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Abstract
Covering problem tries to locate the least number of facilities and each demand has
at least one facility located within a specific distance. This paper considers a cross
entropy algorithm for solving the mixed integer nonlinear programming (MINLP)
for covering location model. The model is solved to determine the best covering
value. Also, this paper proposes a Cross Entropy (CE) algorithm considering
multivariate normal density function for solving large scale problems. For showing
capabilities of the proposed algorithm, it is compared with GAMS. Finally, a
numerical example and a case study are expressed to illustrate the proposed model.
For case study, Tehran's special drugstores consider and determine how to locate 7
more drugstores to cover all 22 districts in Tehran.
Keywords: Continuous covering location problem (CCLP), uncertainty, cross
entropy (CE)

1-Introduction

Covering problem is to locate a set of new facilities such that customers can receive service by each
facility if the distance between the customer and the facility is equal or less than a predefined number.
This critical value is called coverage. Church and ReVelle (1974) modeled the maximization covering
problem. Covering problems are divided into two problems; Total covering and partial covering
problems, based on covering all or some demand points. The total covering problem is modeled by
Toregas (1971). Up to the present time many developments have occurred about total covering and
partial covering problems in solution technique and assumptions. Covering problem has many
applications such as: designing of switching circuits, data retrieving, assembly line balancing, airline
staff scheduling, locating defend networks, distributing products, warehouse locating, location
emergency service facility (Francis et al. 1992). Some researchers investigated network covering
problems such as Church and ReVelle (1974), Schilling et al. (1993), Owen and Daskin (1998) and
Drezner and Wesolowsky (1999).

By reviewing literature of the covering location models, it be seen that these problems have been
investigated in discrete space, only. While there are some cases in real world which may be occurred
in continuous space, we introduce a continuous covering location problem in this paper; we are
interested in finding the location of k facilities in continuous space in order to serve customers at n
demand points so that the total cost of installation facilities sites and uncovered customers are
minimized.
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The continuous covering location problem could be used for electronic service facilities like BTS
towers or Wi-Fi centers, Aircraft refueling problems and robotics areas (Plaster , 1995).

The reminder of the paper is organized as follows; in section2 a literature review about uncertainty
in covering location model are provided. In section 3 we present the mathematical model. Solution
approach proposing CE algorithm and based on a- cut method is provided in section4. In section5, a
numerical example and case study are given to illustrate the usability of proposed model. Finally,
Section6 draws the conclusions and future works.

2-Literature review

In this section, review literature of covering problems and uncertain location models are provided.
Liu et al. (2010) presented a location model that assigns online demands to the capacitated regional
warehouses currently serving in-store demands in a multi-channel supply chain. The model explicitly
considered the trade-off between the risk pooling effect and the transportation cost in a two-echelon
inventory/logistics system. They formulated the assignment problem as a non-linear integer
programming model. A strategic supply chain management problem was studied by Peng et al. (2011)
to design reliable networks that perform as well as possible under normal conditions, while also
performing relatively well when disruptions strike. They presented a mixed-integer programming
model whose objective was to minimize the nominal cost while reducing the uncertainty using the p-
robustness criterion which bounds the cost in disruption scenarios. Chen et al. (2011) presented a
multi-criteria decision analysis for environmental uncertainty assessment with regard to avoiding and
eliminating damages and loss under natural disasters in international airport projects. They used the
ANP to demonstrate one of its utility modes in decision making support to location selection
problems, which aims at an evaluation of different projects from different locations. A corresponding
framework for value-based performance and uncertainty optimization in a single-stage supply chain
problem was developed by Hahn and Kuhn (2012). They applied Economic Value Added as a
prevalent metric of value-based performance to mid-term sales and operations planning. Due to the
uncertainty of future events in a scenario based problem, they also used robust optimization methods
to deal with operational risks in physical and financial supply chain management. Nickel S. et al
(2012) provided a multi-period supply chain network design problem. In this problem, uncertainty
was assumed for demand and interest rates, which was described by a set of scenarios. Accordingly,
the problem was formulated as a multi-stage stochastic mixed-integer linear programming problem.

Hosseininezhad et al. (2013) proposed a continuous covering location model with risk
consideration. Because the model considered uncertain covering radius, fuzzy concept introduced for
customer satisfaction degree of covering. The model is solved by a fuzzy method named a-cut. After
solving the model, the zones with the largest possibilities are determined for locating new facilities.
Mohammadi et al. (2013) developed multi-objective multi-mode transportation model for hub
covering location problem under uncertainty. In this model, uncertain parameter is the transportation
time between each pair of nodes and it influence by a risk factor in the network. Akgun et al (2014)
developed a model that minimizes the risk of demand point that is not supported by the located
facilities. The goal is to choose the locations to support the demand points is constructed. In this
paper, the uncertainty of demand point is calculated as the multiplication of the threat, the
vulnerability of the demand point and consequence. Zhang et al. (2016) investigated a facility location
model that considered the disruptions of facilities and the cost savings from the inventory risk-pooling
effect and economies of scale. Facilities might have heterogeneous disruption probabilities. When a
facility failed, its customers may be re-assigned to other ones that survive, to hedge against lost-sales
costs. Puga and Tancrez (2016) studied on a location-inventory problem for the design of large
networks with uncertain demand. They defined a non-linear formulation that integrates location,
allocation and inventory decisions, and also includes the costs of transportation, cycle inventory,
safety stock, ordering and facility opening. Berman et al. (2016) studied the effect of a decision
maker's risk attitude on the median and center problems, with uncertain demand in the mean variance
framework. They provided a mathematical formulation for both types in the form of quadratic
programming. Lutter et al. (2017) introduced robust optimization and set covering problem by
combining robust and probabilistic optimization. They defined new constraint and for highlighting
their new approach, a case study for the location of emergency services was introduced.

248



In the rest of this section, aforementioned articles are classified based on location model, uncertainty
and space as shown in Table 1 in order to help the reader appreciate the symmetry associated with the
facility location problems.

Table 1. Comparison between the works

Author(s) Location model Uncertainty type Space
Liu et al. (2010) Two-echelon inventory/logistics  Stochastic demand Discrete
Peng et al. (2011) Reliable logistics network design Disruption Discrete
Chenetal. (2011) Location selection Disaster Discrete
Hahn and Kuhn (2012) Single-stage supply chain Scenario Based Discrete
Nickel S. et al (2012) Multi-stage supply chain Scenario Based Discrete
Mohammadi et al(2013) Hub location chance constraint Discrete
Akgun et al (2014) P-center location Disaster Discrete
Zhang et al (2015) Facility location risk pooling Discrete
Puga and tancrez (2016) Location-inventory model L?”"e”a"? demand Discrete
risk-pooling

Berman et al (2016) p-median and center location Scenario based Discrete
This research Continues covering location Uncertain covering radius  Continuous

In the next section, a continuous covering model with uncertainty consideration is introduced. The
model is solved to determine the best covering value. Also, this paper proposes a CE algorithm
considering multivariate normal density function for solving large scale problems.

3-Continuous covering location problem (CCLP)
In this section, the continuous covering model based on the hosseininezhad et al. (2013) is

considered. For this model, the space is divided into n zones as shown in Error! Reference source
not found.. Two new variables z; and u;; are also introduced in this model. z;; shows whether
facility j is located in zone i or not and w;; shows whether customer i is covered by facility j or not. It

is assumed that distance between each customer and the facility is Euclidean. Accordingly, the mixed
integer nonlinear programming model P, is as follows:

min zk:zn:zﬁfi +Mzn:<%)qi )
1 i=1

j=1=
S.t.
2 2 . .
<J(xj—ai) + (yj—bi) ) <R+LA- u]-,-), vi=1,2,..,n, vVi=12 ..k (6)
<J(xj—ai)2 + (y]_bl)z) >R — Lu]-,-, Vi= 1,2, e, n, VJ = 1,2, ey k (7)
k
Zuji +q; =1, i=12,..,n (8)
j=1
n
2 2 .
Zj; (\/(xj—ai) + (yj—bi) ) <D, Vi=12,..,k 9)
i=1

Zji = 1, V] = 1,2, ,k (10)

<1, Vi=12,.,n (11)
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i Z Z; <P, (12)

j=1i=1

Notations of the model are as follows,

Notations Description
Sets/Indices
N set of zones(customer) in a continuous space indexed by i, {i=1,2,...,n}
K set of new facilities to be located indexed by j, {j=1,2,...,k}
Parameters
a; X coordinate of customer i
b; y coordinate of customer i
fi Installation cost of each facility in zone i
Maximum distance a facility could be located from center of a zone for belonging
to the zone
R Maximum distance a customer could be located from a facility to be covered by
the facility (covering radius)
C; importance of customer i
C Overall importance of customers
M Penalty of uncovered customers which is a large value
L alarge value
P Number of facilities that can be open
Decision
variable
x;j x coordinate of facility j
y; 'y coordinate of facility j
z;; Binary variable; equal tol if facility j is located in zone i; equal to 0 otherwise
Binary variable; equal to 1 if customer i is covered by facility j; equal to 0

otherwise;
q; Binary variable; equal to 1 if customer i is not covered; equal to 0 otherwise

Equation (5) is objective function of the model P, and constitutes of two terms; the first term is
installation cost and the second term is risk cost which is cost of uncovered customers based on
importance of each customer. Constraint sets (6), (7) are covering constraints; Guarantee that each
customer can be covered by a facility if distance between them is smaller than R; u;’s (Vi =
1,2,..,nand Vj = 1,2, ..., k) constitute covering matrix. If distance between customer i and facility j
is greater than R then u; = 0 and u; = 1 otherwise; since L is a large value Constraint sets (6), (7)
will be satisfied, simultaneously. Constraint set (8) indicates the demand constraint which guarantees
that q; is 1 if uy; is zero, it means that customer i is not covered. Constraint set (9) guarantees if
distance between facility j and zone i is greater than D, z;; = 0, so facility j does not belong to zone i
and facility j will be located in zone i, if distance between facility j and zone i is smaller than D,
Constraint set (10) Guarantees that facility j is installed only in one zone. Constraint set (11)
Guarantees that at most one facility could be located in zone i. constraint set (12) defines number of
facilities that should be open.

4-Solution method
In this section a solution method based on Cross Entropy (CE) algorithm is proposed.

4-1- Cross entropy (CE) algorithm
The main idea of CE algorithm, which was introduced by Rubinstein (1997), is related to the design
of an effective learning mechanism throughout the search. It associates an estimation problem to the
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original combinatorial optimization problem, called the associated stochastic problem, characterized
by a density function ¢p. The stochastic problem is solved by identifying the optimal importance
sampling density ¢o*, which is the one that minimizes the Kullback-Leibler distance with respect to
the original density ¢p. This distance is also called the CE between ¢ and¢*. The minimization of the
CE leads to the definition of optimal updating rules for the density functions, and consequently to the
generation of improved feasible vectors. The method terminates when convergence to a point in the
feasible region is achieved. The most important features of CE algorithm have been thoroughly
exposed by de Boer et al. (2005). Chepuri and Homem-de-Mello (2005) considered CE algorithm to
solve the vehicle routing problem with stochastic demands. Sebaa et al (2014) solved the location and
tuning problems with cross entropy approach and compared the performance of CE algorithm with
genetic algorithm. In this paper, we present a CE algorithm to solve CCLP. Since we want to generate
vectors to identify the location of each facility, a density functions is considered. Consequently, let us
define a family of density function ¢ on X, and use 2-dimensional multivariate normal density
function for locating facilities under the following probability distribution function:

— o~ (X—WE t(x-WT/2
X, u3) =e /21/22n 4)

Where X=(x,y) and u = (uy, 1y) are 1-by-2 vectors x , y coordinates of facility locations and mean
of feasible space and X is a 2-by-2 symmetric positive definite matrix covariance. We estimate X via
Monte Carlo simulation. In this regard, X could be estimated by drawing a random sample
X1, 0, Xp_size from ¢(X,u,X), where P-size is CE population size, after generation each one of
iterations, the best solutions (elites) are selected to constitute new space solution. Figure 1 shows the
procedure of the algorithm.

In the following, we provide the CE procedure for CCLP as pseudo-code. As illustrated in stepl3,
the algorithm terminates when either the variance of multivariate normal density function converges
to a small value (Min error) or when a pre-fixed maximum number of iteration (max iteration) is
reached.

Algorithm: Cross Entropy (CE) sodo code for Continuous Covering Location Problem (CCLP)

1:  Determine population size and elite size, initial error, Min error and max iteration
2:  Generate initial multivariate normal distribution parameters (Mean and covariance) based on
x and y coordinates of zones,

3:  Draw asimple population X, ..., Xp_size ~MV Normal(X, ik, 3, £)
4:  For each random vector X;
5: Define continuous covering location problem (CCLP)
6: Reconsider feasibility if needed
7: Solve (CCLP)
8: Endfor
9:  Sort sample population in ascending order based on the objective function value
10:  Select best solution of sample population(elites)
11:  Compute py, py, and X:
12: .ut+1 = xellte
.ujt/+1 = yellte
¢+ =covariance(Xeyite: Veuite)
ejt“ = variance(Xyite, Voiite)j» J = 1, ., k for eachnewfacility j

error tt1 = gtt1

13:  Iferrort*! < Min error V t= max iteration

14: Stop

15:  Else

16: t <t + 1 and go back to step 2
17:  Endif

Fig 1.Procedure of the proposed algorithm
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4-2- Computational results

In this section, we present results of applying the CE algorithm on some instances of the continuous
covering location problem. The algorithm has been implemented in Matlab, and run on a Corei5 at
2.53 GHz with 3GB of RAM memory. The CE parameters are as follows; the population size is 250
and the elite size is 25. We compare obtained CPU time and objective value of the proposed algorithm
with GAMS software which is solved by SBB (Simple Branch & Bound) solver (baron solver-12).
These results are expressed as a percent deviation from the best-known solutions by GAMS. The

deviation is computed as follows:
Fbest — F*

dev.= — %X 100 (15)

Where F** is the total cost found by the proposed algorithm, and F* refers to the best found by
GAMS. We ran the algorithms ten times for each instance and report the following statistics based on
the best solutions. As shown in table 2 the proposed method provides better solution and smaller CPU
Time. For all of the problems, the gap for gams is 0.01. Note CPU time for GAMS to provide a
feasible solution is very high for n>50 & k>5. Then the algorithm has been solved for large scale
cases until n=1000 and k=100. Figure 2 and figure 3 show objective function vs. iteration and
location of facilities for n=500 and k=50. Table 3 provides results for large scale cases.

Table 2.Comparision between results of the Proposed Algorithm(CE) and GAMS solution

GAMS (Baron solver) Proposed Algorithm(CE) dev.
n k R Time(Sec.) Objective  Ft*(Sec.) d¢(Sec.) Best
20 2 2 12 1216.892 0.803 0.51 1216.892 0.000
3 18 85 1757.892 0.82836 0.53 1848.892 0.052
4 16 69 2435 0.7716 0.05 2454.704 0.008
30 2 24 48 1191.325 1.15214 0.61 1207.402 0.013
3 22 331 1708.17 1.93876 0.12 1738.17 0.018
4 2 563 2294.17 2.46228 0.15 2346.772 0.023
5 1.8 1291 2865.17 2.82048 0.05 2934.264 0.024
40 2 28 38 1107.03 1.06392 0.21 1107.03 0.000
3 24 193 1638.519 1.88916 0.15 1648.607 0.006
4 2 1320 2162.519 2.50224 0.18 2215.113 0.024
5 1.8 5880 2864.401 2.96244 0.15 2791.125 0.000
50 2 100 1197.136 1.00464 0.12 1198.11 0.001
3 190 1587.193 1.64268 0.05 1595.579 0.005
4 2.2 1030 2302.258 2.01396 0.11 2254.568 0.000
5 2 1533 2807.883 2.42268 0.11 2876.426 0.024
6 1.8 4620 3466.426 2.94528 0.34 3404.09 0.000

*Average Time over 10 runs
™ Time Standard Deviation over 10 runs
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Table 3. Results of the proposed algorithm (CE) for large scale problems

4 M Time(Sec.) Fbest GAMS(Baron solver) dev. (%)
" Best Avr. Std. C.V. Best Avr. Std. C.V. Time(Sec.) LB uB Best Avr.

1 100 5 4.134 5.187 0.619 11.941  3143.748 3157.677 11.927  0.378 18000.000 2582.000 5909.000 -46.797 -46.562
2 100 10 18.798 30.379 10.549  34.726  5811.589 5877.440 45800 0.779 18000.000 5305.000 10778.000  -46.079 -45.468
4 150 5 4.555 5.524 0.531 9.605 4798.448 4958553  112.290 2.265 18000.000 2571.000 5980.000 -19.758 -17.081
5 150 10 12.496 14.179 1.074 7.576 6417.408 6665.189  168.988 2.535 18000.000 5264.000 10920.000  -41.233 -38.963
6 150 15 24.274 26.573 1.874 7.052 9022.489 9190.628  115.032 1.252 18000.000 8060.000 15800.000  -42.896 -41.831
7 200 5 5.725 7.110 1.063 14.945  3021.215 3144.107 48.359  1.538 18000.000 2537.000 6280.000 -51.891 -49.935
8 200 10 16.661 23.273 10.782  46.329  5623.519 5751.599 97.277  1.691 18000.000 5129.000 11221.000  -49.884 -48.743
9 200 15 37.830 65.779 16.035  24.378  8433.145 8550.979  115.393 1.349 18000.000 7809.000 16112.000  -47.659 -46.928
10 200 20 95.722 98.575 0.963 0.977  11372.650  11479.670  78.770  0.686 18000.000 10579.000 20943.000  -45.697 -45.186
11 300 5 6.162 9.706 6.758 69.620  2827.619 2942.572 68.154  2.316 18000.000 2528.000 5986.000 -52.763 -50.842
12 300 10 17.129 29.991 15.193  50.658  5461.964 5585.892 83.149  1.489 18000.000 5082.000 10936.000  -50.055 -48.922
13 300 15 73.321 76.426 2.735 3.579 8300.199 8428.803 88.111 1.045 18000.000 7693.000 15838.000  -47.593 -46.781
14 300 20 98.624 99.446 0.826 0.831  11160.670  11285.864  100.778 0.893 18000.000 10342.000 20696.000  -46.073 -45.468
15 300 30 146.516 149.156 1.651 1.107 17232920 17542449 223164 1.272 18000.000 15778.000 30174.000  -42.888 -41.862
16 500 5 11.326 14.506 2.232 15.386  3333.048 3370.796 20.904  0.620 18000.000 2528.000 5991.000 -44.366 -43.736
17 500 10 31.590 45.786 12.106  26.440  5863.962 5940.348 54154  0.912 18000.000 5076.000 10965.000  -46.521 -45.824
18 500 15 70.778 110.393 19.837  17.970  8518.412 8583.694 52.623  0.613 18000.000 7647.000 15914.000  -46.472 -46.062
19 500 20 96.580 153.011 20.213  13.210 11174.810  11326.646  76.033  0.671 18000.000 10259.000 20833.000  -46.360 -45.631
20 500 30 224.158 230.833 3.859 1.672  16665.630  16980.993 221.816 1.306 18000.000 15550.000 30590.000  -45.519 -44.488
21 500 50 384.511 387.017 2.788 0.720  28754.280 29243232 238.276 0.815 18000.000 NF NF * *

22 1000 5 25.584 29.600 3.718 12.562  3420.706 3452.719 25105 0.727 18000.000 2519.000 5999.000 -42.979 -42.445
23 1000 10 57.096 65.311 5.921 9.065 5973.489 6103.208 g2.572 1.353 18000.000 5050.000 10991.000  -45.651 -44.471
24 1000 15 95.753 121.007 19.779 16.346  8625.463 8747.928 82899 0.948 18000.000 7595.000 15973.000  -46.000 -45.233
25 1000 20 131.400 172.810 40.630 23511 11327.830 11418.793 82.323 0.721 18000.000 10149.000 20947.000  -45.921 -45.487
26 1000 30 291.784 357567  43.905 12279 16818600 17022.362 132.108 0.776  18000.000 NF NF * *

27 1000 50 548359  588.955  17.156 2913 28394870  28561.002 160.145 0.561  18000.000 NF NF * *

28 1000 100 1179.383 1195364  10.094 0844 61121460 62177.151 510462 0.821 ~ 18000.000 NF NF * *
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Sensitivity analysis for parameter M and L are shown in figure 4 and figure 5.
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Fig 4. sensitivity analysis of parameter M
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Sensitivity analysis for parameter L
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Fig 5. Sensitivity analysis of parameter L

5-Numerical example and case study
In this section, a numerical example is expressed to illustrate the introduced model.

5-1- Example

Suppose we want to locate 25 new facilities in a region including 256 zones (customers) as shown
in figure 6. Numbers in each region express importance of each customer from 1 to 5. Fixed cost in
green, white, yellow and red zones are 900, 1000, 1100 and 1500, respectively.

VS
RN ; 2 s 5 s 5 5 5 5 5 5 5 Tt mee
15 3 5 2 2 . z. bsisls | 5 ' 5 5 . 5 ' 5 5 : 00 |
14|85 5 : 1 1 1 1 11 1 1 1 1000
13 [ s 151 11§ 1§1§1;1;i1 1 1 new | |
127ys s 1 1 1 1 1 1 1 1 1 1 1 s
1mys s 1:1:1. 1 1 1 1 il 1 1 SRR
wfs s 1 1 1 1 § 5 s s 5 ..... 4 4
9155 1 115 5 5 s : 4 4
8|5 i s . 1 1§ 1: 33 3 i a3l 4
71s 5 1.1 1 3 3 3 -3 3 4
6 |]2fz2:2 2212 2 i 2 3
512 2 2 12 2 T -2 13
4|33 3 30404 i3 3 2
3 pa a3 3 ;374 4 I ‘... 4 4 3 3 3
2 T B 5 . ;2 33 3 i z T2 2 2 ;4
1 PSS 5 | 2 (2 2 | 2 Emz 2 {22 2 | 4 x
1 2 % 4 5 6 7 8 9% 10 11 12 13 "

Fig 6.Example with 256 zones

In this example, some neighborhood zones with the same fixed cost are selected as a zone set. For
example zone 25 and 38 are selected as zone set {25, 38}.

Coordinates of new facilities based on possibility values applying (19) and (20), and cost values for
the numerical example 2 are shown in table 4.
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Table 4.Coordinate of new facilities
based on possibility values for Example

Facility Coordinate x Coordinate y
1 2.70 2.10
2 5.98 2.35
3 11.85 5.52
4 15.03 6.91
5 5.99 7.83
6 15.12 14.99
7 2.40 5.36
8 9.70 1.88
9 5.78 14.77
10 1.89 12.40
11 11.95 8.67
12 14.71 9.95
13 11.89 15.06
14 1.34 8.43
15 13.33 2.29
16 4.59 5.26
17 8.90 11.33
18 8.14 5.76
19 10.73 10.84
20 9.38 15.05
21 9.55 3.27
22 9.11 7.19
23 7.75 14.84
24 6.59 10.98
25 7.41 3.14

The final solution is shown in figure 7.

Locatior
16 1 1 f 1 1 f f -
: : : . Location of customers
: B T ST S .
: : : : : : + Location of facilities
Lt B [ S AR
e | | e % ;
+ : : : :
T . Gt S P P P PP
: : Lo+ : :
H i : o+ !
L T PP P PTRT N T
- + : : : *
R I Rk LR T J_......“_, ..........................
% SRR % +
3 O Ut S Y St SRR SURPRRP
. “+ . .
+ - : : : +
U S O - S P SO RPON SUTRPRP
; R ;
+ : :
] SR, Foa e gdee e
1 ! ; JI ; 1 |
2 4 6 8 10 12 14 16
X

Fig 7. Results of the numerical example

5-2- Case study

In Tehran city, that contains 22 districts, there are 15 special drugstores which service people for
their special kinds of medicines. Now, one problem is that these drugstores could be able to service
more than one district and cover more districts. The goal is to service quickly, so, we locate 7 new
drugstores in Tehran with continuous covering location model with fixed cost.
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Tehran contains 22 districts and we want to locate 7 new drugstores in these districts. For solving
problem, we divided space to 2-dimensional horizontal and vertical. The vertical dimension consider
from O to 41 and horizontal dimension consider from 0 to 55. Now location of every district is
available. In this problem, importance of every district determine with condition and number of
service office in that district. Location and importance of every district is shown in table 5. The
problem is solved by cross entropy

Table 5. Importance and location of every districts

district  importance X Y district importance X y
1 9 35.5 36.5 12 7 33 17.5
2 11 28 325 13 4 39 20.5
3 7 37 28.5 14 6 37.5 18
4 11 42 27 15 6 41 10.5
5 11 22.5 25 16 6 325 10.5
6 7 325 26.5 17 3 27.5 13.5
7 6 36 26 18 4 25.5 12
8 3 42 25 19 4 29.5 9.5
9 2 25.5 20 20 5 35 2
10 3 27.5 20 21 3 15.5 21
11 5 30.5 16 22 5 8.5 29

Location of facilities
50 T T T T T T T T
45 - .
40 - 1
35 |- R .
' .-'}..#"- “
0. " j:';'.:__. N i
>25 1 R i -
E f'r‘-’?' i C
20 L . .,.t(:-_... : ol . *' . . i
15 - ' _ g + ]
s VA .
10 - T : .
5 [ -

10 15 20 25 30 35 40 45 50
X

Fig 8. Location of new 7 drugstores
Figure 8 shows one of solutions. Location of every drug store is shown in table 6.

Table 6. possibility of districts and service offices

Selected y X districts Services
location office

14 15.3 40.3 14,15 1

17 125 28.7 11,16,17,18,19 2

10 2162 306 10,12 3

2 33.73 313 1,2 4

5 23.7 23.6 5,9 5

8 25 39.8 3,4,7,8,13 6

6 28.5 29.7 2,6 7
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With considering the final solution districts of 20, 21 and 22 is not covering and:

Drug store that located in district 14, cover a districts 14 and 15.

Drug store that located in district 17, cover a districts 11, 16, 17, 18, 19.

Drug store that located in district 10, cover districts 10 and12

Drug store that located in district 2, cover districts 1 and 2.

Drug store that located in district 5, cover districts 5 and 9.

Drug store that located in district 8, cover districts 3, 4, 7, 8, 13.

Drug store that located in district 6, cover districts 2 and 6.

For analysis of case study, 3 parameters consider. The number of facilities, covering radius and
Maximum distance a facility could be located from the center of a zone. Figure 9 and 10 show how
changing each of these parameters, influence the objective function of the model. As shown in figure
7, considering more facilities reduces the objective function. For the parameter of covering radius, by
increasing the covering radius, the objective function decreases and this is shown in figure 8.
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Fig 9. sensitivity analysis of parameter number of facilities
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(0}
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o N
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Fig 10. sensitivity analysis of parameter covering radius

6-Conclusion

This paper considered the cross entropy algorithm for solving the covering location model. The
presented model’s advantage over the traditional covering location ones was consideration of
continuous space for the covering problems. Providing robust uncertainty location model is another
usability of the proposed model. Comparing with the GAMS, the proposed algorithm based on CE
provided more acceptable results in CPU time and the objective value, especially in large scale
problems. The case study showed how to cover demand of 22 districts in Tehran with more 7 new
service offices. Also, the location of these facilities is demonstrated by the model. Extension of the
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model as a continuous covering location allocation model and providing a heuristic method are two
research issues which we think may need future investigations.
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