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Abstract 

In a supplier-retailer-buyer supply chain, the supplier frequently offers the retailer a 
trade credit of 𝑆𝑆 periods, and the retailer in turn provides a trade credit of 𝑅𝑅 periods to 
her/his buyer to stimulate sales and reduce inventory. From the seller’s perspective, 
granting trade credit increases sales and revenue but also increases opportunity cost 
(i.e., the capital opportunity loss during credit period) and default risk (i.e., the 
percentage that the buyer will not be able to pay off her/his debt obligations). Hence, 
how to determine credit period is increasingly recognized as an important strategy to 
increase seller’s profitability. Also, many products such as fruits, vegetables, high-tech 
products, pharmaceuticals, and volatile liquids not only deteriorate continuously due 
to evaporation, obsolescence and spoilage but also have their expiration dates. In this 
paper along with deterioration and expiration date, we consider shortages that are very 
rarely investigated by researches. Therefore, this paper proposes an economic order 
quantity model for the retailer where: (a) the supplier provides an up-stream trade 
credit and the retailer also offers a down-stream trade credit, (b) the retailer’s down-
stream trade credit to the buyer not only increases sales and revenue but also 
opportunity cost and default risk, (c) deteriorating items not only deteriorate 
continuously but also have their expiration dates and (d) there is a shortage allowed in 
each time period. We then show that the retailer’s optimal credit period and cycle time 
not only exist but also are unique. Furthermore, we discuss several special cases 
including for non-deteriorating items. Finally, we run some numerical examples to 
illustrate the problem and provide managerial insights.   
Keywords: Supply chain management, deteriorating items, expiration dates, trade credit, 
Backorder 

1-Introduction  
   In practice, the seller usually provides to his buyer a permissible delay in payments to give interest to 
the buyer and reduce inventory. During the credit period, the buyer can accumulate the revenue and earn 
interest on the accumulative revenue. However, if the buyer cannot pay off the purchase amount during 
the credit period then the seller charges to the buyer interest on the unpaid balance. One of the first studies 
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on this issue is Goyal (1985). This paper established the retailer’s optimal economic order quantity (EOQ) 
when the supplier offers a permissible delay in payments. On the other hand, Shah (1993) then considered 
a stochastic inventory model for deteriorating items when delays in payments are permissible. Later, 
Aggarwal and Jaggi (1995) extended the EOQ model from non-deteriorating items to deteriorating items.  
Jamal et al. (1997) further generalized the EOQ model with trade credit financing to allow shortages. 
After, Teng (2002) provided an easy analytical closed-form solution to this type of problem.  
   Afterwards, Huang (2003) extended the trade credit problem to the case in which a supplier offers its 
retailer a credit period, and the retailer in turn provides another credit period to its customers. 
Furthermore, Liao (2008) extended Huang’s model to an economic production quantity (EPQ) model for 
deteriorating items. Subsequently, Teng (2009) provided the optimal ordering policies for a retailer to 
deal with bad credit customers as well as good credit customers. Conversely, Min et al. (2010) proposed 
an EPQ model under stock-dependent demand and two-level trade credit. Later, Kreng and Tan (2011) 
obtained the optimal replenishment decision in an EPQ model with defective items under trade credit 
policy. After, Teng et al. (2011) obtained the optimal ordering policy for stock-dependent demand under 
progressive payment scheme. Further, Teng et al. (2012) extended the demand pattern from constant to 
increasing in time. Recently, Ouyang and Chang (2013) built up an EPQ model with imperfect production 
process and complete backlogging. Concurrently, Chen et al. (2013) established the retailer’s optimal 
EOQ when the supplier offers conditionally permissible delay in payments link to order quantity. In all 
articles described above, the EOQ/EPQ models with trade credit financing were studied only from the 
perspective of the buyer. How to determine the optimal credit period for the seller has received only a few 
attentions by the researchers such as Chern et al. (2013), and Teng and Lou (2012). Currently, Seifert et 
al. (2013) organized the trade credit literature and derived a detailed agenda for future research in trade 
credit area.  
   It well knows that many products such as vegetables, fruits, volatile liquids, blood banks, fashion 
merchandises and high-tech products deteriorate continuously due to several reasons such as evaporation, 
spoilage, obsolescence among others. In this course, Ghare and Schrader (1963) proposed an EOQ model 
by assuming an exponentially decaying inventory. Then Covert and Philip (1973) generalized the constant 
exponential deterioration rate to a two-parameter Weibull distribution. Later, Dave and Patel (1981) 
established an EOQ model for deteriorating items with linearly increasing demand and no shortages. Then 
Sachan (1984) further extended the EOQ model to allow for shortages. Conversely, Goswami and 
Chaudhuri (1991) generalized an EOQ model for deteriorating items from a constant demand pattern to a 
linear trend in demand. Concurrently, Raafat (1991) provided a survey of literature on continuously 
deteriorating inventory model. On the other hand, Hariga (1996) studied optimal EOQ models for 
deteriorating items with time-varying demand. Afterwards, Teng et al. (1999) generalized EOQ models 
with shortages and fluctuating demand. Later, Goyal and Giri (2001) wrote a survey on the recent trends 
in modeling of deteriorating inventory. Teng et al. (2002) further extended the model to allow for partial 
backlogging. Skouri et al. (2009) established inventory EOQ models with ramp-type demand rate and 
Weibull deterioration rate. In a subsequent paper, Skouri et al. (2011) further generalized the model for 
deteriorating items with ramp-type demand and permissible delay in payments. Mahata (2012) proposed 
an EPQ model for deteriorating items under retailer partial trade credit policy. Recently, Dye (2013) 
studied the effect of technology investment on deteriorating items. Wee and Widyadana (2013) developed 
a production model for deteriorating items with stochastic preventive maintenance time and rework. 
Although a deteriorating item has its own expiration date (a.k.a., maximum lifetime), none of the above 
mentioned papers take the maximum lifetime into consideration. Currently, Bakker et al. (2012) wrote a 
review of inventory systems with deterioration since 2001. In this paper, we propose an EOQ model for 
the retailer to obtain her/his optimal credit period and cycle time when: (a) the supplier grants to the 
retailer an up-stream trade credit of S years while the retailer offers a down-stream trade credit of R years 
to the buyer, (b) the retailer’s down-stream trade credit to the buyer not only increases sales and revenue 
but also opportunity cost and default risk, and (c) a deteriorating item not only deteriorates continuously 
but also has its maximum lifetime. We then formulate the retailer’s objective functions under different 
possible cases. In fact, the proposed inventory model forms a general framework that includes many 
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previous models as special cases such as Goyal (1985), Teng (2002), Teng and Goyal (2007), Teng and 
Lou (2012), Lou and Wang (2013), Wang et al. (2014), and others. By applying concave fractional 
programming, we prove that there exists a unique global optimal solution to the retailer’s replenishment 
cycle time. Similarly, using Calculus we show that the retailer’s optimal down-stream credit period not 
only exists but also is unique. Furthermore, we discuss a special case for non-deteriorating items. Finally, 
we run several numerical examples to illustrate the problem and provide some managerial insights.   
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Ouyang et al, 
2014         -       EOQ 

Total 
annual 
profit 

Wang et al, 
2014     -   -     - EOQ 

Total 
annual 
profit 

Teng & Lou, 
2012 - -     -       EOQ 

Total 
annual 
profit 

Liao, 2008 -     - -   -   EOQ Total cost 

Min et al, 2010 -     - -   -   EOQ 

Average 
profit per 

unit of 
time 

Chern et al, 
2013 - - -   - T,Q R,S   EPQ 

Total 
annual 
profit 

Ouyang and 
Chang, 2013   - - -   T,Q Fixed - EPQ 

Inventory 
total cost 

per T 
Chakrabarty & 

Chaudhuri, 
1997 

- Fixed - -   N,I(t)=0 Fixed - EOQ Inventory 
total cost 

Chakrabarty et 
al, 1998 -   - - Stochastic T,Q - - EOQ 

System 
total cost 

per T 

Chandra 
Mahata, 2012 - Stochastic Fixed - - T,Q Fixed   EPQ 

Total 
annual 

cost 

Kreng & Tan, 
2011 - Stochastic Fixed - - T,Q Fixed   EPQ 

Total 
annual 
profit 

Min et al, 2010 - Fixed Fixed - -   Fixed   A lot-sizing 
model 

Average 
profit per 

unit of 
time 

Haung, 2003 - - Fixed - -   Fixed   EOQ 
Total 

annual 
cost 

Teng et al, 
2011 - Fixed Fixed - - T,Q Fixed   EOQ 

Total 
annual 
profit 

Papachristosa 
& Skourib, 

2000 
-   - -   n - - A lot-sizing 

model 

System 
total cost 

per T 

Aggawarl & 
Jaggi, 1995 -   - - - T,Q Fixed - EOQ 

System 
total cost 

per T 

This Paper                 EOQ 
Total 

annual 
profit 
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     Based on the literature review, there are few researches considering shortages when presenting an 
EOQ/EPQ inventory model under two-level trade credit financing for deteriorating items. This study 
considers backorders (and cost of it) in an EOQ model with expiration dates under two-level trade credit 
financing for deteriorating items. In the rest of the paper the notations, assumptions and mathematical 
programming is presented. 

2-Mathematical modeling 
Notations 
For the retailer: 

𝑜𝑜 Ordering cost per order in dollars. 
𝑐𝑐 Purchase cost per unit in dollars. 
𝑝𝑝 Selling price per unit (dollars), with 𝑝𝑝 > 𝑐𝑐 
ℎ  Unit holding cost per year in dollars excluding interest charge. 
𝑟𝑟 Annual compound interest paid per dollar per year. 
𝐼𝐼𝑒𝑒  Interest earned per dollar per year. 
𝐼𝐼𝑐𝑐  Interest charged per dollar per year. 
𝑡𝑡 The time in years 
𝐼𝐼(𝑡𝑡)  Inventory level in units at time t 
             (∀𝐼𝐼(𝑡𝑡) ≥ 0, 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) +,∀𝐼𝐼(𝑡𝑡) < 0, 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) −) 
 
𝜃𝜃(𝑡𝑡) The time-varying deterioration rate at time t, where0 ≤  𝜃𝜃(𝑡𝑡) < 1 
𝑚𝑚 The expiration date or maximum lifetime in years of the deteriorating item 
𝑆𝑆   Up-stream credit period in years offered by the supplier 
𝑅𝑅   Down-stream trade credit period in years offered by the retailer (a decision variable) 
𝐷𝐷 = 𝐷𝐷(𝑅𝑅) The market annual demand rate in units which is a concave and increasing function of 𝑅𝑅 
𝑇𝑇  Replenishment cycle time in years (a decision variable). 
𝑄𝑄  Order quantity 
𝑇𝑇𝑇𝑇(𝐾𝐾,𝑇𝑇) Total annual profit, which is a function of 𝑅𝑅 and𝑇𝑇. 
 
𝐾𝐾∗          Optimal fraction of T before backorder occurs in years. 
𝑇𝑇∗  Optimal replenishment cycle time in years. 
𝑇𝑇𝑇𝑇∗  Optimal annual total profit in dollars 
𝐾𝐾             Fraction of T before backorder occurs. 

𝑏𝑏             Backorder quantity 

𝜋𝜋              Variable cost for backorder, which is a function of 𝑡𝑡 

𝜋𝜋�               Fixed cost for backorder. 

Assumptions: 
   Next, the following assumptions are made to establish the mathematical inventory model: 
1. All deteriorating items have their expiration dates (𝑚𝑚). Hence, the deterioration rate must be closed to 1 
when time is approaching to the expiration date𝑚𝑚. We may assume that the deteriorating rate is

)/()( tmt −+= λλθ , or )()( mtet −= λθ , where 𝜆𝜆is a constant. However, to make the problem tractable, 
we assume that the deterioration rate is the same as that in Sarkar (2012) and Wang et al. (2014) as 
follow:  

tml
lt
−+

=)(θ  mTt ≤≤≤0                                                                                               (1) 
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Note that it is clear from (1) that the replenishment cycle time 𝑇𝑇 must be less than or equal to𝑚𝑚, and the 
proposed deterioration rate is a general case for non-deteriorating items, in which ∞→m  and 0)( →tθ . 
2. Similar to the assumption in Chern et al. (2013) and Teng and Lou (2012), we assume that the demand 
rate 𝐷𝐷(𝑅𝑅) is a positive exponential function of the retailer’s down-stream credit period R as: 

aRKeRD =)(                                                                                                                                     (2) 
Where 𝐾𝐾 and 𝑎𝑎 are positive constants with0 < 𝑎𝑎 < 1. For convenience, 𝐷𝐷(𝑅𝑅) and 𝐷𝐷 will be used 
interchangeably. 
3. The longer the retailer’s down-stream credit period, the higher the default risk to the retailer. For 
simplicity, we may assume that the rate of default risk giving the retailer’s down-stream credit period 𝑅𝑅 is 
assumed as 

bReRF −−= 1)(                                                                                                                                (3) 
Where 𝑏𝑏 is the coefficient of the default risk, which is a positive constant value. 
4. If the annual compound interest rate is𝑟𝑟, then a dollar received at time t is equivalent to rte− dollars 
received now. The retailer offers the buyer a credit period of𝑅𝑅. Hence, the retailer’s net revenue received 
after default risk and opportunity cost is: 

[ ] [ ]RrbarRbRaRrR pKeeepKeeRFRpD )()(1)( +−−−− ==− .                                                          (4) 
This value will be considered in the total profit as a positive income. 
 
 

 
Fig 1. Inventory level in one period 

 

Inventory equations: 
   During the replenishment cycle [0, T], the inventory level is depleted by demand and deterioration, and 
hence governed by the following differential equation: 
𝑑𝑑𝐼𝐼(𝑡𝑡)+

𝑑𝑑𝑑𝑑
= −𝐷𝐷 − 𝜃𝜃(𝑡𝑡)𝐼𝐼(𝑡𝑡)+; 0 ≤ 𝑡𝑡 ≤ 𝐾𝐾𝐾𝐾 
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𝑑𝑑𝐼𝐼(𝑡𝑡)−

𝑑𝑑𝑑𝑑
= −𝐷𝐷;𝐾𝐾𝐾𝐾 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

The 𝐼𝐼(𝑡𝑡)+ and 𝐼𝐼(𝑡𝑡)− values are depicted in figure1. 

The value of backorder quantity according to the inventory diagram (Figure1) is as follow: 

𝑏𝑏 = (1 − 𝑘𝑘)𝑇𝑇𝑇𝑇 

Therefore, in all equations the value of backorder (𝑏𝑏) will be replaced by (1 − 𝑘𝑘)𝑇𝑇𝑇𝑇. 

As a result, the retailer’s order quantity is calculated by determining 𝐼𝐼(𝑡𝑡)+ when 𝑡𝑡 equals to zero (at the 
beginning of the period when the order comes to the stock). Then we have: 

𝑄𝑄 = 𝐼𝐼(0)+ = 𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿(
1 + 𝑚𝑚

1 + 𝑚𝑚 − 𝐾𝐾𝐾𝐾
) 

Therefore, the retailer’s holding cost excluding interest cost per cycle is: 

ℎ� 𝐼𝐼(𝑡𝑡)+𝑑𝑑𝑑𝑑 = ℎ𝐷𝐷� (1 + 𝑚𝑚 − 𝑡𝑡)𝐿𝐿𝐿𝐿 �
1 + 𝑚𝑚 − 𝑡𝑡

1 + 𝑚𝑚 −𝐾𝐾𝐾𝐾
�𝑑𝑑𝑑𝑑

𝐾𝐾𝐾𝐾

0

𝐾𝐾𝐾𝐾

0

= ℎ𝐷𝐷 �
(1 + 𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 �

1 + 𝑚𝑚
1 + 𝑚𝑚 −𝐾𝐾𝐾𝐾

� +
(𝐾𝐾𝐾𝐾)2

4
−

(1 + 𝑚𝑚)𝐾𝐾𝐾𝐾
2

� 

Another cost considered in this paper is the backorder cost, which occurs when the inventory level is 
zero or negative but there is a demand for the product. The backorder quantity (𝑏𝑏) is depicted in figure1. 
In this situation the seller waits until the next replenishment and sells all 𝑏𝑏 at once and gets the money at 
the retailers down-stream trade credit period (𝑅𝑅). 

𝜋𝜋�𝑏𝑏 + 𝜋𝜋𝜋𝜋 ×
(1 − 𝐾𝐾)𝑇𝑇

2
 

As it is obvious in the above equation, backorder cost is constructed by two parts (fixed and variable). 
The fixed cost (𝜋𝜋�𝑏𝑏) is paid just when the backorder occurs, but the variable cost (𝜋𝜋𝜋𝜋 × (1−𝐾𝐾)𝑇𝑇

2
) is paid 

according to time. 

From the values of 𝑅𝑅 and 𝑆𝑆 and 𝐾𝐾, we have two potential cases: (1) 𝑅𝑅 ≤ 𝑆𝑆, and (2) 𝑆𝑆 ≥ 𝑅𝑅. The first 
potential case has two sub cases. Let us discuss them separately. 

1) 𝑅𝑅 ≤ 𝑆𝑆 

In this case, the down-stream trade credit period is lower than the up-stream trade credit period. There 
can be two sub cases that are discussed in the nest section. Based on the values of 𝑆𝑆 (i.e., the time at 
which the retailer must pay off the purchase amount to the supplier to avoid interest charge) and 𝐾𝐾𝐾𝐾 + 𝑅𝑅  
(i.e., the time at which the retailer receives the payment from the last customer before backorder), we 
have two possible sub-cases. If 𝑅𝑅 ≤ 𝑆𝑆 − 𝐾𝐾𝐾𝐾 (i.e., there is an interest earned), then the retailer sells all 
units by 𝑆𝑆 − 𝐾𝐾𝐾𝐾 and at time 𝑆𝑆, pays back the supplier the money for ordering and buying 𝑄𝑄 + 𝑏𝑏 products, 
which is shown in figure2. 

If 𝑅𝑅 ≥ 𝑆𝑆 − 𝐾𝐾𝐾𝐾, then the retailer sells some units by 𝑆𝑆 (i.e., there is an interest earned) but at time S the 
retailer should pay for the supplier, then the retailer starts paying for the interest charges on the items sold 
after 𝑆𝑆 − 𝐾𝐾𝐾𝐾, which is shown in Figure 1.The graphical representation of this case is shown in figure 2. 
Now, let us discuss the detailed formulation in each sub-case. 
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Sub-case 1-1) 𝑅𝑅 ≤ 𝐾𝐾𝐾𝐾, 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

Fig 2.  𝑅𝑅 ≤ 𝐾𝐾𝐾𝐾 and 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

 

The retailer’s ordering cost per cycle is 𝑂𝑂 dollars, and the purchase cost per cycle is 𝑐𝑐 ∗ 𝐼𝐼(𝑡𝑡) dollars. 
Hence, the retailer’s annual total profit can be expressed as follows: 

TP=Net annual revenue- Annual purchase cost- Annual ordering cost- Annual holding cost- Annual 
backorder cost -Interest charged +Interest earned 

Net annual revenue = 𝑝𝑝𝑝𝑝𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] 

Annual purchase cost = 𝑐𝑐 ∗ 𝑄𝑄 = 𝑐𝑐 ∗ 𝐼𝐼(𝑡𝑡) = 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏�  

In which 𝑄𝑄 = 𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚
1+𝑚𝑚−𝐾𝐾𝐾𝐾

� and 𝑏𝑏 = (1 − 𝐾𝐾)𝑇𝑇𝑇𝑇 

Annual ordering cost = 𝑂𝑂
𝑇𝑇
 

Annual holding cost = ℎ𝐷𝐷
𝑇𝑇
��(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
− (1+𝑚𝑚)𝐾𝐾𝐾𝐾

2
�� 

Annual backorder cost = 𝜋𝜋 ̂𝑏𝑏
𝑇𝑇

+ 𝜋𝜋𝜋𝜋 × (1−𝐾𝐾)𝑇𝑇
2𝑇𝑇

= 𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋(1 − 𝐾𝐾)𝐷𝐷 × (1−𝐾𝐾)𝑇𝑇
2

= 𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 +

𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

 

As can be seen in figure2, the retailer sells deteriorating items at time 0, but receives the money at time 
R. Thus, the retailer accumulates revenue in an account that earns 𝐼𝐼𝑒𝑒 per dollar per year from R through 
KT+R. Therefore, the interest earned per cycle is 𝐼𝐼𝑒𝑒 multiplied by the area of the trapezoidal from R 
through KT+R as shown in figure 2. At time S the retailer must pay off the cost to bank and therefore the 
rectangular from KT+R through S is calculated equal to the previous parts and is considered as earned 

b 
T 

Q 

KT 

Cumulative revenue 

Time 
R KT+R S 

KT 

Interest earned 
p*D 
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interest. Hence, the interest earned per year is as follows. Notice that the vertical axis in Figures 1-4 
represents the cumulative revenue, not cumulative sale volume, and the slope of the increasing line in 
Figures 2 – 4 is P*D. 

Interest charged = 0 

Interest earned = 𝑇𝑇∗𝑝𝑝𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ 𝑇𝑇∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

+ (𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝)(𝑆𝑆−(𝑅𝑅+𝐾𝐾𝐾𝐾))∗𝐼𝐼𝑒𝑒
𝑇𝑇

 

Therefore, the total profit gained by the first case will be calculated as follows: 

𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇)= 𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
��(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

�� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� + 𝑇𝑇∗𝑝𝑝𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ 𝑇𝑇∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

+ (𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝)(𝑆𝑆−(𝑅𝑅+𝐾𝐾𝐾𝐾))∗𝐼𝐼𝑒𝑒
𝑇𝑇

 

Next, we discuss the other sub-case in which 𝑅𝑅 ≤ 𝐾𝐾𝐾𝐾 and 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾. 

Sub-case 1-2) 𝑅𝑅 ≤ 𝐾𝐾𝐾𝐾 and 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

 
Fig 3.Subcase 1-2: 𝑅𝑅 ≤ 𝐾𝐾𝐾𝐾 and 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

   In this sub-case, the retailer receives some of revenue at time R through S. A part of the purchase cost at 
time S along with a loan that is gained at time S. Hence, there is no interest charge while the interest 
earned per cycle is 𝐼𝐼𝑒𝑒 multiplied by the area of the trapezoid on the interval [R,S] as shown in Figure3. On 
the other hand, the retailer sells deteriorating items at time 0, but receives the money at time R. Thus, the 
retailer accumulates revenue in an account that earns 𝐼𝐼𝑒𝑒 per dollar per year from R through S. Therefore, 
the interest earned per cycle is 𝐼𝐼𝑒𝑒 multiplied by the area of the trapezoid as shown in Figure3. 
Consequently, the retailer’s annual interest earned is 

Interest charged = (𝑐𝑐𝑐𝑐)(𝑅𝑅+𝐾𝐾𝐾𝐾−𝑆𝑆)2∗𝐼𝐼𝑒𝑒
2𝑇𝑇

 

In this sub-case, the supplier’s up-stream credit period S is shorter than or equal to the customer last 
payment time KT. Hence, the retailer cannot pay off the purchase amount at time S, and must finance 
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some items sold after time S at an interest charged 𝐼𝐼𝑐𝑐 per dollar per year. As a result, the interest charged 
per cycle is times the area of the above triangle as shown in figure3. Therefore, the interest charged per 
year is given by 

Interest earned = (𝑆𝑆−𝑅𝑅)2∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ (𝑆𝑆−𝑅𝑅)∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

 

Therefore, the total profit gained by the first case will be calculated as follows: 

𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇)= 𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
��(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

�� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� + (𝑆𝑆−𝑅𝑅)2∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ (𝑆𝑆−𝑅𝑅)∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

− (𝑐𝑐𝑐𝑐)(𝑅𝑅+𝐾𝐾𝐾𝐾−𝑆𝑆)2∗𝐼𝐼𝑒𝑒
2𝑇𝑇

 

 

Finally, we formulate the retailer’s annual total profit for the case of 𝑅𝑅 ≥ 𝑆𝑆 below. 

Case 2) 𝑅𝑅 ≥ 𝑆𝑆 

 

Fig 4. Case2:𝑅𝑅 ≥ 𝑆𝑆 

As can be seen in figure 4, when the up-stream credit period is lower than the down-stream credit 
period from the time S the retailer has to get loan to afford the D demand. Hence, the retailer cannot pay 
off the purchase amount at time S, and must finance all items sold after time R at an interest charged 𝐼𝐼𝐶𝐶  
per dollar per year. As a result, the interest charged per cycle is the area of the triangle and rectangular as 
shown in figure 4(the whole shape). Therefore, the interest charged per year is given by 

Interest charged = (𝑅𝑅−𝑆𝑆)∗𝑐𝑐𝑐𝑐𝑐𝑐∗𝐼𝐼𝑐𝑐
𝑇𝑇

+ (𝑐𝑐𝑐𝑐)(𝐾𝐾𝐾𝐾)2∗𝐼𝐼𝐶𝐶
2𝑇𝑇

 

And the interest earned as depicted in Figure4 is equal to zero. 

Interest earned = 0 
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Therefore, the total profit gained by the first case will be calculated as follows: 

𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇)= 𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
�(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� − �(𝑅𝑅−𝑆𝑆)∗𝑐𝑐𝑐𝑐𝑐𝑐∗𝐼𝐼𝑐𝑐
𝑇𝑇

+ (𝑐𝑐𝑐𝑐)(𝐾𝐾𝐾𝐾)2∗𝐼𝐼𝐶𝐶
2𝑇𝑇

� 

Therefore, the retailer’s objective is to determine the optimal fraction of 𝑇𝑇 before backorder occurs 
𝐾𝐾∗and cycle time 𝑇𝑇∗ such that the annual total profit 𝑇𝑇𝑇𝑇𝑖𝑖(𝐾𝐾,𝑇𝑇) for (𝑖𝑖=1,2 and 3)  is maximized. In the 
next section, we characterize the retailer’s optimal 𝐾𝐾 and T in each case, and then obtain the conditions in 
which the optimal 𝑇𝑇∗is in either sub-cases. 

3-Theoretical results and optimal solution 
To solve the problem, we apply the existing theoretical results in concave fractional programming. We 

know from Cambini and Martein (2009) that the real-value function: 

𝑞𝑞(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

 

is (strictly) pseudo-concave, if 𝑓𝑓(𝑥𝑥) is non-negative, differentiable and (strictly) concave, and 𝑔𝑔(𝑥𝑥) is 
positive, differentiable and convex. For any given 𝐾𝐾, by applying 𝑞𝑞(𝑥𝑥), we can prove that the retailer’s 
annual total profit 𝑇𝑇𝑇𝑇𝑖𝑖(𝐾𝐾,𝑇𝑇) for (𝑖𝑖=1,2 and 3) is strictly pseudo-concave in 𝑇𝑇. As a result, for any given𝐾𝐾, 
there exists a unique global optimal solution 𝑇𝑇𝑖𝑖∗such that 𝑇𝑇𝑇𝑇𝑖𝑖(𝐾𝐾,𝑇𝑇) is maximized. Similar to the previous 
section we discuss the case of 𝑅𝑅 ≤ 𝑆𝑆 first, and then the case of 𝑅𝑅 ≥ 𝑆𝑆.  

3-1-Optimal solution for the case of 𝐑𝐑 ≤ 𝐒𝐒 
By applying the concave fractional programming as in 𝑞𝑞(𝑥𝑥), we can prove that the retailer’s annual total 

profit 𝑇𝑇𝑇𝑇𝑖𝑖(𝐾𝐾,𝑇𝑇) for (𝑖𝑖=1 and 2) is strictly pseudo-concave in 𝑇𝑇. Consequently, we have the following 
theoretical results. 

To find 𝑇𝑇1∗, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) , setting the result to zero, and re-
arranging terms, we get 

𝜕𝜕𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 𝑂𝑂
𝑇𝑇2
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝑇𝑇
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒

2
+ 𝑝𝑝(1 − 𝐾𝐾)𝐷𝐷𝐼𝐼𝑒𝑒 + 𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒(2𝐾𝐾 − 𝐾𝐾2)� = 0 

For any given 𝑇𝑇, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, setting the 
result to zero, and re-arranging terms, we have 

𝜕𝜕𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 0 − �𝑐𝑐𝐷𝐷(1 + 𝑚𝑚) � 1
1+𝑚𝑚−𝐾𝐾𝐾𝐾

� − 𝑐𝑐𝑐𝑐� + �−ℎ𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾) −
ℎ𝐷𝐷𝐷𝐷𝐷𝐷
2

+ ℎ𝐷𝐷(1+𝑚𝑚)
2

� − [−𝐷𝐷𝜋𝜋� −
𝜋𝜋𝜋𝜋𝜋𝜋(1 − 𝐾𝐾)] + [−𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒 + 𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒(−𝑆𝑆 + 𝑅𝑅 − 2𝑇𝑇 + 2𝐾𝐾𝐾𝐾] 

Taking the second-order partial derivative of𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, and re-arranging terms, we 
obtain 

𝜕𝜕2𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝐾𝐾2

 = 0 − �−𝑐𝑐𝑐𝑐𝑐𝑐(1+𝑚𝑚)
(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2

� − � ℎ𝐷𝐷𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2 + ℎ𝐷𝐷𝐷𝐷
2
� − [𝜋𝜋𝜋𝜋𝜋𝜋] + 2𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑒𝑒 

Theorem 1. For any given 𝑇𝑇 the second-order partial derivative of𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾 is negative 
(the objective function is maximization) so that the objective is convex and concave fractional 
programming can be applied. 

Therefore, 

1-  𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) is a strictly pseudo-concave function in T, and hence exists a unique maximum solution 
at 𝑇𝑇1∗. 
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2- If 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at𝑇𝑇1∗ 
3- If 𝑆𝑆 ≤ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

Proof. Let’s use concave fractional programming to define 

𝑓𝑓1(𝑇𝑇)= 𝑇𝑇(𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
��(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

�� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� + 𝑇𝑇∗𝑝𝑝𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ 𝑇𝑇∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

+ (𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝)�𝑆𝑆−(𝑅𝑅+𝐾𝐾𝐾𝐾)�∗𝐼𝐼𝑒𝑒
𝑇𝑇

) 

And  

𝑔𝑔1(𝑇𝑇) = 𝑇𝑇 

Taking the first-order and second-order derivatives of 𝑓𝑓1(𝑇𝑇) we have 

𝑓𝑓1
′(𝑇𝑇)= 𝑂𝑂

𝑇𝑇
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒

2
+ 𝑝𝑝(1 − 𝐾𝐾)𝐷𝐷𝐼𝐼𝑒𝑒 + 𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒(2𝐾𝐾 − 𝐾𝐾2)� 

And 

𝑓𝑓1
′′(𝑇𝑇)= 𝑂𝑂

𝑇𝑇2
− �−1

𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� − �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� − 𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
≤ 0 

 

Therefore 𝑇𝑇𝑇𝑇1(𝐾𝐾,𝑇𝑇) = 𝑓𝑓1(𝑇𝑇) 
𝑔𝑔1(𝑇𝑇) is a strictly pseudo-concave function at T which completes the proof of 

Theorem 1.  

 

3-2-Optimal solution for the case of 𝐑𝐑 ≤ 𝐊𝐊𝐊𝐊 and 𝐒𝐒 ≥ 𝐑𝐑 + 𝐊𝐊𝐊𝐊 

To find 𝑇𝑇1∗, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) , setting the result to zero, and re-
arranging terms, we get 

𝜕𝜕𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 𝑂𝑂
𝑇𝑇2
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
− �(𝑆𝑆−𝑅𝑅)2𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒

2𝑇𝑇2
+ 4(𝑅𝑅+𝐾𝐾𝐾𝐾−𝑆𝑆)𝐾𝐾𝐾𝐾𝐾𝐾𝐼𝐼𝑐𝑐−2𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐(𝑅𝑅+𝐾𝐾𝐾𝐾−𝑆𝑆)2

4𝑇𝑇2
� = 0 

For any given 𝑇𝑇, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, setting the 
result to zero, and re-arranging terms, we have 

𝜕𝜕𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 0 − �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) � 1
1+𝑚𝑚−𝐾𝐾𝐾𝐾

� − 𝑐𝑐𝑐𝑐� + �−ℎ𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾) −
ℎ𝐷𝐷𝐷𝐷𝐷𝐷
2

+ ℎ𝐷𝐷(1+𝑚𝑚)
2

� − [−𝐷𝐷𝜋𝜋� −
𝜋𝜋𝜋𝜋𝜋𝜋(1 − 𝐾𝐾)] − [(𝑆𝑆 − 𝑅𝑅)𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒 + 𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐(𝑅𝑅 + 𝐾𝐾𝐾𝐾 − 𝑆𝑆)] 

Taking the second-order partial derivative of𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, and re-arranging terms, we 
obtain 

𝜕𝜕2𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝐾𝐾2

 = 0 − �−𝑐𝑐𝑐𝑐𝑐𝑐(1+𝑚𝑚)
(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2

� − � ℎ𝐷𝐷𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2 + ℎ𝐷𝐷𝐷𝐷
2
� − [𝜋𝜋𝜋𝜋𝜋𝜋] − 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐 

To identify whether 𝐾𝐾∗ is 0 or positive, lets define the discrimination term below: 
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Theorem2. For any given 𝑇𝑇 the second-order partial derivative of𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾 is negative 
(the objective function is maximization) so that the objective is convex and concave fractional 
programming can be applied. Therefore: 

1-  𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) is a strictly pseudo-concave function in T, and hence exists a unique maximum 
solution at 𝑇𝑇2∗. 

2- If 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at𝑇𝑇2∗ 
3- If 𝑆𝑆 ≤ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

Proof. Let’s use concave fractional programming to define 

𝑓𝑓2(𝑇𝑇)= 𝑇𝑇(𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
��(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

�� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� + (𝑆𝑆−𝑅𝑅)2∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
2𝑇𝑇

+ (𝑆𝑆−𝑅𝑅)∗𝑝𝑝𝑝𝑝∗𝐼𝐼𝑒𝑒
𝑇𝑇

− (𝑐𝑐𝑐𝑐)(𝑅𝑅+𝐾𝐾𝐾𝐾−𝑆𝑆)2∗𝐼𝐼𝑒𝑒
2𝑇𝑇

) 

And  

𝑔𝑔2(𝑇𝑇) = 𝑇𝑇 

Taking the first-order and second-order derivatives of 𝑓𝑓2(𝑇𝑇) we have 

𝑓𝑓2
′(𝑇𝑇)= 𝑂𝑂

𝑇𝑇
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒

2
+ 𝑝𝑝(1 − 𝐾𝐾)𝐷𝐷𝐼𝐼𝑒𝑒 + 𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒(2𝐾𝐾 − 𝐾𝐾2)�  

And 

𝑓𝑓2
′′(𝑇𝑇)= −�𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� − �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝑝𝑝𝑝𝑝𝐼𝐼𝑒𝑒

2
+ 𝑝𝑝(1 − 𝐾𝐾)𝐷𝐷𝐼𝐼𝑒𝑒� ≤ 0 

Therefore 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) = 𝑓𝑓2(𝑇𝑇) 
𝑔𝑔2(𝑇𝑇) is a strictly pseudo-concave function at T which completes the proof of 

Theorem 2.  

∆𝐾𝐾1=− �−𝑐𝑐𝑐𝑐𝑐𝑐(1+𝑚𝑚)
(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2

� − � ℎ𝐷𝐷𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2 + ℎ𝐷𝐷𝐷𝐷
2
� − [𝜋𝜋𝜋𝜋𝜋𝜋] + 2𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼𝑒𝑒 − ��−𝑐𝑐𝑐𝑐𝑐𝑐(1+𝑚𝑚)

(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2
� − � ℎ𝐷𝐷𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2 +
ℎ𝐷𝐷𝐷𝐷
2
� − [𝜋𝜋𝜋𝜋𝜋𝜋] − 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐� 

Theorem2. 

For any 𝑇𝑇 > 0, if ∆𝐾𝐾1 has an acceptable answer, then we have: 

1- 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) is a strictly concave function in K, and hence exists a unique maximum solution 
𝐾𝐾1𝑇𝑇∗+𝑅𝑅1∗ 

2- If ∆𝐾𝐾1 ≤ 0, then 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) is maximized at 𝐾𝐾1∗. 
3- If ∆𝐾𝐾1 ≥ 0, then a unique 𝐾𝐾1∗exists and 𝑇𝑇𝑇𝑇2(𝐾𝐾,𝑇𝑇) is maximized. 

3-3-Optimal solution for the case: 𝐑𝐑 ≥ 𝐒𝐒 
To find 𝑇𝑇1∗, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) , setting the result to zero, and re-

arranging terms, we get 
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𝜕𝜕𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 𝑂𝑂
𝑇𝑇2
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝐾𝐾

2𝑐𝑐𝐷𝐷𝐼𝐼𝑐𝑐
2

� = 0 

For any given 𝑇𝑇, taking the first-order partial derivative of 𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, setting the 
result to zero, and re-arranging terms, we have 

𝜕𝜕𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝜕𝜕

 = 0 − �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) � 1
1+𝑚𝑚−𝐾𝐾𝐾𝐾

� − 𝑐𝑐𝑐𝑐� + �−ℎ𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾) −
ℎ𝐷𝐷𝐷𝐷𝐷𝐷
2

+ ℎ𝐷𝐷(1+𝑚𝑚)
2

� − [−𝐷𝐷𝜋𝜋� −
𝜋𝜋𝜋𝜋𝜋𝜋(1 − 𝐾𝐾)] + [𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐𝐾𝐾] 

Taking the second-order partial derivative of𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾, and re-arranging terms, we 
obtain 

𝜕𝜕2𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇)
𝜕𝜕𝐾𝐾2

 = 0 − �−𝑐𝑐𝑐𝑐𝑐𝑐(1+𝑚𝑚)
(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2

� − � ℎ𝐷𝐷𝐷𝐷(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)2 + ℎ𝐷𝐷𝐷𝐷
2
� − [𝜋𝜋𝜋𝜋𝜋𝜋] + 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐 

Theorem 3. For any given 𝑇𝑇 the second-order partial derivative of𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) with respect to 𝐾𝐾 is negative 
(the objective function is maximization) so that the objective is convex and concave fractional 
programming can be applied. 

Therefore, 

1-  𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) is a strictly pseudo-concave function in T, and hence exists a unique maximum 
solution at 𝑇𝑇2∗. 

2- If 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at𝑇𝑇3∗ 
3- If 𝑆𝑆 ≤ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 then 𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) subject to 𝑆𝑆 ≥ 𝑅𝑅 + 𝐾𝐾𝐾𝐾 is maximized at 𝑅𝑅 + 𝐾𝐾𝐾𝐾 

Proof. Let’s use concave fractional programming to define 

𝑓𝑓3(𝑇𝑇)=𝑇𝑇(𝑝𝑝𝑝𝑝1𝑒𝑒[𝑎𝑎−(𝐵𝐵+𝑟𝑟)𝑅𝑅] − 𝑐𝑐
𝑇𝑇
�𝐷𝐷(1 + 𝑚𝑚)𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + 𝑏𝑏� − 𝑂𝑂

𝑇𝑇
− ℎ𝐷𝐷

𝑇𝑇
�(1+𝑚𝑚)2

2
𝐿𝐿𝐿𝐿 � 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
� + (𝐾𝐾𝐾𝐾)2

4
−

(1+𝑚𝑚)𝐾𝐾𝐾𝐾
2

� − �𝜋𝜋�(1 − 𝐾𝐾)𝐷𝐷 + 𝜋𝜋 (1−𝐾𝐾)2𝑇𝑇𝑇𝑇
2

� − �(𝑅𝑅−𝑆𝑆)∗𝑐𝑐𝑐𝑐𝑐𝑐∗𝐼𝐼𝑐𝑐
𝑇𝑇

+ (𝑐𝑐𝑐𝑐)(𝐾𝐾𝐾𝐾)2∗𝐼𝐼𝐶𝐶
2𝑇𝑇

�)  

And  

𝑔𝑔3(𝑇𝑇) = 𝑇𝑇 

Taking the first-order and second-order derivatives of 𝑓𝑓3(𝑇𝑇) we have 

𝑓𝑓3
′(𝑇𝑇)= 𝑂𝑂

𝑇𝑇
− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� + �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
+ �𝐾𝐾

2𝑐𝑐𝑐𝑐𝐼𝐼𝑐𝑐
2

�  

And 

𝑓𝑓3
′′(𝑇𝑇)=− �𝑐𝑐𝑐𝑐(1 + 𝑚𝑚) �−1

𝑇𝑇
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ 𝐾𝐾

𝑇𝑇(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
�� − �ℎ𝐷𝐷(1+𝑚𝑚)2

2𝑇𝑇2
ln 1+𝑚𝑚

1+𝑚𝑚−𝐾𝐾𝐾𝐾
+ −ℎ𝐾𝐾𝐾𝐾(1+𝑚𝑚)2

2(1+𝑚𝑚−𝐾𝐾𝐾𝐾)
� −

𝜋𝜋𝜋𝜋(1−𝐾𝐾)2

2
 ≤ 0 

Therefore 𝑇𝑇𝑇𝑇3(𝐾𝐾,𝑇𝑇) = 𝑓𝑓3(𝑇𝑇) 
𝑔𝑔3(𝑇𝑇) is a strictly pseudo-concave function at T which completes the proof of 

Theorem 3. 
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4-Numerical example 
In this section, we use numerical example in order to illustrate theoretical results as well as to gain 

some managerial insights. Using the data as those given below, we study the sensitivity analysis on the 
optimal solution with respect to each parameter in appropriate unit. The computational results are shown 
in table 2. 

 
Table 1. Information related to numerical example 

Data Value Data Value 
𝑂𝑂 20$ p 15 $ per unit 
r 0.05 per year c 10 $ per unit 
𝐾𝐾1 1000 units/year h 2 $ per unit per year 
S 0.25 year R 0.75 year 
m 1 year 𝐼𝐼𝑒𝑒 0.03 per year 
𝐼𝐼𝑐𝑐 0.06 per year   
  

Table 2. Computational results related to sensitivity analysis 
parameter 𝐾𝐾∗ 𝑇𝑇∗ 𝑇𝑇𝑇𝑇∗(𝐾𝐾∗,𝑇𝑇∗) 

1K =1000 units/year 0.5345 0.0534 29,907.00 

1K =2000 units/year 0.7245 0.0324 29,933.00 

1K =3000 units/year 0.8531 0.0253 29,996.00 

p =20 dollars per unit 0.1679 0.0167 26,441.00 
p =25 dollars per unit 0.1779 0.0157 26,968.00 
p =30 dollars per unit 0.2678 0.0067 27,316.00 
c =10 dollars per unit 0.1679 0.0167 22,298.00 
c =12 dollars per unit 0.1999 0.0159 23,435.00 
c =14 dollars per unit 0.2679 0.0117 25,516.00 
o =20dollars 0.5345 0.0534 17,126.00 
o =15dollars 0.6245 0.0324 21,779.00 
o =10dollars 0.6531 0.0253 29,458.00 
h =2 dollars per unit per year 0.1679 0.0167 23,067.00 
h =4 dollars per unit per year 0.1779 0.0147 26,610.00 
h =8 dollars per unit per year 0.2678 0.0122 28,124.00 
m =1year 0.1679 0.0167 19,601.00 
m =1.5year 0.1999 0.0199 21,456.00 
m =2year 0.2679 0.0267 22,552.00 

   S =0.25 years  0.5345 0.0534 26,618.00 
S =0.5 years 0.3245 0.0324 19,244.00 
S =0.75 years  0.2531 0.0253 18,220.00 
R  =0.75 years 0.1679 0.0167 29,625.00 
R  =1 years 0.1379 0.0117 22,651.00 
R  =1.25 years 0.0678 0.0017 20,453.00 

 

The sensitivity analysis reveals that: if the value of h , 1K , p , or o  increases then the values of *K  and 

( )* * *,  TP K T increase while the value of *T  decreases; and by contrast, if the value of S  and R 
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increases then the values of *K  and ( )* * *,  TP K T decrease while the value of *T  increases. Hence, a 

higher value of c  and h  causes lower values of *K , *T , and ( )* * *,  TP K T ; and conversely, a higher 

value of m  causes higher values of *K , *T , and ( )* * *,  TP K T . A simple economic interpretation is as 

follows: if h , 1K , p, or o  are higher, then the effect of backorder fraction K  to demand (as well as 
annual profit) gets higher. Hence, higher value of h , 1K , p , or o  causes higher values of backorder 

fraction *K  and annual total profit ( )* * *,  TP K T  while a lower value of *T  to reduce holding cost. 
Similarly, a simple economic interpretation is as follows: if the expiration date of the deteriorating item m 
is longer, then it is worth to increase the backorder fraction *K  as well as the cycle time *T  in order to 
increase the sales and the annual total profit ( )* * *,  TP K T . Likewise, one can easily interpret the rest of 
the managerial insights by using the analogous argument. 
 
5-Conclusions  
   Taking care of both up-stream and down-stream trade credits simultaneously for deteriorating items 
with expiration dates along with shortages has received relatively little attention from the researchers. In 
this paper, we have built an EOQ model for the retailer to obtain its optimal credit period and cycle time 
in a supplier-retailer-buyer supply chain in which (a) the retailer receives an up-stream trade credit from 
the supplier while offer a down-stream trade credit to the buyer, (b) deteriorating items not only 
deteriorate continuously but also have their expiration dates, (c) down-stream credit period increases not 
only demand but also opportunity cost and default risk, and in contrast with most previous researches 
there is a shortage allowed. Then we have proved that the optimal trade credit and cycle time exist 
uniquely. Moreover, we have shown that the proposed model is a generalized case for non-deteriorating 
items and several previous EOQ models. Finally, we have used numerical example to study the optimal 
solution with respect to each parameter to illustrate the inventory model and provide some managerial 
insights.  
   For future research, we can extend the mathematical inventory model in several ways. For example, one 
immediate possible extension could be variable up and down-stream credit periods, cash discounts, etc. 
Also, one may generalize a single player local optimal solution to an integrated cooperative solution for 
both players. Finally, one can extend the fully trade credit policy to the partial trade credit policy in which 
a seller requests its credit-risk customers to pay a fraction of the purchase amount at the time of placing 
an order as a collateral deposit, and then grants a permissible delay on the rest of the purchase amount. 
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