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Abstract 

Some quality characteristics are well defined when treated as response variables and are 
related to some independent variables. This relationship is called a profile. Parametric 

models, such as linear models, may be used to model profiles. However, in practical 

applications due to the complexity of many processes it is not usually possible to model 
a process using parametric models. In these cases, non-parametric methods are used to 

model the processes. One important and applicable non- parametric method used to 

model complicated profiles is wavelet transformation. Use of wavelet transformation 

requires estimation of the in control profile in phase I. Classical estimators are usually 
used in phase I to estimate the in control profile, using wavelet transformation. 

However, the presence of outliers in data in phase I may affects classical estimators. In 

this research a robust estimator of the in control profile based on clustering is proposed 
which is insensitive to the presence of outliers. As well as estimating the in control 

profile in phase I it is of interest to determine the change point of the process in phase 

II. In this work a procedure for estimating the change point of complicated profiles in 
phase II is also introduced. This suggested method does not require normality 

assumption of the error terms. Aggregation of the proposed robust estimator with the 

change point detection method results a procedure for detecting the change point. 

Simulation studies show that the proposed method is robust in presence of outliers 
compare to the classical methods of profile monitoring and change point detection.  

Keywords: Change point detection, clustering, profile monitoring, robust estimation, 

Wavelet transformation. 

 

 

1-Introduction 
   In some statistical process monitoring applications, it is assumed that the quality characteristic of 

interest is well modelled using univariate or multivariate distribution. According to Stover and Brill 

(1998), Kang and Albin (2000) and Mestek et al. (1994) in some cases it is better to relate the quality 

characteristic of interest, say Y , to an independent variable x . This relationship may be represented 

as: 

( )Y f x     (1) 
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Where ( )f x  is the mean response function and   is the random error term with mean zero and 

variance 
2  . This is also called a profile. Monitoring a profile is usually performed in two phases. In 

phase I, m random samples of size n are taken from the process. Each sample includes paired 

observations on response and independent variable. Let 1 1 2 2( , ),( , ),..., ( , )j j n njx Y x Y x Y  be the jth 

random sample 1,2,...,j m  in which  

( ) ;  1,2,..., ;  1,2,...,ij i ijY f x i n j m     (2) 

where ij s are random error terms.  

   Usually in practice the outlying samples are eliminated and the profile is estimated in phase I. This 

estimated profile is called here a reference profile. In phase II samples of size n are taken sequentially 

from the process and a profile is estimated. This estimated profile is then compared with the reference 

profile. When these two estimated profiles are significantly different the process is considered to be 
out of control. Noorossana et al. (2016) studied the effect of estimation error in phase I, on the 

monitoring of simple linear profiles in phase II. Woodall and Montgomery (2014) provided some 

recent research of profile monitoring. Qi et al. (2016) provided a unified framework to monitor 
generalized linear profiles in phase II using weighted likelihood ration test Grasso et al. (2016) 

presented a profile monitoring approach based on curve registration information. Khedmati and 

Akhavan Niaki (2016) proposed a control chart for monitoring simple linear profiles in multistage 
processes. Woodall (2017) summarized some works on profile monitoring and the effect of estimation 

error on phase II monitoring. 

   In profile monitoring three problems including the functional form of ( )f x , the distribution of the 

error terms and the method used to monitor the process in phase II must be investigated. The 

functional form of the profile is usually known to be linear with normal error terms and with unknown 
parameters. Control charts to identify the reference profile and to monitor the linear profile in phase II 

are introduced by Kim et al. (2003). A change point model to monitor the linear profile in phase II is 

proposed by Mahmoud et al. (2007). A control chart based on the sequential change point model is 
proposed to monitor the linear profile by Zhou et al. (2006). In monitoring a linear profile, it is 

important to test the stability of the intercept and the slope of the model. Regarding the second 

problem, the distribution of the error terms is usually assumed to be normal with mean zero and 

variance 
2 . Based on normality assumption of the error terms, different methods of analysing and 

monitoring the profiles are proposed. Different methods of monitoring are usually used in phase II. 
Profile monitoring methods in phase II are usually some generalizations of the Shewhart type control 

charts. In these methods, a test statistic is defined and its value for each sample taken in phase II is 

computed. This test statistic reflects the deviation of each profile observed in phase II from the 
reference profile defined in phase I. According to Montgomery (2012), Shewhart type control charts 

use only the current information to determine whether the process is in control or not. As a result, 

these control charts are insensitive to detect small to moderate changes in model parameters. Other 

control charts such as CUSUM and EWMA, which use the information from the past samples, detect 
the small changes more rapidly. In process monitoring it is more important to determine the time 

when a process becomes out of control. Thus, instead of using the traditional Shewhart type control 

charts, some authors suggested other methods for determining when the process becomes out of 
control in phase II. These are generally considered as the change point methods. A change point 

model for monitoring the linear profiles is proposed by Zhou et al. (2006) and Mahmoud et al. (2003). 

The change point model for monitoring the nonlinear profiles is used by Chicken et al. (2009). In the 
context of profile monitoring, the change point model is stated as the fallowing: 

0

1

( )   1, 2,...,

( )   1, 2,...,

i ij

ij

i ij

f x j i n
Y

f x j i n

 

 

   
 

  
  (3) 

where ijY  is the response variable for the ith observation from the jth sample,   is the unknown 
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change point and 
ij s are usually assumed to be i.i.d. normal random variables with mean zero and 

variance 
2 . In equation 3, the 0 (.)f  is the in control profile which is usually being estimated in 

phase I, while the 1 (.)f  is the out of control profile. Paynabar et al. (2016) introduced a change point 

approach to monitor multivariate profiles in phase I. They proposed a new modelling, monitoring and 

diagnosis framework for phase-I analysis of multichannel profiles. Shadman et al. (2015) introduced a 
change point model to monitor Generalized Linear Model (GLM) profiles in phase I. Shadman et al. 

(2017) proposed a change point approach to monitor GLM profiles in phase II based on Rao score 

test.   

   In some cases, such as signal processing, the nature of the process is so complicated and fitting a 
parametric model to the data is inappropriate. The Nortel’s antenna manufacturing system is studied 

by Jeong and Lu (2006) as a process with complicated profile. In cases of complicated profiles, it is 

better to use some nonparametric methods to estimate and to analyse the profiles. Two frequently 
used nonparametric methods for analysing and estimating complicated profiles are smoothing spline 

and wavelet transformation. Chen et al. (2015) introduced a nonparametric method of analysing 

profiles using clustering. In this method p-spline regression is used to model nonparametric profiles. 
At the end of the clustering step, profiles are classified as in control profiles and out of control 

profiles. For more details of using spline method for monitoring profiles, one may refer to Gardner et 

al. (1997). It is noted by Chicken et al. (2009) that using spline method for monitoring an unsmooth 

profile is not appropriate. The spline method cannot reveal the non-smoothing feature of a profile. So, 
when profiles are complicated and unsmooth it is better to use other nonparametric methods. As stated 

by Ogden (1997) wavelet transformation is a nonparametric method which is used for analysing and 

monitoring complicated and unsmooth profiles. In this study wavelet transformation is used to 
decompose complicated and unsmooth functions into simpler functions which are called wavelets. So, 

the coefficients of these simpler functions are monitored instead of the parameters of the complicated 

function. 

   Regarding the assumptions of the distribution of the error terms, in some cases the distribution of 
the error terms may not be normal. In addition to the non -normality there may exist some outliers 

which are far from the main bulk of the observations. Existence of these atypical error terms leads to 

some unexpected values for the response variable. Non-normality of the error terms as well as the 
presence of outliers result the inefficiency of normal based methods. So, it is very important to use 

some other methods of estimation, insensitive to deviation from normality assumption and the 

presence of outliers. These estimation methods are called robust estimation in literature. Some authors 
such as Jeong and Lu (2006) assumed known in control profile and normality of the error terms and 

only monitored the profile in phase II. While others such as Chicken (2009) applied the classical 

methods of estimation in phase I. Kamranrad and Amiri (2016) proposed a combined control chart for 

monitoring simple linear profiles in the presence of outliers and autocorrelation within observation. 
They used robust Holt-Winter model to design this control charts. Hakimi et al. (2017) proposed 

robust approaches for estimating the parameters of logistic regression profiles. The main purpose of 

their study is to develop approaches for monitoring logistic regression profiles which is insensitive to 
the presence of outliers. They used weighted maximum likelihood estimation, redescending M-

estimator and a combined approach to reduce the effect of outliers.  

   In this research a robust method for estimating the in control profile in phase I is proposed based on 
the wavelet transformation. This estimation method is based on the S-estimator as a robust estimator 

of the mean vector of a multivariate distribution. The S-estimator is presented briefly in section 3. The 

proposed method is used when the data are non-normal, include outliers and the profile itself is 

complicated.  
   In summary, in this research a robust method of estimating complicated profiles in phase I based on 

wavelet transformation and a non-parametric procedure for change point detection are proposed. 

These methods are used when the error terms are not necessarily normal. They are robust to the 
presence of outliers. This paper is organized as follow: In section 2 some preliminaries about wavelet 

transformation are provided. The proposed method of estimating the profile in phase I based on the S-
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estimator is developed in section 3. A non-parametric procedure for finding the change is provided in 
section 4. Performance evaluation of the proposed method for monitoring a complicated profile is 

given in section 4. In section 5, the results are discussed and the conclusions are made. 

 

2-Wavelet transformation 
   Wavelets are simple functions with compact support which are used to generate orthonormal basis. 

This orthonormal basis may be used to express a function in
2

RL , the space of square integrable 

functions. A function ( )f x  is said to be square integrable over interval [ , ]a b , if 

2 2( )
b

a
f f x dx    (4) 

   The wavelets and their applications in statistics are introduced in Ogden (1997). Different families 

of wavelets may be chosen to express a function. One of the frequently used is the Haar family which 

is also used in this research. Let ( )x  and ( )x  be the father and the mother wavelets, then 

/2( ) 2 (2 )j j

jk x x k    and 
/2( ) 2 (2 )j j

jk x x k    are the translation and dilation versions of 

the ( )x  and ( )x , respectively for integers j  and k . Then for any 0 0j   the set of functions 

 
0 0

0, ,
( ),  ( );  ,

j k j k
x x j j k Z     form an orthonormal basis to express any function in 

2

RL . In this 

work, the smallest value of 0j  is chosen for forming an orthonormal basis. The function f  is usually 

unknown and must be estimated using sample data. Suppose 2Jn   observations 

( , );  1,2,...,i ix Y i n  are given for some positive integer J . In this study it is assumed that the ix  

values are equally spaced over the interval [0,1] . If 
2

Rf L  then its finite approximation using 

wavelets is as: 

0

0 0 0 0

0

2 1 2 11

, , , ,
0 0

( ) ( ) ( )

j j
J

j k j k j k j k
k kj j

f x c x d x 
 

 

     (5) 

In which , ,( ), ( )j k j kc f x x  and , ,( ), ( )j k j kd f x x  are the inner product of the function 

( )f x  with , ( )j k x  and , ( )j k x , respectively. The coefficients ,j kc  and ,j kd  are called the wavelet 

coefficients. The function ( )f x  could be represented in terms of wavelet coefficients. Let 

1 2( ( ), ( ),..., ( ))nf x f x f x f  be an 1n  vector. By using the pyramid algorithm in Ogden (1997) 

and equation 5, the wavelet coefficients are then defined as follows: 

Wf    (6) 

where, W  is an n n  orthogonal matrix determined based on the father and the mother wavelets and 

10,0 0,0 1,2 1
( , ,..., )JJ
c d d  

   is an 1n  vector of the wavelet coefficients. equation 6 is called 

Discrete Wavelet Transformation, DWT.  

According to Chicken et al. (2009) and for the sake of simplicity, the components of vector   

renamed as: 

1 2( , ,..., )n      (7) 

In practice the components of vector f  are unknown and only the response values iY s are observed. 

Let 1 2( , ,..., )nY Y Y y  be the vector of response values and 1 2( , ,..., )n      be the vector of 

error terms. The matrix form of equation 1 may be then represented as: 

 y f    (8) 

Pre-multiplying the two sides of equation 8 by the previously defined matrix W  results the 
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following: 

Wy = Wf + W   (9) 

Let ˆ  Wy  and W   , then: 

̂      (10) 

where ̂  is the vector of estimated wavelet coefficients and   is the vector of the transformed error 

terms. So, by using wavelet transformation one may transform the data to obtain the estimated 

wavelet coefficients according to equation 10. In this approach, instead of estimating the parameters 

of the mean response function, the vector of wavelet coefficients is estimated. Let 0 ( )f x  be the in 

control profile and 0  be its wavelet coefficients vector. 0  is estimated based on m random samples 

of size n in phase I. Let also ˆ ;  1,2,...,j j m  denotes the vector of estimated wavelet coefficients for 

the jth sample taken in phase I. The classical estimator of 0  , widely used in phase I, is defined as:

   

1

ˆ

ˆ

m

j

j

m





    
(11) 

   When there are no outliers in the m random samples, the estimator in equation 11 is an unbiased and 

consistent estimator for 0 . However, in practical situations some outliers may exist in the dataset. 

The presence of outliers in phase I affects the performance of the classical estimators such as sample 

mean vector. It is stated by Rousseeuw and Leroy (1987) that outliers have much more influence in 
multivariate studies than in univariate. The estimation in phase I using wavelet coefficients, is of 

multivariate nature. So, it is better to use robust multivariate estimators in phase I. In section 3 a 

robust multivariate estimator for estimating 0  is proposed. 

 

3-Proposed robust estimator of 0  in phase I 

   Classical methods of parameter estimation are usually based on the assumption that the data do not 

include outliers. However, when the data are taken from a process, the existence of outliers is 
inevitable. These outliers influence the classical estimators. In situations where the data are suspected 

of being contaminated it is better to use robust estimators. For each random sample the vector of 

estimated wavelet coefficients is computed and shown by ˆ ;  1,2,...,j j m . After computing these 

vectors, some measure of central tendency of them must be computed. So, it is important to choose 

some estimators in this phase as a measure of central tendency of ˆ ;  1,2,...,j j m . As stated before, 

sample mean vector given in Equation 11 is usually used in this step to estimate 0 . Considering the 

dynamic nature of the process and the possibility of generating outliers, the sample mean vector does 

not estimate 0  precisely. As an example consider the following simulation study which shows the 

effects of outliers on the estimator. 

 

Example 1: 
   In this example 2000m  random samples of size 2n   are generated from the general model 

introduced in equation 2, in which 
2 1.05

( ) (1 ) sin ;  0 1
0.05

f x x x x
x

  
    

 
. This ( )f x  is with 

varying frequency called the Doppler function, shown in figure 1. So, the model may be represented 

as: 
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( ) ;  1,2;  1,2,...,2000ij ijY Doppler x i j     (12) 

 
Fig  1. Doppler function 

 

   In the literature of profile monitoring it is usually assumed that the error terms are normally 

distributed. However, possibility of presence of outliers requires that the error terms distribution be 

considered mixed normal. More formally ij  s are distributed according to: 

( ) 0.9 ( ) 0.1 ( 10)F x x x        (13) 

where ( )x  is the standard normal CDF. Equation 13 may be summarized as: 

( ) 0.9 (0,1) 0.1 (10,1);  1,2;  1,2,...,2000ijD N N i j      (14) 

Where ( )D   is distribution of  . Considering Equation 13, 10%  of the error terms are outliers. The 

scatter plot of the error terms for the 2000  generated samples of size 2 are displayed in figure 2. 

 

Fig  2. Scatter plot of the error terms in the presence of outliers 

 

  The presence of outliers results four clusters of error terms. One of these clusters corresponds to the 
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cases where none of the error terms are outliers. This cluster is formed around the origin and is shown 
by “O” marker. Other three clusters correspond to the cases where one or both of the error terms are 

outliers. According to equation 9, the responses are transformed to obtain the estimated wavelet 

coefficients. The scatter plot of the estimated wavelet coefficients for 2000  samples is shown in 

figure 3.  

 

 

 
Fig  3.Scatter plot of estimated wavelet coefficients in the presence of outliers 

 

 

   Figure 3 reveals that the outliers constitute four clusters for the estimated wavelet coefficients, 

ˆ ;  1,2,...,2000j j  . One of these clusters corresponds to the samples with no outliers. While, the 

others correspond to the contaminated samples. The clustering of estimated wavelet coefficients is the 
consequence of the clustering of the error terms due to the presence of outliers. So, the sample mean 

vector of the estimated wavelet coefficients, ̂  is inappropriate to be used for estimating the in control 

wavelet coefficients, 0 . ■ 

The vectors ˆ ;  1,2,...,j j m  are n-variate random vectors with mean 0  when the data is not 

contaminated. When the data includes outliers, ̂  may no longer be used to estimate 0 . So, robust 

estimator for 0  must be defined. Different multivariate robust estimators are introduced in the 

literature. The robust estimators of the mean vector of the multivariate distribution are classified into 
three categories by Rock and Woodruff (1993). The first class of estimators is based on the projection 

pursuit concept stated by Donoho (1982), Huber (1985) and Stahel (1981). The second class is the 

combinatorial estimators such as Minimum Volume Ellipsoid (MVE) proposed by Rousseeuw (1985). 

The third class is the iterative estimators such as M-estimators and S-estimators introduced in 
Maronna et al. (2006). All of these estimators require the use of some robust starting point. The 

combinatorial estimators such as MVE are usually used as a robust starting point. These iterative 

estimators are called compound estimators which are considered for further investigation in this work. 
Some criteria are usually used to measure the robustness of the estimators. One of these criteria, 
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widely used, is the breakdown point. Roughly speaking the breakdown point is the maximum 
proportion of contamination an estimator tolerates. It is obvious that the classical estimators such as 

sample mean vector do not tolerate any proportion of outliers. So, the breakdown point of estimator 

given in Equation 11 is zero and is not suitable to be used when the data is contaminated. According 

to Maronna et al. (2006), the breakdown point of the M-estimators of mean vector is equal to 

1/ ( 1)p   where p  is the number of variates. So, if the M-estimators are used in phase I to estimate

0 , the dimension of 0  would be n and the resulting breakdown point is equal to 1/ ( 1)n  . In the 

context of profile monitoring n is usually large and the breakdown point of the M-estimators of 0  

tends to zero, 1/ ( 1) 0n    . So, the M-estimators are not suitable for estimating 0  in phase I. 

According to Rousseeuw and Yohai (1984) the S-estimators have desirable properties including the 

breakdown point of 0.5 , when tuned properly. So, it seems suitable to use S-estimator in phase I to 

estimate 0 . However, computing the S-estimators require a robust initial estimate for 0 . As 

mentioned before the MVE estimator is usually used as a starting point for computing the S-

estimators. Computing the MVE estimator requires taking of numerous sub samples of size 1n  

from the ˆ ;  1,2,...,j j m . It is stated by Rousseeuw and Leroy (1987) that the required number of 

sub samples for computing MVE estimator increases exponentially as a function of n. The high 

dimensional nature of ˆ ;  1,2,...,j j m  requires taking of many sub samples from ˆ
j s and 

computation of their corresponding ellipsoid containing half of the ˆ
j s. So, computation of this 

estimator is highly time consuming. In addition to the computation time, the MVE estimator may not 

introduce robust starting point for high dimensional data. In this research the clustering property of 

the estimated wavelet coefficients is used to obtain the initial estimate of 0 . By applying this initial 

estimate, an iterative algorithm is used to compute the S-estimate of 0 . As presented in Example 1, 

the presence of outliers creates clusters of estimated wavelet coefficients. Thus, it is rational to 
determine these clusters in advance. Then, the cluster corresponds to the typical samples must be 

identified. In n-dimensional space one can determine the ellipsoid containing half of 

ˆ ;  1,2,...,j j m . According to Maronna et al. (2006) the volume of this ellipsoid is proportional to 

the determinant of sample covariance matrix of ˆ
j s for each cluster. The ellipsoids correspond to the 

clusters of atypical samples are far from the ellipsoid representing the bulk of the ˆ
j s. The cluster 

related to ellipsoid with the smallest volume is considered as the cluster of the typical samples. The 

sample mean vector and the sample covariance matrix of ˆ
j s of this cluster are considered as the 

initial robust estimators of the mean vector and the covariance matrix of ˆ
j s, respectively. These 

initial estimates are used to compute S-estimate of ˆ
j . Representations of these clusters are provided 

in example 2. 
 

Example 2: 
   It is seen in example 1 that the outliers create four clusters of estimated wavelet coefficients shown 

in figure 3. For each cluster the ellipsoid containing half of the points is introduced. These ellipsoids 

as well as the four clusters are shown in figure 4. 

 

 

 

 



175 

 

 

 

 

 

 
Fig  4.Scatter plot of estimated wavelet coefficients in the presence of outliers and the corresponding ellipsoids 

 

 

    The smallest ellipsoid in figure 4 shown by white color corresponds to the cluster of the typical 

samples. The mean vector of the data points in this cluster is considered as the initial robust estimate 

of 0 . By using this initial estimate and performing the algorithm of S-estimator, the estimate of 0  

will be obtained. ■  

Aptness of the proposed method requires the identification of the number of clusters. For high 

dimensional data sets one must use an appropriate method to find the number of clusters. Different 

approaches for finding the number of clusters are reviewed and proposed by Sugar and James (2003). 

Usually ˆ
j s come from a multimodal distribution. So, for determining the number of clusters one 

must test whether ˆ
j s come from a unimodal distribution or not. If this test is rejected then ˆ

j s must 

be clustered into two new groups. A procedure for identifying the number of clusters called G-means 
is suggested by Hamerly and Elkan (2003). In G-means method the k-means procedure is used which 

does not cluster the data properly when the data is contaminated. A clustering method called 

alternative c-means is proposed in Wu and Yang (2002). The alternative c-means method uses a 
distance norm which is robust to the presence of outliers. This method is applied in this research for 

identifying the appropriate number of clusters. Computation steps of the proposed method are 

provided in the followings. 

 

3-1-Computation steps for the proposed method   
   Suppose m random samples of size n observations are given where the jth sample contains n 

measurements on the response and the independent variables. Let 1 1 2 2{( , ),( , ),..., ( , )}j j n njx Y x Y x Y  for 

1,2,...,j m , denote the jth random sample.  

a) Choose a wavelet family for transforming response variable, and a significance level   for 

hypothesis testing.  
b) For the jth random sample, estimate the wavelet coefficient vector using equation 9. Denote the 

resulting wavelet coefficient vector by ˆ
j . 

c)  
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c1) Compute the median for ˆ
j s. Let c  be this median. Compute two centres as 

2


c e  

where   is the largest eigenvalue of the sample covariance matrix of ˆ sj and e  is the 

corresponding eigenvector. Denote these two centres by 1z  and 2z .  

c2) Perform clustering about these centers. The method used here is called alternative c-means. 
This method of clustering is provided in Appendix A. By completing the clustering 

algorithm, two centre denoted as 1 1

lc z  and 2 2

lc z   and two corresponding clusters of 

ˆ
j s will be obtained. 

c3)  Let 1 2c c   be an n dimensional vector which connects the two centres 1c  and 2c . 

Project the ˆ
j s that clustered in Step c2 onto   such as 

ˆ ,
; 1,2,...,

,

j

jU  j m 
 

 
 

where .,.  denotes the inner product of two vectors. Thus, jU s constitute a one 

dimensional random sample.  

c4)  Perform a normality test for jU s at significance level  . In this study the Anderson-

Darling normality goodness-of-fit test is used. If the normality assumption is rejected keep 

the original centre, c , and discard 1c  and 2c . Otherwise, keep the centres 1c  and 2c  as the 

centers of the two clusters 1I  and 2I , respectively. Then go to step c1, to partition each 

cluster into two clusters. When no newer clusters are found, step c is fathomed and the 

corresponding clusters are found. Let ck  be the number of clusters found in this step. 

d) Let 
1 2

ˆ ˆ ˆ, ,...,
i

i i im
    denote the elements of the ith cluster obtained in step c4 for 1,2,..., ci k

where im  is the number of elements of the ith cluster. For each of the ck  clusters, define the 

ellipsoid containing half of all ˆ
j  vectors. Compute 

2

iMED  as: 

2 2

1,2,..., 1,2,..., 1,2,...,

ˆ ˆ ˆ; ( ), cov ( ) ; 1,2,...,
i i

i j ih ih c
j m h m h m

MED med d med   i k
  

  
   

  
     (15) 

where (.)med  and cov(.)  denote the sample median vector and the sample covariance 

matrix and  2 1; , ( ) ( )d   x b C x b C x b . The volume of the ith ellipsoid is proportional 

to  

 2

1,2,...,

ˆcov ; 1,2,...,
i

i i ih c
h m

V MED   i k


     (16) 

e) Compute iV  for cluster i using equation 16 and find the cluster with minimum value for iV . 

Use the elements of the selected cluster and apply the algorithm provided in Appendix B to 

compute 00̂  and 0̂ .  

f) Compute the S-estimate of 0  using 00̂  and 0̂  as the starting points, by applying the 

algorithm provided in Rock and Woodruff  (1993). 

The S-estimation algorithm provides estimators for the covariance matrix of ˆ
j s as well as 0 . Let 

0̂  and ̂  show the S-estimates of 0  and the covariance matrix of  ˆ
j , respectively. It is stated in 
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Wasserman (2006) that when the error terms in equation 2 are uncorrelated then, ˆ ; 1,2,...,j  j m  

are also uncorrelated. The mean of the diagonal elements of ̂  may be considered as a robust 

estimator of the error terms variance. So, the proposed method estimates 0  and the error terms 

variance with no sensitivity to the presence of outliers. The application of this proposed method is 

shown in example 3. 

 

Example 3:  
In this example 500m   random samples of size n are generated from the following model. 

( ) ; 1,2,...,128; 1,2,...,50ij i ijY Doppler x  i  j      (17) 

Measurements are made on 128n   points on each profile. In model represented in Equation 17 error 

terms are distributed according to a mixed normal distribution as the following: 
2 2( ) 0.9972 (0,0.05 ) 0.0028 (10,0.05 )ijD N N     (18) 

In equation 18, only 0.28%  of the error terms are outliers. Each sample contains 128 error terms. So, 

the probability of each sample being contaminated is equal to 
1281 (1 0.0028) 0.3   . Therefore, the 

contamination ratio in this example is about 30%. After generating 50 samples, the vector of 

estimated wavelet coefficients for each sample is computed using Equation 9. Let ˆ ; 1,2,...,50j  j   

denote these vectors. By applying the proposed method, the vector of wavelet coefficients, 0 , is then 

estimated. The sample mean vector of ˆ ; 1,2,...,50j  j   is also computed to estimate 0 . After 

estimating 0 , the in control profile is estimated by using the inverse discrete wavelet transformation. 

The two estimates of the in control profile are shown in figure 5. 

 

 

 
Fig  5. Estimates of in control profile in the presence of outliers using proposed method and sample mean 
 

 

   Figure 5 shows that the proposed method estimates the in control profile more precisely than the 

sample mean in presence of outliers. This method is used in section 4 to monitor the process in phase 

II. 
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4-Proposed sequential monitoring of profiles in phase II 
    As mentioned in section 1, the main purpose of phase II of profile monitoring is to detect the out of 

control situations. More formally, consider the model given in equation 3. In this model it is assumed 

that the process is in control in phase II and the functional form of the profile is 0 ( )f x  by time  . At 

 , the process changes and the functional form of the profile becomes 1 ( )f x . As stated before many 

change point models have been introduced in the area of profile monitoring. One of the most suitable 
methods of monitoring profiles is introduced in Chicken et al. (2009). This method is based on the 

notion of sequential probability ratio test. This method is not only based on the normality of the error 

terms but also requires taking m random samples from the in control process in phase I when 

estimating 0 . However, in some practical situations the error terms may not follow a normal 

distribution. So, it is desired to use some other methods insensitive to the normality assumption. A 
method is now being proposed to monitor the profiles sequentially in phase II. More formally in phase 

II we assume that the samples are taken from the process represented according to the following 

model: 

0

1

( )
1,2,...,

( )

i ij

ij

i ij

f x m j
Y   i n

f x j

 

 

   
 

 
  (19) 

where ijY  is the ith observation from the jth sample, 0 ( )f x  is the in control profile and 1 ( )f x  is the 

out of control profile and   is the change point. Measurements are taken on n points on each sample. 

Error terms in equation 19 are assumed to be i.i.d. random variables with mean zero and unknown 

variance 
2  and not necessarily normal. For the tth sample taken sequentially in phase II, the 

following statistic is computed: 
2

0

2

ˆ

; 1, 2,...
t

tw  t m m



   

 
  (20) 

where ˆ
t  is the estimated wavelet coefficients vector of the tth sample. In many practical applications 

one must estimate 0  and 
2  based on the m samples taken in phase I. The possibility of the data 

being contaminated requires use of the estimators proposed in section 3. So, for the tth sample the 

following statistic must be computed: 
2

0

2

ˆ ˆ

ˆ

t

tw





 
 (21) 

tw  is simply the squared Mahalanobis distance of ˆ
t  from 0̂  with respect to the covariance matrix 

2ˆ
n n I . For an in control process in phase II, ˆ

t s are IID with mean vector 0 . So, tw s are also IID. 

When the process goes out of control at time  , then ˆ ; 1, 2,...t  t      will be distributed 

differently. So, before the change point ; 1, 2,...,tw  t m m     are distributed according to 0F , 

while after the change point ; 1, 2,...tw  t      come from a different distribution say 1F ,  

0 1( ).F F  Therefore, finding the change point in the process is equivalent to testing the following 

hypothesis in phase II. Let 
tF  be the distribution function of ; 1, 2,...tw  t m m    . Then, the null 

hypothesis for no change in model distribution is 

0 0: ; 1, 2,...tH F F  t m m      (22) 

which is tested against the alternative hypothesis. 
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0

1

1

1, 2,...,
:

, 1,...

t

t

F F t m m
H

F F t           



 

    


  
  (23) 

 

   The problem of finding the change point,  , in the distribution of the sequence of independent 

variables is considered in Huskova and Chochola (2010). Their method is used here to monitor the 

change in the distribution of tw s in phase II for finding the change point for the profiles. This method 

is characterized by the following rule: 

inf 1: ( , ) 3.0722Stop

k
t m k Q m k q

m

  
     

  
  (24) 

where Stopt  is the time at which the change in process is detected and ( , )Q m k  is the detector 

function. This detector function is defined as 

 
1

12 1ˆ( , ) ; 1,2,...
2

k

m m i

i

Q m k F w  k
m





 
   

 
  (25) 

where m is the number of samples used in phase I to estimate the in control profile,  ˆ
mF x  is the 

estimated distribution function obtained in phase I. In Equation 24, ( )q x  is a boundary function 

defined as 

 
0.49

( ) 1 ; 0
1

x
q x x  x

x

 
   

 
 (26) 

For monitoring a process in phases I and II the following steps must be taken.  

1. In phase I, take m random samples of size n observations from the process. Estimate the 

vector of wavelet coefficients for each sample using equation 9.  

2. Estimate 0  and 
2  using the proposed method discussed in section 3. 

3. For each sample taken in phase I, compute the statistic given in equation 21. Let 

1 2, ,..., mw w w  be these computed statistics. Based on 1 2, ,..., mw w w  compute  ˆ
mF x .  

4. In phase II, take random samples of size n sequentially.  

5. For each sample taken in phase II, compute the statistic given in equation 21. Let 

; 1, 2,...tw  t m m    be these statistics.  

6. Compute the detector function given in equation 25 and the boundary function given in 

equation 26 using tw s from step 5.    

7. If equation 24 is satisfied for the sample taken at time t, signal the change and stop the 

algorithm, otherwise go to step 5. 

In the proposed method one needs to compute  ˆ
mF x  , using 1 2, ,..., mw w w . The presence of outliers 

in the data taken in phase I, contaminates the computed values of 1 2, ,..., mw w w . This is identified by 

the values for 1 2, ,..., mw w w  exceeding the limit  

   ; 1,2,..., 3 ; 1,2,...,t tmed w t m MAD w t m    where MAD is the median absolute deviation 

from the median. Now, the distribution function  ˆ
mF x  could be computed using the rest of tw s. 

The performance of the proposed method is investigated by means of simulation in section 5.  

 

5-Performance evaluation of the proposed change point detection method   
   In this section the performance of the proposed method of detecting the change point in phase II is 

evaluated by means of simulation. All simulations are performed using MATLAB ® software. The 
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proposed method is studied under two different scenarios. In first scenario, the error terms are 
assumed to be distributed according to a mixed t-student distribution. In second scenario a mixed 

normal error term is assumed. In each case the two different approaches of the proposed method are 

compared. The difference between these two approaches is the procedure used in phase I to estimate 

0 . The first approach, which is introduced in section 4 is shown here by 1A . In this approach the 

robust estimators introduced in section 3 are used in phase I to estimate 0 . While, in second 

approach, shown here by 2A , the sample mean vector of ˆ ; 1,2,...,j  j m  is used to estimate 0 . 

Two types of changes in functional form of the profile including structural break and structural 
change which are further explained in the next subsection are considered. These types of changes are 

also called constant and linear shifts by some authors.   

 

5-1-Simulation study for non-normal error terms 
   In this section the performance of the proposed method is evaluated for the two types of changes, 

structural break and structural change.  
 

5-1-1-Structural break 

   In each simulation run, 20m  random samples of size 16n   are generated from the following 

contaminated model in phase I 

( ) ; 1,2,...,16; 1,2,...,20ij i ijY Doppler x  i  j      (27) 

where ij s are distributed according to a mixed t-student distribution as 

(25) (3)( ) (1 )ijD t t      (28) 

where   is the proportion of contamination of the error terms, ( )t   is the t distribution with   

degrees of freedom. After generating these 20 samples, 0  is estimated using the approaches 1A  and 

2A . In phase II random samples of size 16n   are sequentially generated from the following model: 

 

( ) 21 70
1,2,...,16

( ) 0.05 71

i ij

ij

i ij

Doppler x j
Y   i

Doppler x j





   
 

  
 (29) 

where ij s are distributed according to (25)t  and 70   is the change point. After generating each 

sample in phase II, the condition given in equation 24 is evaluated to test whether any change has 

occurred or not. Let iT  denotes the time where a change is detected in the ith simulation run. For a 

given value of   this procedure is repeated 5000 times and the mean squared error is computed for 

the two approaches 1A  and 2A : 

 

 
5000

2

1

70

5000

i

i

T

MSE 






  
(30) 

   The proportion of contaminated samples is used to determine the value of   . Each sample taken in 

phase I contains n error terms. Each error term is contaminated with probability of  . So, the 

proportion of contaminated samples, s , is equal to: 

 

1 (1 )n

s     (31) 

In simulation studies, 0(0.01)0.3s  . Results are shown in figure 6.  
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Fig  6. Mean squared error for detecting structural break with mixed t distribution 

 
 

   Investigation of figure 6 indicates that the 1A  approach detects the shift in the process sooner than 

the 2A  approach. As well as this property, the 1A  approach is insensitive to the changes in the 

proportion of contamination, s  . This is due to using a robust estimator in phase I for 1A  approach. 

The 2A  approach is highly sensitive to the value of s . Only when error terms in phase I are not 

contaminated, 0s  , the 2A  approach performs similar to 1A  approach. 

 

5-1-2-Structural change 

   In each simulation run, 20m  random samples of size 16n   are generated from the following 

model in phase I: 

 

( ) ; 1,2,...,16; 1,2,...,20ij i ijY Doppler x  i  j     (32) 

where ij s are the mixed t distributed random variables used to model the contamination scenario and 

is defined as before: 

(25) (3)( ) (1 )ijD t t     (33) 

0(0.01)0.3s   is also applied here. After generating 20m  samples, the vector of wavelet 

coefficients 0  is estimated using the proposed robust estimator for the 1A  approach, and the sample 

mean vector for the 2A  approach. In phase II, random samples of size 16n   are sequentially 

generated according to the following model: 

( ) 21 70
1,2,...,16

( ) 0.1 71

i ij

ij

i i ij

Doppler x j
Y   i

Doppler x x j





   
 

  
 (34) 

where ij s are (25)t  random variables and 70   is the change point. After generating each sample 

in phase II, the change point detection test is performed to determine whether any change has 
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occurred or not. This procedure is repeated 5000 times and the MSE is computed for each approaches,

1A  and 2A ,. Results are shown in figure 7. 

 

 

 
Fig  7. Mean squared error for detecting structural change with mixed t distribution 

 

   Figure 7 indicates that the 1A  approach detects the structural change more precisely than the 2A

approach. When the value of the contamination proportion, s , increases the MSE of the 1A

approach remains almost constant, while the MSE of the 2A  approach increases with increase in s . 

 

5-2-Simulation study for normal error terms 
   In this section the performance of the proposed method is evaluated when error terms are normally 
distributed.  

5-2-1-Structural break 

   In each simulation run 20m  random samples of size 16n   are generated from the following 

model: 

( ) ; 1,2,...,16; 1,2,...,20ij i ijY Doppler x  i  j      (35) 

where ij  s are distributed according to a mixed normal distribution as: 

2 2( ) (1 ) (0,0.05 ) ( ,0.05 )ijD N N        (36) 

According to equation 31, the values for   are selected as 0.0066,0.0138   to assure the values 

of 0.1  and 0.2  for s , respectively. The magnitude of the contamination of the error terms is 

1(0.1)1   . After generating 20 samples, 0  is estimated using the 1A and 2A  approaches. In 

phase II random samples of size 16n   are sequentially generated from the following model:  

( ) 21 70
1,2,...,16

( ) 0.05 71

i ij

ij

i ij

Doppler x j
Y   i

Doppler x j





   
 

  
 (37) 

where ij s are distributed according to 
2(0,0.05 )N  distribution and 70   is the change point. For 

each combination of s  and   this procedure is repeated 5000 times and the MSE is computed for 

the approaches 1A  and 2A . Results for 0.1s   are illustrated in figure 8. 
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Fig  8. Mean squared error for detecting structural break with mixed normal distribution for 0.1s   

 

   For the sake of more clarity the vertical axis is shown in logarithmic scale. Results for 0.2s   are 

illustrated in figure 9. 

 

 
Fig  9. Mean squared error for detecting structural break with mixed normal distribution for 0.2s  . 

 

   Investigation of figures 8 and 9 indicates that the 1A  approach detects the structural break in 

process sooner than the 2A  approach.  

 

5-2-2-Structural change 

   Simulation settings for this scenario are the same as the ones in subsection 5.1.2. except that the 

error terms are normally distributed according to 
2(0,0.05 )N . Results for 0.1s   and 0.2s   

are illustrated in Figure 10 and 11, respectively.  
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Fig  10. Mean squared error for detecting structural change with mixed normal distribution for 0.1s   

 

 
 

 
Fig  11. Mean squared error for detecting structural change with mixed normal distribution for 0.2s   

 

 
 

6-Conclusions  
   In this work a robust method for monitoring complicated and unsmooth profiles is proposed. This 
method is based on wavelet transformation. Using wavelet transformation, the data are transformed to 

obtain the estimated wavelet coefficients. These estimated wavelet coefficients are used to estimate 

the in control wavelet coefficients vector, 0 . Under the normality assumption of the error terms, the 

classical estimators such as sample mean vector of the estimated wavelet coefficients are usually used 

to estimate 0 . However, the presence of outliers in the data in phase I affects the accuracy of the 

classical estimator of 0 . It is shown here that the presence of outliers in phase I results different 

clusters of estimated wavelet coefficients. This property of the estimated wavelet coefficients helps to 
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develop a robust estimator for 0  in phase I. This estimator is an integration of the robust clustering 

and the S-estimator. This estimator is shown to be less sensitive to the presence of outliers compare to 

the classical estimator of 0 . As well as estimating the in control profile in phase I, a procedure for 

finding the change point in phase II is also proposed. Change point detection methods are usually 
based on normality assumption of the error terms. However, in some practical situations the error 

terms may not follow a normal distribution. The proposed method of detecting the change point does 

not require the assumption of normality for the error terms. In the suggested method, for each sample 

a test statistic based on the proposed robust estimator of 0  is computed. The empirical distribution of 

this statistic is used to find the change point. Simulation study shows that the proposed method detects 
the change point more accurately than the classical methods in presence of outliers. In summary the 

proposed methods for estimating the in control profile in phase I and monitoring the process in phase 

II, are used when the profile is complicated and the data is contaminated. The proposed method for 

finding the change point in phase II does not require the normality of the error terms. 
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Appendix A: Alternative c-means Algorithm 
   According to Wu and Yang (2002) for clustering m vectors of estimated wavelet coefficients the 

following steps must be accomplished: 

Set 0l   . 

Step 1: First of all vectors of estimated wavelet coefficients must be divided into two groups, 1I and 

2I . For this purpose consider a sample of size m, 
1 2

ˆ ˆ ˆ, ,..., m    to be clustered into two clusters. Let 
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where .  is the Euclidian norm of a vector and ̂  is the sample mean vector of estimated wavelet 

coefficients. Define 1I and 2I  to be the two different index set where index ; 1, 2ij I  i   if  
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Using equation A.2 each vector 
1 2

ˆ ˆ ˆ, ,..., m    is assigned to one of the index sets, 1I and 2I .  

 

Step 2: In this step the centroid of each cluster is computed using robust distance norm. Find 
1l

i

z  
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Stop: If 
1

1,2
max l l

i i
i




 z z  then stop where   is the pre specified stopping tolerance. Otherwise 

1l l   and go to Step 1 and update the sets 1I and 2I .  

 

Appendix B 

  Let *; 1,2,...,j  j mb  be the elements of the selected cluster to compute the starting point for the S-

estimator where *m  represents the number of elements in selected cluster. Estimate the mean vector 

and the covariance matrix using: 
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where 
2 (1 ; )n   is the lower quantile of the chi squared distribution with n degrees of freedom 

and 
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 Put weights ; 1,2,...,j  j m   on 
1 2

ˆ ˆ ˆ, ,..., m    to get a more accurate estimator. Based on these 

weights the final estimator will be: 
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where 
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