause that lead to quality defect. 

                                                   
*Corresponding author 
ISSN: 1735-8272, Copyright c 2019 JISE. All rights reserved 
 

Journal of Industrial and Systems Engineering  
Vol. 12, Special issue on Statistical Processes and Statistical Modeling, pp. 35-65 
Winter (January) 2019  

mailto:farzane.soltany@gmail.com


 

36 
 

This issue results in increasing the costs of production system due to increment of producing non-
conforming items. In order to reduce these costs, the quality control and the maintenance planning must 
be considered in the production system. In the other word; inventory control, quality control, and 
maintenance are three interrelated operational factors affecting the performance of manufacturing 
systems. Despite of the significant interaction effect among inventory control, quality control and 
maintenance, there are few studies in which these three interrelated fields are investigated, 
simultaneously. In this regard, Porteus (1986) added some assumptions to the classical EPQ model to 
make a more realistic model. Rosenblatt and Lee (1986) investigated the effects of producing defective 
items and machine deterioration on the optimal production cycle time. 
   Some researchers suggested the integration of inventory control and quality control. Rahim (1994) 
presented a model for finding the optimal economic production quantity and control chart parameters by 
considering the occurrence of a non-Markovian shock and an increasing failure rate. Rahim and Ben-
Daya (1998) expanded the model proposed by Rahim (1994) for situations where the production process 
stops during the investigating false alarms. Pan et al (2011) introduced an integrated model for 
determining the economic production quantity and designing the control chart. Rivera-Gómez et al (2013) 
considered a process in which the machine deteriorations and the failure rate increases over time 
continuously. Alamri et al (2016) considered an imperfect production process and developed a EOQ 
model. In that model, a 100 percent screening process of the lot is conducted and the percentage of 
defective items per lot reduces according to a learning curve. It is should be noted that one good example 
of manufacturing systems, which is common in practice, is imperfect robotic systems. Accordingly, 
Mohamadi et al (2011), Foumani et al (2017, a), Foumani et al (2017, b) and Foumani et al (2015) 
concentrating on inspection cost and quality loss cost in the imperfect robotic systems.  
   Boukas and Liu (2001) studied the production and maintenance planning for a manufacturing system 
with a failure prone machine. They considered three operating states consisting of good; average and bad; 
as well as a failure state for the machine. Gharbi and Kenne (2003) addressed the issue of the production 
planning in a process with multiple machines subject to breakdowns and repairs. Jiang et al. (2015) 
suggested a production model for a deteriorating system integrated with maintenance strategy. Some 
researchers focused on relationship between quality control and maintenance such as Tagaras (1988), 
Ben-Daya and Rahim (2000), Xiang (2013), Ardakan et al (2015).  
   A few number of researchers proposed models in which three fields of inventory control, quality control 
and maintenance are considered, simultaneously. Ben-Daya and Makhdoum (1998) presented an 
integrated model for determining the economic production quantity and control chart design parameters. 
Then, they studied the effects of implementing various maintenance policies on that model. Lam and 
Rahim (2002) developed an integrated model for joint optimization of production run length, control chart 
parameters, and maintenance policies. Pan et al (2012) considered an imperfect production process and 
combined the concepts of EPQ, quality control and maintenance in a unified model. Bouslah et al (2016) 
considered an imperfect production system is in which the machine deteriorations over time and then 
optimized the sampling plan, make-to-stock production and preventive maintenance, simultaneously. 
Nourelfath et al (2016) proposed a model based on integration of production, maintenance, and quality for 
an imperfect process in a lot-sizing context ignoring the statistical properties of the process. Salmasnia et 
al (2017) integrated design of production run length, maintenance policy and control chart by assuming 
that occurrence of assignable cause only leads to mean shift while variance of quality characteristic 
remains unchanged.  
    When an assignable cause occurs in the process, the process mean, process variance or both of them 
may change. Joint monitoring of the process mean and variance was rarely considered in models that 
integrate three concepts of inventory control, quality control, and maintenance. Rahim and Ohta (2005) 
developed a joint optimization model of economic production quantity and control chart parameters in 
which shift in both the process mean and variance is considered. The characteristics of the existing 
methods in the literature are summarized in table 1. 
   The 𝑋̅ control chart is usually used for monitoring the process mean and the 𝑅 chart is applied for 
monitoring the process variability, especially when the sample size is small. In the previous studies, the 
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joint 𝑋̅ and 𝑅 chart has been extensively applied for monitoring the process mean and variability 
simultaneously (see Jones and Case, 1981; Saniga, 1989; Rahim, 1989; Costa, 1993; Rahim and Costa, 
2000; Ohta et al, 2002). Costa and Rahim (2004) developed a non-central chi-square (NCS) control chart 
and demonstrated this chart operates more efficient than the 𝑋̅ and 𝑅 charts in detecting assignable 
cause(s) which change the process mean and/or increase the process variability.  
   The control charts with fixed parameters are slow in detecting small and moderate shifts and also are 
not economically attractive. There are other types of control chart that are faster in detecting small and 
moderate shifts and have lower costs than the traditional control charts. In these charts that are called 
adaptive control charts, at least one of the design parameters consisting of sample size (𝑛), sampling 
interval (ℎ), and the coefficient of control limits (𝑙) are allowed to change in time depending on the value 
of statistic in the previous sample. Reynolds et al (1988) first introduced the variable sampling interval 
(VSI) control chart. After that, the adaptive control chart with variable sample size (VSS) was proposed 
by Prabhu et al (1993) and Costa (1994) separately. Prabhu et al (1994) investigated the chart with 
variable sample size and sampling interval (VSSI). Finally, Costa (1998) and Costa (1999b) proposed 
control charts in which all of the design parameters (𝑛, ℎ, 𝑙) are variables. This chart was called variable 
parameters (VP) control chart. Costa and De Magalhaes (2007) studied the variable parameters NCS 
control chart and conclude that the use of this chart not only is simpler than the joint 𝑋̅ and 𝑅 chart with 
variable parameters, but also has a better performance in shift detection when the process mean and 
variance may shift from their initial values. 
   In this study, to fill the research gaps and overcome the above-mentioned drawbacks, an integrated 
model with the following properties is presented: 
 

1. This study integrates three interrelated concepts of inventory, maintenance and statistical 
monitoring in a unified model. 
2. In contrast to the most of existing approaches in the literature that assumes the process variance 
remains unchanged when an assignable cause occurs, the proposed method monitors both the process 
mean and variability using a non-central chi-square control chart. 
3. In contrast to most of the existing models that employ the control charts with fixed parameters, 
this study uses a control chart with the variable parameters to monitor the process. This means that 
the sample size, sampling interval, warning and control limits varies according to the current statistic 
value. 
4. The proposed method aims to optimize the expected total cost subject to statistical constraints. 
  

   The rest of this paper is structured as follows: In section 2, the assumptions and notations of the 
production process are presented and the VP non-central chi-square control chart is briefly reviewed. 
Section 3 contains the methodology for joint optimization of production run length, control chart design 
parameters, and decision related to maintenance. In section 4, a solution algorithm to optimize the 
suggested mathematical programming is described. Section 5 provides a numerical illustration for 
showing the application of the proposed model. Next, two comparison studies are presented to show the 
superiority of the proposed model compared to the state-of-the-art.  
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Table1. Literature review 

Paper 
Optimization model  

Optimization 
characteristics  Control chart   Shift in 

Inventory 
control 

Quality 
control 

Mainte
nance  Cost Statistical 

properties  
Control chart has 

not been used 
Non-adaptive 
control chart 

Adaptive 
control chart  Mean variance 

Rosenblatt and Lee (1986)             

Rahim (1994)             

Rahim and Ben-Daya (1998)             

Rahim and Ohta (2005)             

Pan et al (2011)             

Rivera-Gomez et al (2013)             

Alamri et al (2016)             

Boukas and Liu (2001)             

Gharbi and Kenne (2003)             

Tagaras (1988)             

Ben-Daya and Rahim (2000)             

Xiang (2013)             

Ardakan et al (2015)             

Ben-Daya and Makhdoum (1998)             

Lam and Rahim (2002)             

Pan et al (2012)             

Bouslah et al (2016)             

Nourelfath et al (2016)             

This paper             
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2-Problem description 
   As mentioned earlier, traditional EPQ model aims to minimize holding and set up costs with this 
assumption that the production process is perfect, which means the non-conforming items never produce. 
In this paper, to make the model more adapted to real production conditions, an imperfect production 
process including two states of in-control and out-of-control is considered. The imperfect process begins 
its operation in the in-control state, which means the quality characteristic under consideration follows a 
normal distribution with mean 𝜇0 and standard deviation 𝜎0. As time progresses, an assignable cause 
(such as operator errors, undesirable materials, changes in the environment, etc) may occur that leads to a 
shift in either the process mean (𝜇1 = 𝜇0 + 𝛿𝜎0) or the process variability (𝜎1 = 𝛾𝜎0), or in both 
together. In other words, the process situation changes from in-control state to the out-of-control state. In 
this situation, the quality loss cost that is imposed to the manufacturer dramatically growths due to 
producing more non-conforming items. To reduce the out-of-control period, a non-central chi square 
control chart with the variable parameters is designed that monitors the process mean and variability 
simultaneously.  
   In the imperfect production process, three conditions may occur for a production cycle. Condition1 
occurs if the process remains in the in-control state from the starting of the cycle until the end. In such 
situation, a perfect preventive maintenance activity is conducted on the process at the end of the 
production cycle, which results in restoration of the process to as-good-as new condition. Condition 2 is a 
situation in which an assignable cause occurs and control chart issues a true alarm during production 
cycle. In this moment, the production process is stopped and a reactive maintenance (RM) is implemented 
to detect and remove the assignable cause. Condition 3 is similar to condition 2 with this difference that 
control chart does not issue an alarm until the end of the production cycle. When scenario 3 happens, at 
the end of the production cycle, the process shift is identified and PM activity is replaced with a CM 
activity.  
 

2-1-Notations 
The notations applied to constructing the proposed model are presented in table 2. 
 

Table 2. Notations in alphabetical order 

Notation Description 

𝑎  Scale parameter of the Weibull distribution 
𝐴 Startup cost 
𝐴𝑅𝐿0 Average run length in the in-control state 
𝐴𝑅𝐿1 Average run length in the out-of-control state 
𝐴𝑇𝑆0 Average time to signal in the in-control state 
𝐴𝑇𝑆1 Average time to signal in the out-of-control state 
𝐴𝑇𝑆𝑙 Acceptable lower bound for 𝐴𝑇𝑆0  
𝐴𝑇𝑆𝑢 Acceptable upper bound for 𝐴𝑇𝑆1  
𝑏 Shape parameter of the Weibull distribution 
𝐵 Holding cost per time unit 
𝐶𝐹 Fixed cost of sampling 
𝐶𝑃 Preventive maintenance cost 
𝐶𝑅 Reactive maintenance cost 
𝐶𝑉 Variable cost of sampling 
𝐶𝑌 Cost of false alarm investigation  
𝑑 Daily demand rate 
𝐷 Annual demand 
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𝑒𝑙 The difference between 𝑙𝑡ℎ sample mean and the target value for the process mean 
𝐸 Time needed to record each sample 
𝐸(𝑀) Expected maintenance cost 
𝐸(𝑄) Expected quality loss cost 
𝐸(𝑆) Expected inspection cost 
𝐸(𝑇𝑖𝑛|𝐶1) Expected time that the process is in the in-control state in condition 1 
𝐸(𝑇𝑖𝑛|𝐶2) Expected time that the process is in the in-control state in condition 2 
𝐸(𝑇𝑖𝑛|𝐶3) Expected time that the process is in the  in-control state in condition 3 
𝐸(𝑇𝑜𝑢𝑡 |𝐶2) Expected time that the process is in the out-of-control state in condition 2 
𝐸(𝑇𝑜𝑢𝑡 |𝐶3) Expected time that the process is in the out-of-control state in condition 3 
𝐸𝑇𝐶 Expected total cost 
𝑓1  Proportion of taken samples during in-control period when using loose control limits 
𝑓2  Proportion of taken samples during in-control period when using strict control limits 
ℎ1 Longer inspection interval 
ℎ2 Shorter inspection interval 
𝑘 Number of sampling points in a production cycle when one of the conditions 1 or 3 happen 
𝑙1 Coefficient used in determining the loose control limit 
𝑙2 Coefficient used in determining the strict control limit 
𝑛1 Small sample size 
𝑛2 Large sample size 
𝑝 Daily production rate 
𝑝1 Proportion of time spent during the in-control period when using loose control limits 
𝑝2 Proportion of time spent during the in-control period when using strict control limits 
𝑃 Annual production  
𝑃(𝐶1) Occurrence probability of condition 1 
𝑃(𝐶2) Occurrence probability of condition 2 
𝑃(𝐶3) Occurrence probability of condition 3 
𝑃(𝑠𝑖𝑔) Probability of issuing a signal by control chart 
𝑄1 Quality loss cost per unit in the in-control state  
𝑄2 Quality loss cost per unit in the out-of-control state  
𝑠1 Expected number of samples in the in-control period when using lose control limits 
𝑠2 Expected number of samples in the in-control period when using strict control limits 
𝑇 Production cycle time 
𝑇1  Time needed to search an assignable cause 
𝑈𝐶𝐿1 Upper control limit when using lose control  
𝑈𝐶𝐿2 Upper control limit when using strict control  
𝑈𝑊𝐿1 Upper warning limit when using lose control  
𝑈𝑊𝐿2 Upper warning limit when using strict control  
𝑤1  Coefficient used in determining the loose warning limit  
𝑤2  Coefficient used in determining the strict warning limit 
𝑌𝑙 The statistic of the chi-square control chart 
𝛼1 Probability of Type I error when using lose control 
𝛼2 Probability of Type I error when using strict control 
𝛽1 Probability of Type II error when using lose control 
𝛽2 Probability of Type II error when using strict control 
𝜆01 Non-centrality parameter in the in-control state when using lose control 
𝜆02 Non-centrality parameter in the in-control state when using strict control 

Table 2. Continued 
Notation      Description 
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𝜆11 Non-centrality parameter in the out-of-control state when using lose control 
𝜆12 Non-centrality parameter in the out-of-control state when using strict control 
𝜇0 The mean of the process in the in-control state 
𝜇1 The mean of the process in the out-of-control state 
𝜎0 The Standard deviation of process in the in-control state 
𝜎1 The Standard deviation of process in the out-of-control state 

𝜏1 
Expected time between last taken sample in the in-control period until the occurrence of an assignable 
cause when using lose control 

𝜏2 
Expected time between last taken sample in the in-control period until the occurrence of an assignable 
cause when using strict control 

 

2-2-Model assumptions 
The used assumptions in order to model the introduced problem are as follows: 

1. The time that the process remains in the in-control state follows a Weibull distribution with shape 
parameter 𝑏 and scale parameter 𝑎. 

2. The quality characteristic of interest follows a normal distribution with mean 𝜇0 and standard 
deviation 𝜎0 when the process is in the in-control state. However, the occurrence of an assignable 
cause leads to changing the process mean from 𝜇0 to 𝜇1 = 𝜇0 + 𝛿𝜎0 , where 𝛿 ≠ 0, and/or 
shifting the process variability from 𝜎0  to 𝜎1 = 𝛾𝜎0, where 𝛾 ≠ 1. 

3. Each production cycle starts its operation in the in-control state.  
4. A production cycle terminates either with a true alarm or after (𝑘 + 1) 𝑡ℎsampling interval. 
5. If an assignable cause occurs in the 𝑙𝑡ℎsampling interval (0 < 𝑙 < 𝑘), a search process is 

performed to detect the assignable cause and then reactive maintenance is accomplished to 
remove the effect of the occurred assignable cause. 

6. The samples are taken independently. 
7. The annual production (daily production rate) is assumed to be greater than the annual demand 

(daily demand rate).   
 

2-3-Non-central chi-square control chart with variable parameters 
   Assume that the quality characteristic of process,𝑥, is normally distributed in the in-control state with 
mean 𝜇0 and standard deviation 𝜎0. As time progresses, the process goes to the out-of-control state along 
with occurring an assignable cause. In this situation, the process mean changes from 𝜇0 to 𝜇1 = 𝜇0 + 𝛿𝜎0 
with 𝛿 ≠ 0, and/or the process variability shifts from 𝜎0 to 𝜎1 = 𝛾𝜎0 with 𝛾 ≠ 1. 

Consider 𝑥𝑙𝑗, 𝑙 = 1,2,3, … , 𝑗 = 1,2, … , 𝑛𝑖 is the 𝑗𝑡ℎ observed value of quality characteristic 𝑥 in 𝑙𝑡ℎ 
sampling of size 𝑛𝑖 , 𝑖 = 1,2 and 𝑋̅𝑙 = (𝑥𝑙1 + 𝑥𝑙2 + ⋯ + 𝑥𝑙𝑖) 𝑛𝑖⁄  is the mean of sample 𝑙. Hence, the 
difference between 𝑙𝑡ℎ sample mean and the target value for process mean is  
𝑒𝑙 = (𝑋̅𝑙 − 𝜇0). For 𝑙𝑡ℎ sample, the non-central chi-square control chart statistic is obtained according to 
Equation (1). 
 

𝑌𝑙 = ∑(𝑥𝑙𝑗 − 𝜇0 + 𝜉𝑙𝜎0)
2

𝑛𝑖

𝑗=1

      𝑙 = 1,2, … (1) 

where the parameter 𝜉𝑙 as a function of the value of error 𝑒𝑙 is defined as  𝜉𝑙 = {
𝑑          𝑖𝑓    𝑒𝑙 ≥ 0
−𝑑         𝑖𝑓   𝑒𝑙 < 0

. 

 
During the in-control period, 𝑌𝑙  𝜎0

2⁄  has non-central chi-square distribution with 𝑛𝑖  degrees of 
freedom and non-centrality parameter 𝜆0𝑖 = 𝑛𝑖𝑑2. Hence, the probability of type I error is calculated as: 

      Table 2. Continued 
  Notation      Description 
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𝛼𝑖 = 𝑃[𝑌𝑙 > 𝑙𝑖𝜎0
2 |  𝑌𝑙  𝜎0

2⁄ ~𝜒𝑛𝑖
2 (𝑛𝑖𝑑2)]          𝑖 = 1,2 (2) 

where 𝑙𝑖 is the coefficient used in determining the upper control limit.  
During the out-of-control period, 𝑌𝑙  𝜎1

2⁄  has non-central chi-square distribution with 𝑛𝑖  degrees of 
freedom and non-centrality parameter 𝜆1𝑖 = 𝑛𝑖(𝛿 + 𝜉𝑙 )2 𝛾2⁄ . Hence; the power of the control chart is as 
follows: 
 

1 − 𝛽𝑖 = 𝑃[𝑌𝑙 > 𝑙𝑖𝜎0
2 | 𝑌𝑙  𝜎1

2⁄ ~𝜒𝑛𝑖
2 (𝑛𝑖(𝛿 + 𝜉𝑙 )2 𝛾2⁄ )]          𝑖 = 1,2 (3) 

 
As mentioned before, since the adaptive control charts detect small and moderate shifts quicker than 

the control charts with the fixed parameters, this study designs a non-central chi-square control chart with 
variable parameters in which all of the design parameters are allowed to change depending on the position 
of the current sample point on chart. To do this, the interval [0, 𝑈𝐶𝐿] in the chart is partitioned in to two 
regions [0, 𝑈𝑊𝐿] and [𝑈𝑊𝐿, 𝑈𝐶𝐿], which are called central region and warning region, respectively. The 
𝑈𝐶𝐿 and 𝑈𝑊𝐿 are defined as follows: 
 

𝑈𝐶𝐿𝑖 = 𝑙𝑖𝜎0
2          𝑖 = 1,2 (4) 

 
𝑈𝑊𝐿𝑖 = 𝑤𝑖𝜎0

2          𝑖 = 1,2         (5) 
 
   where 𝑤𝑖 ≤ 𝑙𝑖 .Thus, this study considers two strategies for sampling as follows: (1) Loose control that 
uses (𝑛1 , ℎ1, 𝑤1 , 𝑙1) as control chart parameters and (2) Strict control that the parameters values in this 
strategy are (𝑛2, ℎ2, 𝑤2 , 𝑙2), where 𝑛1 < 𝑛2,  ℎ1 > ℎ2, 𝑤1 > 𝑤2 and 𝑙1 > 𝑙2. Based on the position of the 
current sample on the control chart, one of these two strategies is chosen in the next sampling. If the 
previous sample is plotted in the central region, likely the process remains in the in-control state until next 
sampling and we can use the loose control. In the loose control, sample with smaller size (𝑛1) after a 
longer time interval (ℎ1) is collected from the process and the related statistic is plotted on the control 
chart with loose warning and control limits (𝑤1, 𝑙1). On the contrary, if a sample point is placed on the 
warning region, there are evidences that the process may shift to an out-of-control state. In this case, the 
strict control strategy is applied in the next sampling. In this strategy, sample of larger size (𝑛2) after a 
shorter time intervals (ℎ2) is taken from the process and the strict warning and control limits ( 𝑤2, 𝑙2) are 
used.  
   The NCS chart with variable parameters (VP) can be constructed with two scales to simplify 
implementation of the chart. The left side scale is used for loose control strategy and the right scale is 
applied for the strict control strategy. By designing the control chart in this way, the worker can avoid the 
use of two separate control charts. The values of 𝑌 related to the loose control strategy are plotted on the 
left side and the values of 𝑌 related to the strict control strategy are plotted on the right side. In order to 
coincide the warning and the control limits for both loose and strict control strategies, the scales on the 
left side and on the right side are related piecewise linearly. The graphical representation of the 
introduced VP non-central chi-square chart is illustrated in figure1. 
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Fig 1. The adaptive NCS control chart 

 
   At the beginning of the process or after each false alarm, the sampling strategy is selected randomly. 𝑓1 
and 𝑓2 are considered as proportion of samples during the in-control period using the loose and strict 
control strategies, respectively. Moreover, the proportions of time spent during the in-control period using 
the loose and strict control strategies can be calculated as equations (8) and (9). 
 

𝑓1 = 𝑃[𝑌𝑙 < 𝑤𝑖𝜎0
2 | 𝑌𝑙 < 𝑙𝑖𝜎0

2; 𝑌𝑙 𝜎0
2⁄ ~𝜒𝑛𝑖

2 (𝑛𝑖𝑑2)]           𝑖 = 1,2 (6) 

 

𝑓2 = 1 − 𝑓1 (7) 

 

𝑝1 =  
𝑓1ℎ1

𝑓1ℎ1 + 𝑓2ℎ2
 (8) 

𝑝2 =  
𝑓2ℎ2

𝑓1ℎ1 + 𝑓2ℎ2
 (9) 

 
3-Economic-statistical model 
   In the production process described in the previous Section, three different conditions might happen 
based on the occurring time of the assignable cause. In this Section, these conditions are explained and 
the costs associated with the model in each condition are calculated. These costs include the startup cost, 
inventory holding cost, inspection cost, maintenance cost, and the cost of producing non-conforming 
items.  
 

3-1- Condition 1 (𝑪𝟏) 
In this condition, the process remains in the in-control state during the production cycle and a planned 
preventive maintenance is performed at the end of (𝑘 + 1)𝑡ℎ  sampling interval. Therefore, the expected 
in-control time is equal to summation of (𝑘 + 1) sampling interval and the expected out-of-control time is 

0 ℎ1 ℎ1 + ℎ2 2ℎ1 + ℎ2 
 

2(ℎ1 + ℎ2) 
 

𝑌 𝑌 
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zero. Moreover, the happening probability of this condition can be calculated according to equation (11). 
A given production cycle in this condition is illustrated in Figure 2. 

 
  𝐸(𝑇𝑖𝑛|𝐶1) = (𝑘 + 1)ℎ1 × 𝑝1 + (𝑘 + 1)ℎ2 × 𝑝2 (10) 
 

  𝑃(𝐶1) = 1 − [𝐹((𝑘 + 1)ℎ1) × 𝑓1 + 𝐹((𝑘 + 1)ℎ2) × 𝑓2] (11) 

where F(.) is the cumulative function of Weibull distribution.  
 
 
 
 
 

 

 

 

 

 

 

 

 
Fig 2. Graphical representation of a production cycle in condition 1 

 
 

3-1-1-Inspection cost 
The inspection cost includes the fixed sampling cost and variable sampling cost. In condition 1, the 
production process continues until (𝑘 + 1)𝑡ℎ  sampling interval, when a planned PM activity is 
implemented. Since in the (𝑘 + 1)𝑡ℎ interval no inspection is performed, the number of sampling is equal 
to 𝑘. So, inspection cost in condition 1 is calculated as follows: 

  𝐶𝑆1 = [(𝐶𝐹 + 𝐶𝑉 𝑛1)𝑓1 + (𝐶𝐹 + 𝐶𝑉𝑛2)𝑓2] × 𝑘 (12) 

where 𝐶𝐹  and 𝐶𝑉  are the fixed cost and variable cost of sampling, respectively. 
 

3-1-2-Quality loss cost 
In condition 1, the production cycle only contains the in-control period; so in this condition, the quality 
loss cost is equal to the costs of producing non-conforming items in the in-control state. 

  𝐶𝑄1 = 𝑄1𝑃 × 𝐸(𝑇𝑖𝑛|𝐶1) (13) 
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where 𝑄1 is the quality loss cost per time unit when the process is in the in-control state and 𝑃 represents 
the production rate.  
 

3-1-3-Maintenance cost 
   Although in condition 1 no shift occurs and the production process remains in the in-control 
state throughout the cycle, the false alarm signals may issue and the workers can’t often 

distinguish these false signals from a correct one. So, the maintenance cost in this condition 
includes cost of false alarm investigation and cost of preventive maintenance implementation. 
Based on these explanations the maintenance cost in this condition is: 
 

 𝐶𝑀1 = (
𝑘𝐶𝑌

𝐴𝑅𝐿01
× 𝑓1 +

𝑘𝐶𝑌

𝐴𝑅𝐿02
× 𝑓2) +  𝐶𝑃  (14) 

 

   In this equation, 𝐶𝑃  represents the preventive maintenance cost and the first part of this Equation is the 
cost of investigating false alarms in which 𝐶𝑌 is the cost of inspection each false alarm and 𝐴𝑅𝐿01 and 
𝐴𝑅𝐿02 are the average run length in the in-control state when using loose control and strict control 
strategies, respectively.   

𝐴𝑅𝐿01 =
1

𝛼1
 (15) 

𝐴𝑅𝐿02 =
1

𝛼2
 (16) 

 

3-2-Condition 2 (𝑪𝟐) 
   In condition 2, as shown in figure 3, the production process starts its operation in the in-control state 
until in a time between 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ sampling interval, which an assignable cause occurs. At this 
time, the mean of process shifts from 𝜇0 to 𝜇0 + 𝛿𝜎0 and/or the standard deviation of the process changes 
from 𝜎0 to 𝛾𝜎0. Unfortunately, the occurrence of assignable cause can’t be detected immediately in the 
next sampling by the control chart due to type II error. So, the process continues until (𝑗 + 𝑖)𝑡ℎ sampling 
that a signal is alerted and at this time a reactive maintenance is performed. 

 
 

 

 

 

 

 

 

 

 

 
 

 

Fig 3. Graphical representation of a production cycle in condition 2 
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   In this condition, the production cycle consists of both in-control and out-of-control periods. As 
mentioned before, on one hand, the time to shift follows a Weibull distribution; on the other hand, the 
assignable cause occurs prior the (𝑘 + 1)𝑡ℎ  sampling interval in condition 2.  Consequently, the in-
control time in this condition follows a truncated Weibull distribution in the interval [0, (𝑘 + 1)ℎ] 
according to Equation (17) and the expected in-control time can be calculated as Equation (18): 

 
𝑓(𝑡|(𝑘 + 1)ℎ) = [(𝑏 𝑎⁄ )(𝑡 𝑎⁄ )𝑏−1𝑒−(𝑡 𝑎⁄ )𝑏

] (1 − 𝑒−(𝑡 𝑎⁄ )(𝑘+1)ℎ
)⁄  (17) 

 
 

 𝐸(𝑇𝑖𝑛|𝐶2) = (∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ1)𝑑𝑡
𝑘ℎ1

0

) × 𝑝1 + (∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ2)𝑑𝑡
𝑘ℎ2

0

) × 𝑝2 (18) 

 
The out-of-control time in condition 2 consists of the following periods: 
 

a) The expected time from occurring the shift in the process until detecting the assignable cause by 
control chart, which is calculated as 𝐴𝑇𝑆1 − 𝜏 .  

It is reminded that 𝜏 represents the expected time between last taken samples in the in-control period 
until the occurrence of an assignable cause. If the loose control strategy is used for the last sample before 
the occurrence of an assignable cause, 𝜏 is obtained from the following Equation:  

𝜏1 = ∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ1)
(𝑘+1)ℎ1

0

 𝑑𝑡 − ℎ1 (∑ 𝑒−(
𝑗ℎ1

𝑎
)

𝑏𝑘

𝑗=1

− 𝑘𝑒−(
(𝑘+1)ℎ1

𝑎
)𝑏

) (19) 

 
Similarly when using the strict control strategy, 𝜏 can be calculated as follows: 

 

𝜏2 = ∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ2)
(𝑘+1)ℎ2

0

 𝑑𝑡 − ℎ2 (∑ 𝑒
−(

𝑗ℎ2
𝑎

)
𝑏𝑘

𝑗=1

− 𝑘𝑒−(
(𝑘+1)ℎ2

𝑎
)𝑏

) (20) 

 
Hence, τ is attained according to Equation (21). 

 
τ =  𝜏1𝑝1 + 𝜏2𝑝2 (21) 
 
Moreover, 𝐴𝑇𝑆1 is the average time to signal in the out-of-control state that is calculated as follows: 

 
𝐴𝑇𝑆1 = (𝐴𝑅𝐿11 × ℎ1)𝑝1 + (𝐴𝑅𝐿12 × ℎ2)𝑝2 (22) 

 
where 𝐴𝑅𝐿11 and 𝐴𝑅𝐿12 are the average run length in the out-of-control state when using the loose and 
strict control strategies, respectively.  

 

𝐴𝑅𝐿11 = (
1

1 − 𝛽1
)                                                       (23) 

𝐴𝑅𝐿12 = (
1

1 − 𝛽2
)                                                       (24) 

 
b) The time required to test sample and interpret the result. This time equals to (𝑛1𝑓1 + 𝑛2𝑓2) × 𝐸, 
where 𝐸 represents the expected time to sample. 
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c) The expected time for searching the assignable cause that  𝑇1. 
 

Thus, the expected out-of-control time in condition 2 is as Equation (25). 
 

𝐸(𝑇𝑜𝑢𝑡 |𝐶2) =  𝐴𝑇𝑆1 − 𝜏 + (𝑛1𝑓1 + 𝑛2𝑓2) × 𝐸 + 𝑇1 (25) 
 

The probability of occurrence this condition is calculated as follows. 
 

𝑃(𝐶2) = [𝐹(𝑘ℎ1) × 𝑓1] × 𝑃(𝑠𝑖𝑔1) + [𝐹(𝑘ℎ2) × 𝑓2] × 𝑃(𝑠𝑖𝑔2) (26) 
 
where 𝐹(. ) is the cumulative function of Weibull distribution and 𝑝(𝑠𝑖𝑔) represents the probability of 
issuing a signal by control chart. 
 

𝑃(𝑠𝑖𝑔1) = 1 − 𝛽1
𝑘 (27) 

𝑃(𝑠𝑖𝑔2) = 1 − 𝛽2
𝑘 (28) 

 
3-2-1-Inspection Cost 
   In condition 2, the inspection cost is equal to summation of the cost of sampling in the in-control and 
out-of-control states. So, Inspection cost in this condition is calculated as follows: 
 

𝐶𝑆2 = (𝐶𝐹 +  𝐶𝑉𝑛1)(𝑠1 + 𝐴𝑅𝐿11) × 𝑓1 + (𝐶𝐹 +  𝐶𝑉𝑛2)(𝑠2 + 𝐴𝑅𝐿12) × 𝑓2 (29) 
 

In this equation 𝑠1 and 𝑠2 are the expected number of samples before occurring the shift when using 
loose and strict control strategies, respectively. 

𝑠1 = ∑ 𝑒−(
𝑗ℎ1

𝑎
)𝑏

𝑘

𝑗=1

− 𝑘𝑒−(
(𝑘+1)ℎ1

𝑎
)𝑏

 (30) 

 

𝑠2 = ∑ 𝑒−(
𝑗ℎ2

𝑎
)𝑏

𝑘

𝑗=1

− 𝑘𝑒−(
(𝑘+1)ℎ2

𝑎
)𝑏

 (31) 

 

3-2-2-Quality loss cost 
   In this condition, the quality loss cost is incurred to manufacture in both in-control and out-of-control 
periods. However,  it  is  obvious  that  the  quality  loss  cost  dramatically  increments  when  the process 
goes to out-of-control state because of increasing the probability of producing non-conforming items. If 
𝑄1 and 𝑄2 be the expected cost per unit arisen from producing non-conforming items in the in-control and 
out-of-control states, respectively, the quality loss cost in condition 2 is: 
 

  𝐶𝑄2 = 𝑄1𝑃 × 𝐸(𝑇𝑖𝑛|𝐶2) +  𝑄2𝑃 × 𝐸(𝑇𝑜𝑢𝑡 |𝐶2)   (32) 

3-2-3-Maintenance cost 
   Since in condition 2 the production process shifts to an out-of-control state before (𝑘 + 1)𝑡ℎ sampling 
interval, the reactive maintenance is performed instead of preventive maintenance. Therefore, the 
maintenance cost in this condition only includes the cost of implementing reactive maintenance and the 
cost of investigating false alarms. 
 

𝐶𝑀2 = (
𝑠1𝐶𝑌

𝐴𝑅𝐿01
× 𝑓1 +

𝑠2𝐶𝑌

𝐴𝑅𝐿02
× 𝑓2) + 𝐶𝑅  (33) 
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   The first part of equation (33) is the cost of false alarms investigation and 𝐶𝑅 is the reactive 
maintenance cost.  
 

3-3-Condition 3 (𝑪𝟑) 
   As indicated in figure 4, the production process starts its operation in the in-control state, then at a time 
between 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ sampling interval, an assignable cause occurs that leads to shift in either the 
process mean or the process variability or in both together from on-target values to off-target values. 
However, in this condition, it is assumed that the control chart can’t detect the occurrence of the 
assignable cause in the next inspections due to the limitations of control charts. So, the production process 
continues until the end of (𝑘 + 1)𝑡ℎ sampling interval, when the planned PM activities must be 
implemented, the worker finds that the process has gone to out-of-control state. At this time, the PM 
activities will be replaced by RM activities.  

 

 
 

 

 

 

 

 

 

 

 

 
Fig 4. Graphical representation of a production cycle in condition 3 

 
   In condition 3, similar to condition 2, the in-control time follows a truncated Weibull distribution and 
consequently the expected in-control time is obtained as follows: 

 

𝐸(𝑇𝑖𝑛|𝐶3) = (∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ1)𝑑𝑡
(𝑘+1)ℎ1

0

) × 𝑝1 + (∫ 𝑡𝑓(𝑡|(𝑘 + 1)ℎ2)𝑑𝑡
(𝑘+1)ℎ2

0

) × 𝑝2 (34) 

 
   The expected out-of-control time and the probability of occurrence of this condition are as equations 
(35) and (36), respectively. 
 

𝐸(𝑇𝑜𝑢𝑡 |𝐶3) = [(𝑘 + 1)ℎ1 × 𝑝1 + (𝑘 + 1)ℎ2 × 𝑝2] − 𝐸(𝑇𝑖𝑛|𝐶3) (35) 
 

𝑃(𝐶3) = [𝐹((𝑘 + 1)ℎ1) × 𝑓1 + 𝐹((𝑘 + 1)ℎ2) × 𝑓2] − [𝐹(𝑘ℎ1) × 𝑃(𝑠𝑖𝑔1) × 𝑓1 + 𝐹(𝑘ℎ2)
× 𝑃(𝑠𝑖𝑔2) × 𝑓2]  (36) 
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3-3-1-Inspection cost 
   Since in condition 3 the production process continues until (𝑘 + 1)𝑡ℎ  inspection interval, number of 
sampling points in this condition is equal to 𝑘. Hence, the cost of sampling in this condition can be 
defined as follows: 
 

𝐶𝑆3 = [(𝐶𝐹 + 𝐶𝑉𝑛1) × 𝑓1 + (𝐶𝐹 +  𝐶𝑉𝑛2) × 𝑓2] × 𝑘 (37) 
 

3-3-2-Quality loss cost 
In this condition similar to the condition 2, the quality loss cost is imposed to the manufacturer in both in-
control and out-of-control states and given according to Equation (38). 
 

  𝐶𝑄3 = 𝑄1𝑃 × 𝐸(𝑇𝑖𝑛|𝐶3) +  𝑄2𝑃 × 𝐸(𝑇𝑜𝑢𝑡 |𝐶3) (38) 
 
3-3-3-Maintenance cost 
   In this condition, the maintenance cost consists of the false alarm cost and the reactive maintenance 
cost.  To calculate the false alarm cost, the expected number of false alarms must be multiplied by the 
cost of each false alarm. Moreover, the expected number of false alarms depends on the numbers of 
sampling points (𝑘) and the probability of type I error. Consequently, the maintenance cost in this 
condition is as equation (39). 
 

  𝐶𝑀3 = (
𝑠1𝐶𝑌

𝐴𝑅𝐿01
× 𝑓1 +

𝑠2𝐶𝑌

𝐴𝑅𝐿02
× 𝑓2) + 𝐶𝑅  (39) 

 
   Eventually, the expected inspection cost, quality loss cost, and maintenance cost in each production 
cycle are calculated as equations (40), (41) and (42), respectively. 

  𝐸(𝑆) =  ∑ 𝐶𝑆𝑖 × 𝑃(𝐶𝑖 )

3

𝑖=1

            i = 1,2,3 (40) 

  𝐸(𝑄) =  ∑ 𝐶𝑄𝑖 × 𝑃(𝐶𝑖)

3

𝑖=1

            i = 1,2,3 (41) 

  𝐸(𝑀) =  ∑ 𝐶𝑀𝑖 × 𝑃(𝐶𝑖 )             𝑖 = 1,2,3

3

𝑖=1

 (42) 

 
3-4-The optimization model 
The classical EPQ model includes startup and holding costs as follows: 

  𝐸𝑃𝑄 =  
𝐷𝐴

𝑃𝑇
+ 

𝐵(𝑃 − 𝑑)𝑇

2
 (43) 

   The first and second terms of this Equation represent the expected startup cost and the expected holding 
cost in a production cycle. Now, the expected total cost is obtained by adding the inspection cost, quality 
loss cost, and maintenance cost to the EPQ model.  
 

  𝐸𝑇𝐶 =  
𝐷𝐴

𝑃𝑇
+ 

𝐵(𝑝 − 𝑑)𝑇

2
+ 𝐸(𝑆) + 𝐸(𝑄) + 𝐸(𝑀) (44) 

 
   This study aims to find the control chart design parameters including 𝑛1, 𝑛2, ℎ1, ℎ2, 𝑤1, 𝑤2, 𝑙1, 𝑙2 and 
the decision related to maintenance 𝑘 in a way that the 𝐸𝑇𝐶 is minimized and some constraints are 
satisfied. Hence, the mathematical programming can be formulated as follows: 
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𝑀𝑖𝑛  𝐸𝑇𝐶 (45) 
𝑠. 𝑡.    𝐴𝑇𝑆0 > 𝐴𝑇𝑆𝑙 (45.1) 

𝐴𝑇𝑆1 < 𝐴𝑇𝑆𝑢  (45.2) 
𝑘(ℎ1𝑝1 + ℎ2𝑝2) ≥ 𝑀 (45.3) 
1 ≤ 𝑛𝑖 ≤ 𝑛𝑚𝑎𝑥           𝑖 = 1,2 (45.4) 
ℎ𝑖 , 𝑙𝑖  , 𝑤𝑖 > 0          𝑖 = 1,2 (45.5) 
𝑛𝑖 , 𝑘 ∈ 𝑁+          𝑖 = 1,2 (45.6) 

 
   The constraint (45.1) ensures that the time between two consecutive false alarms be greater than the pre-
defined value 𝐴𝑇𝑆𝑙. This constraint is added to the optimization model for decreasing the occurrence rate 
of the false alarms. For quick detection of the occurred assignable cause, the 𝐴𝑇𝑆1 must be less than the 
pre-determined value 𝐴𝑇𝑆𝑢  as shown in equation (45.2). In addition, in order to guarantee the process 
continuity, constraint (45.3) is considered in which the time interval until implementing the planned 
preventive maintenance must be greater than 𝑀. Also, because of economic reasons, the sample should be 
taken from the process with a size less than 𝑛𝑚𝑎𝑥  as shown in equation (45.4).  

4-PSO algorithm for optimizing the proposed model 
   Since particle swarm optimization (PSO) algorithm has good performance in optimizing non-linear 
mathematical programming models, this paper uses this algorithm for optimizing the proposed 
mathematical programming. PSO as an algorithm with powerful searching ability first was proposed by 
Kennedy and Eberhart (1995). Hence in recent years, it has been widely used for solving optimization 
problems by some authors such as Clempner and Poznyak (2015), Ali Askari and Bashiri (2017), 
Lakhbab and Bernoussi (2016) and Alinaghian et al (2016). The optimization procedure in PSO algorithm 
is inspired by the social behavior of birds. In this algorithm, a swarm of particles in each iteration is 
generated in which each particle represents a potential solution in the feasible space. Moreover, two 
characteristics for each particle are defined: (1) “position” that shows location of the particle in the 
feasible space; and (2) “velocity” that demonstrate the moving direction of the particle.  
   PSO algorithm starts the search process with a swarm of particles that their positions and velocities are 
determined, randomly. In the next iterations, each particle moves in the direction of its velocity vector. 
Then, the velocity and position vectors are updated based on three factors: (1) its current velocity; (2) the 
best position explored by the given particle so far, which is called personal best (pbest); and (3) the best 
position explored by all of the particles, which is called global best (gbest). When the stopping criterion is 
satisfied the algorithm is ceased and the latest global best is introduced as an optimal solution. 
   In the mentioned iterative process, it is assumed that the 𝑥𝑖(𝑡) and 𝑉𝑖(𝑡) are the 𝑖𝑡ℎ particle position and 
particle velocity at iteration 𝑡, and the 𝑃𝑖(𝑡) represents the personal best of the 𝑖𝑡ℎparticle until iteration 𝑡. 
 

   𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), … , 𝑥𝑖𝑚(𝑡)] (46) 
 

   𝑉𝑖(𝑡) = [𝑉𝑖1(𝑡), 𝑉𝑖2(𝑡), … , 𝑉𝑖𝑚(𝑡)] (47) 
 

   𝑃𝑖(𝑡) = [𝑃𝑖1(𝑡), 𝑃𝑖2(𝑡), … , 𝑃𝑖𝑚(𝑡)] (48) 
 
   As mentioned earlier, in iteration (𝑡 + 1), the velocity is updated based on the Equation (49). 
 

   𝑉𝑖𝑗(𝑡 + 1) = 𝜔𝑉𝑖𝑗(𝑡) + 𝑟1𝐶1 (𝑝𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑟2𝐶2 (𝑔𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) (49) 
 
In this equation, 𝐶1 and 𝐶2 are acceleration constants that called cognitive and social parameters, 
respectively. Moreover,  𝑟1 and 𝑟2 are the random variables uniformly distributed in the interval [0,1]; 
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𝑝𝑖𝑗(𝑡) and 𝑔𝑗(𝑡) represent the “pbest” and “gbest” positions, respectively. The parameter ω is called the 
inertia weight coefficient and is selected in the interval (0,1). It is used to control the impact of the 
velocity vector in the previous iteration on the next one. It is usual to select a large value for the inertia 
weight at first iteration of the search process in order to launch a global search and then to reduce its value 
to obtain a better local exploration as iteration number increase (Azimifar and Payan, 2016). 
   Eventually, the new position of the particle is obtained as follows: 

 
   𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1) (50) 
 
   The position and velocity of each particle must be selected in the range [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] and [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥], 
respectively where  𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the lower and upper limits of particle position, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 
show the lower and upper limits of particle velocity. The first constraint guarantees that the particle 
remains within the feasible space and the second one improves intensification of the algorithm. In this 
study 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are calculated as: 
 

  𝑉𝑚𝑎𝑥 = 0.1 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (51) 
 

  𝑉𝑚𝑖𝑛 = −𝑉𝑚𝑎𝑥 (52) 
 
   According to the mentioned explanations, the PSO algorithm can be employed for optimizing the 
problems with continuous decision variables, whereas in the presented model, the sample size (𝑛) and the 
number of inspections until implementing preventive maintenance (𝑘) are discrete variables. In this 
regard, this paper applies the following transformation to overcome this limitation. 
   Assume that the acceptable values for the discrete variable 𝑦𝑖𝑗 are as follow: 

 
𝑦𝑖𝑗 ∈ {𝑆, 𝑆 + 1, … , 𝑀}        𝑦𝑖𝑗 ∈ 𝑍 (53) 

 
   We consider the continuous variable 𝑦𝑖𝑗

𝑟  in the range (0,1). This continuous value is modified to the 
corresponding discrete value in the range defined in Equation (53) as follows: 

 
𝑦𝑖𝑗 = 𝑚𝑖𝑛(⌊𝑆 + (𝑀 − 𝑆 + 1)𝑦𝑖𝑗

𝑟 ⌋, 𝑀) (54) 
 
   By applying this method, the PSO algorithm can be used for obtaining the optimal solution of the 
proposed model with both continuous and discrete decision variables. The procedure for optimizing the 
proposed model is shown in figure 5. 
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Fig 5. Optimization procedure of the proposed model 

 

Discrete 
variables 

Continuous 
variables 

start 

Determine 𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛  and 
𝑉𝑚𝑎𝑥  and also PSO parameters 

𝑦𝑖𝑗
𝑟 ~𝑈(0,1) 

𝑦𝑖𝑗 = 𝑚𝑖𝑛(⌊𝑆 + (𝑀 − 𝑆 + 1)𝑦𝑖𝑗
𝑟 ⌋, 𝑀) 

𝑥𝑖𝑗~𝑈(𝑥𝑖𝑗
𝑚𝑖𝑛 , 𝑥𝑖𝑗

𝑚𝑎𝑥) 

No 

Yes 
Consider the global best 
position as the optimal 

solution 

Update particle velocity and 
position 

Is the stopping 
criterion 

satisfied? 

Calculate the fitness function 
value for each particle 

Update pbest and gbest  



 

53 
 

5-Numerical example 
   To indicate the applicability of the proposed model, an industrial example modified from Pan et al 
(2012) is used. In this example, the company under consideration produces a food product and sells them 
in packages. The VP non-central chi-square control chart is applied for monitoring the process in which 
samples are taken from the process with the fixed and variable sampling costs of $10 and $2, respectively. 
The needed time to sampling and plotting each observation is about 0.01 hours. Historical data indicate 
that the process first is in the in-control state for an average 20 hours and after that goes to an out-of-
control state. In the out-of-control state, the process mean and/or process variability shift from on-target 
values to off-target values. The quality loss cost per unit in the in-control state is 1$ and this cost in the 
out-of-control state is $3. In the in-control state, some false alarms may be issued that investigating each 
of them has a cost of $200. When the issued alarm is a true one, searching for assignable cause is 
performed that takes about 1 hour and then the reactive maintenance is implemented at a cost of $5000. 
Also, if assignable cause does not occur during production cycle, the preventive maintenance will be 
taken place at the end of cycle with a cost of $2400. The inventory holding cost per unit per year and the 
installation cost are $10 and $60, respectively. The market demand for this product is 80 units per day and 
10,000 units per year and the production rate is about 100 units per day. The values of the parameters 
related to the mentioned industrial example are given in table 3.  
 

Table 3. The values of the cost and process parameters in the numerical example 
 

𝐶𝐹 = 10 𝐶𝑉 = 2 𝐶𝑃 = 2400 𝐶𝑅 = 5000 

𝐶𝑌 = 200 𝑄1 = 1 𝑄2 = 3 𝐸 = 0.01 

𝑝 = 100 𝑇1 = 1 𝑎 = 0.5 𝑏 = 1 

𝐵 = 10 𝐷 = 10000 𝑑 = 80 𝐴 = 60 

 

   This problem is solved by using the PSO algorithm for different values of shift in the process mean and 
process variance. In this problem, the decision variables are the sample sizes (𝑛1, 𝑛2), sampling intervals 
(ℎ1, ℎ2), coefficients of control limits (𝑙1, 𝑙2), coefficients of warning limits (𝑤1 , 𝑤2) and the number of 
inspections when any true alarm is issued until the end of production cycle (𝑘). The values for these 
decision variables which minimize the 𝐸𝑇𝐶, while satisfying the constraints (45.1) to (45.6) are presented 
in table 4.  
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Table 4. The optimal values of 𝐸𝑇𝐶,  𝐴𝑇𝑆0, 𝐴𝑇𝑆1and the design parameters for the different shift values (𝛿 and γ) 

γ 𝛿 𝑛1 𝑛2 ℎ1 ℎ2 𝑤1  𝑤2  𝑙1 𝑙2 𝑘 𝑑 𝐸𝑇𝐶 𝐴𝑇𝑆0 𝐴𝑇𝑆1 

1 0.2 18 19 1.60 0.70 4 3.35 90 8.18 54 0.65 11242.78 400.26 12.67 
1 0.4 15 16 2.09 2.00 4 3.04 90 13.88 31 0.83 8058.99 400.04 2.74 
1 0.6 11 12 4.00 2.43 4 3 89.33 21.20 30 1.2 8035.48 400 2.68 
1 0.8 10 11 4.99 2.53 4 3 78.49 23.68 54 1.19 8032.58 401.36 2.66 
1 1 9 10 4.44 2.65 4 3.01 71.16 25.77 88 1.2 8029.40 400.09 2.73 

1.1 0.2 18 19 4.97 1.89 4 3.59 90 8.42 81 0.69 8055.36 400.06 2.69 
1.1 0.4 12 13 2.59 2.49 4 3 90 10.13 30 1.08 8039.34 400 2.74 
1.1 0.6 11 12 3.66 2.53 4 3 90 19.82 73 1.2 8035.77 401.01 2.61 
1.1 0.8 10 11 4.12 2.60 4 3.38 80.48 23.28 53 1.2 8032.4 408.80 2.66 
1.1 1 10 11 3.26 2.20 12.64 6.15 59.84 36.08 37 1.2 8034.03 404.68 2.71 
1.2 0.2 13 14 5 2.33 4 3 90 10 30 1.05 8040.12 400 2.73 
1.2 0.4 13 14 2.78 2.68 4 3 90 10 30 1.0 8038.22 400 2.73 
1.2 0.6 13 14 2.63 2.53 8.4 7.58 90 29.54 90 1.17 8039.64 404.85 2.61 
1.2 0.8 8 9 2.62 2.52 4.03 3.01 66.33 17.36 30 1.2 8029.99 400.12 2.64 
1.2 1 7 8 2.71 2.61 4 3 57.93 17.77 86 1.2 8026.41 400 2.74 
1.3 0.2 12 13 2.74 2.64 4 3 90 8 30 1.08 8036.87 400.96 2.73 
1.3 0.4 11 12 3.77 2.57 4 3 90 8.18 84 1.2 8035.41 403.62 2.62 
1.3 0.6 10 11 2.69 2.59 4 3 83.63 16.89 32 1.2 8033.41 413 2.62 
1.3 0.8 8 9 3.81 2.57 4.01 3.06 63.72 17.29 40 1.2 8028.53 405.2 2.7 
1.3 1 9 10 2.71 2.61 6.91 6.91 60.01 25.92 44 1.11 8030.2 425.43 2.74 
1.4 0.2 10 11 2.58 2.48 4 3.01 83.65 8 90 1.2 8035.43 400 2.58 
1.4 0.4 9 10 2.59 2.49 4 3.37 74.93 8 34 1.2 8033.52 401.29 2.58 
1.4 0.6 8 9 3.12 2.51 4 3 65.08 11.65 30 1.2 8030.16 400.03 2.64 
1.4 0.8 8 9 2.70 2.60 4.01 3 66.68 20.31 67 1.2 8028.69 457.24 2.69 
1.4 1 7 8 2.76 2.66 4.02 3.65 57.84 16.83 53 1.2 8025.92 405.10 2.75 
1.5 0.2 9 10 3.21 2.45 4 3.69 73.37 8 33 1.2 8033.11 406.19 2.6 
1.5 0.4 8 9 2.59 2.49 4 3 66.39 8 30 1.2 8030.87 400.07 2.62 
1.5 0.6 7 8 2.59 2.49 4 3.01 58.10 8 30 1.2 8028.63 400 2.66 
1.5 0.8 11 12 2.70 2.60 9.05 5.23 78.64 29.39 49 1.18 8034.37 1206.61 2.68 
1.5 1 10 11 2.89 2.57 10.82 10.82 61.30 28.08 79 1.13 8032.25 553.43 2.73 
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   The obtained results indicate the effects of shift in the process mean and process variance on design 
parameters and 𝐸𝑇𝐶. When the magnitude of the shift in the mean and/or variance is small, the 
occurrence of assignable cause is detected later by the control chart. As a result, more non-conforming 
items are produced and so the 𝐸𝑇𝐶 increases. Moreover, in this situation, the worker must take a sample 
with a large size after a short inspection interval. As the shift value increases, as shown in table 4, the 
optimal size of the samples decreases and the time interval between two consecutive samples increases.  
 
5-1-Comparative study  
   In this Section, in order to evaluate the usefulness of the proposed model, two comparative studies are 
presented. In the first one, the effectiveness of integration of production planning, maintenance policy and 
statistical process monitoring is investigated. To do this, the proposed model is compared with two 
models: (1) The model in which the production run length, control chart design parameters and decision 
related to maintenance are optimized separately (model 1) and, (2) The model in which designing the 
control chart and determining the maintenance policy are integrated, but the optimal value of production 
run length is obtained separately (model 2). The second comparative study is conducted to indicate the 
superiority of the developed adaptive control chart in comparison with the control chart with the fixed 
parameters. For this purpose, the proposed model is compared to the same model when NCS control chart 
with the fixed parameters is employed, which is called “model 3” hereafter. 
Model 1: 
In model 1, the production run length (𝑇) is obtained by minimizing the inventory cost (i.e. Equation 
(43)). Then, the control chart design parameters (𝑛1 , 𝑛2, ℎ1, ℎ2, 𝑤1, 𝑤1 , 𝑙1, 𝑙2) are attained by minimizing 
summation of the quality and inspection costs using PSO algorithm. According to the obtained values for 
these decision variables, the value of 𝑘 can be calculated from the following Equation: 
  

  𝑘 =
𝑇

(ℎ1𝑝1 + ℎ2𝑝2)
− 1 (47) 

 
   Finally, by using the obtained values for the decision variables, the 𝐸𝑇𝐶 is calculated. Then, the 
expected cost per hour (𝐸𝐶) is given by the ratio of the expected cost per cycle to the expected cycle time.  
Model 2: 
In model 2, the control chart design parameters and the decision related to maintenance are optimized, 
simultaneously. Also, the production run length is calculated as the average cycle time and then, we can 
calculate the 𝐸𝐶 by using the obtained values for the decision variables. 
 
5-1-1-Comparison among the proposed model, model 1, and model 2 
   In this section, the proposed model is compared with the models 1 and 2 based on the 𝐸𝐶 value. For this 
purpose, the obtained decision variables and the expected cost per hour of these three models are 
presented in table (5). 
 

Table 5. Numerical comparison among the proposed model, model 1, and model 2 

Models 𝑛1 𝑛2 ℎ1 ℎ2 𝑤1 𝑤2 𝑙1 𝑙2 𝑘 𝑑 𝑇 𝐸𝐶 
Model 1 17 18 5.1 5 36.59 35.85 36.66 36.28 1 0.36 7.75 1171.71 
Model 2 12 13 3.58 3.48 65.60 57.19 68.28 65.89 30 0.78 51.51 506.63 
The proposed model 12 15 4.93 4.83 29.26 29.26 79.33 51.97 30 1.02 58.02 493.04 
 
   It can be observed in table 5 that the 𝐸𝐶 of model 1 is much more than the models 2 and 3. In other 
words, when designing the control chart and determining the maintenance policy are integrated, the costs 
of the model are reduced significantly. Moreover, the results confirm that integration of production 
planning, maintenance policy and statistical process monitoring leads to less 𝐸𝐶 in comparison with two 
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other models. The difference between the 𝐸𝐶 of the proposed model and model 2 may seems ignorable; 
but when we look it at annually, it can be concluded that using the proposed scheme is more affordable 
than the model 2.  
 
5-1-2-Comparison between the proposed model and model 3 
   In this Section, the proposed model is compared to the same model when FP NCS control chart is 
employed. To do this, different values for the shift in the process mean and variance are considered and 
then these models are compared from economic and statistical aspects. We can observe the statistical 
performance of the models by using the average time to signal in the in-control state (𝐴𝑇𝑆0) and in the 
out-of-control state (𝐴𝑇𝑆1). Therefore, for each value of shift, two models are solved by using PSO 
algorithm and the obtained 𝐸𝑇𝐶, 𝐴𝑇𝑆0 and 𝐴𝑇𝑆1 are presented in table 6. Table 6 also provides the 
percentage improvement in the cost and the average time to signal in the in-control and the out-of-control 
states (𝑃𝐼1, 𝑃𝐼2 and 𝑃𝐼3, respectively). The results indicate that for small and moderate shifts, the use of 
adaptive control chart is preferred. The obtained costs of two models for different shift values in the 
process mean and variance are indicated in figure 6. 
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Table 6. Numerical comparison between the proposed model and model 3 

𝛾 𝛿 
𝐸𝑇𝐶  

𝐴𝑇𝑆0  
𝐴𝑇𝑆1 

VP FP 𝑃𝐼1  VP FP 𝑃𝐼2  VP FP 𝑃𝐼3 
1 0.2 11242.78 11923.19 6.05  400.26 400 0.06  12.67 47.26 73.18 
1 0.4 8058.99 9381.33 16.41  400.04 400 0.01  2.74 5.46 49.80 
1 0.6 8035.48 8148.69 1.41  400.00 400 0  2.68 2.73 1.80 
1 0.8 8032.58 8065.00 0.40  401.36 400 0.34  2.66 2.68 0.86 
1 1 8029.40 8044.51 0.19  400.09 400 0.02  2.73 2.73 0.01 

1.1 0.2 8055.36 10953.67 35.98  400.06 400 0.02  2.69 9.40 71.32 
1.1 0.4 8039.34 8454.26 5.16  400 400 0  2.74 3.2 14.75 
1.1 0.6 8035.77 8105.92 0.87  401.01 400 0.25  2.61 2.67 2.20 
1.1 0.8 8032.40 8060.08 0.34  408.80 400 2.15  2.66 2.68 0.83 
1.1 1 8034.03 8042.94 0.11  404.68 400 1.15  2.71 2.74 0.92 
1.2 0.2 8040.12 8947.32 11.28  400 400.02 0  2.73 4.03 32.24 
1.2 0.4 8038.22 8216.61 2.22  400 400.07 -0.02  2.73 2.78 2.04 
1.2 0.6 8039.64 8085.75 0.57  404.85 400 1.2  2.61 2.66 0.02 
1.2 0.8 8029.99 8055.82 0.32  400.12 400 0.03  2.64 2.70 2.18 
1.2 1 8026.41 8041.30 0.18  400 400 0  2.74 2.74 0.19 
1.3 0.2 8036.87 8267.72 2.87  400.96 400 0.24  2.73 2.80 2.30 
1.3 0.4 8035.41 8124.30 1.11  403.62 400.03 0.89  2.62 2.66 1.50 
1.3 0.6 8033.41 8072.92 0.49  413.00 400 3.15  2.62 2.65 1.10 
1.3 0.8 8028.53 8052.02 0.29  405.20 400 1.28  2.70 2.71 0.53 
1.3 1 8030.20 8039.78 0.12  425.43 400.04 5.97  2.74 2.75 0.31 
1.4 0.2 8035.43 8123.76 1.10  400 400.01 0  2.58 2.66 2.94 
1.4 0.4 8033.52 8086.04 0.65  401.29 400 0.32  2.58 2.65 2.85 
1.4 0.6 8030.16 8063.00 0.41  400.03 400 0.01  2.64 2.68 1.66 
1.4 0.8 8028.69 8048.00 0.24  457.24 400.09 12.50  2.69 2.72 1.17 
1.4 1 8025.92 8038.07 0.15  405.10 400 1.26  2.75 2.75 0.13 
1.5 0.2 8033.11 8081.33 0.60  406.19 400 1.52  2.60 2.65 2.06 
1.5 0.4 8030.87 8068.05 0.46  400.07 400 0.02  2.62 2.68 2.23 
1.5 0.6 8028.63 8054.73 0.32  400 400 0  2.66 2.70 1.64 
1.5 0.8 8034.37 8043.98 0.12  1206.61 400.00 66.85  2.68 2.74 2.19 
1.5 1 8032.25 8036.20 0.05  553.43 400.02 27.72  2.73 2.76 1.05 
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Fig 6a,6b,6c,6d,6e,6f. Comparing the 𝐸𝑇𝐶 of the proposed model with model 3 for different values of shifts. 
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   As shown in figure 6, when the magnitude of the shift is small, the cost of the integrated model with VP 
control chart is much less than the integrated model with FP control chart. By increasing in the values of 
shift, the costs in two models become closer together, so that when the shift is large, the costs are almost 
the same. Hence, as previously mentioned, for the small and moderate shifts using the VP control chart is 
more economical than employing the FP control chart  
   On the other hand, by observing figure 6, it is concluded that by increasing 𝛾 the difference between the 
costs of VP control chart and FP control chart become larger. As the result, when 𝛾 is larger, employing 
the FP leads to more cost saving for the system.  
   In figure 7, the two models are compared with respect to the 𝐴𝑇𝑆1. 
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Fig 7a,7b,7c,7d,7e,7f. Comparing the 𝐴𝑇𝑆1 of the proposed model with model 3 for different values of shifts. 

 

   Figure 7 confirms that the proposed model detects the occurrence of assignable cause faster than the 
model with FP control chart. The difference between the times required to detect assignable cause in two 
models for the small shifts is large, but in the large values for shift, the performance of integrated model 
with VP control chart is almost identical to the integrated model with FSI control chart.  
    It also can be seen in figure 7 that when 𝛾 = {1, 1.1, 1.2}, for medium and large shifts, the 𝐴𝑇𝑆1 values 
are very close in the VP and FP charts. Conversely, for 𝛾 = {1.3, 1.4, 1.5} the difference between the 
𝐴𝑇𝑆1 values in the mentioned control charts are significant. Consequently, when 𝛾 is bigger, the VP chart 
detects medium and large shifts more quickly than the FP chart, resulting in lower quality loss costs. 
 

6-Conclusion 
   This study aimed to fill the gap between the real production systems and the simplified assumptions in 
the perfect production models. Hence, this paper relaxed three non-logical assumptions: (1) the 
production process is perfect that means non-conforming items never produce, (2) machine deterioration 
never happen, and (3) occurrence of assignable cause only leads to mean shift while process variance 
remains unchanged. For this purpose, this study integrated three interrelated issues of inventory control, 
quality control and maintenance in a unified model for an imperfect production process. Moreover, the 
suggested model in contrast to the most of the approaches in this field developed a VP NCS control chart 
to increase the cost saving and considered statistical properties in designing the control chart parameters. 
With respect to the high complexity of the problem, the PSO algorithm was employed to obtain the 
optimal values of decision variables in a way that the expected total cost per production cycle to be 
minimized. Finally, to validate the efficiency of the presented model, two comparative studies were 
conducted. The first one confirmed that integration of production planning, maintenance policy and 
statistical process monitoring leads to a significant increase in the cost savings. The second one indicated 
superiority of the developed adaptive control chart in comparison with the control chart with the fixed 
parameters.  
   As future research we suggest to extend the proposed model in two directions: first, developing a 
production process with multiple assignable causes to make the model more adapted to real production 
environments, and second, monitoring of the process with multiple quality characteristics. 
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