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Abstract 
As a general branch of project scheduling problems, resource investment problem 

(RIP) considers resource availabilities as decision variables to determine a level of 

employed resources minimizing the costs of the project. In addition to costs (cash 
outflows), researchers in the later extensions of the RIP took payments (cash inflows) 

received from clients into account and used the net present value (NPV) of project 

cash flows as a financial criterion evaluating the profitability of the project. A striking 

point in a financial view of the project scheduling is how cash inflows are paid by 
client. There are different payment models in the literature of which progress payment 

is highly common in practice. In this paper, resource investment problem with 

maximization of the NPV under progress payment model is investigated. A new 
mathematical model is developed for the problem and then two metaheuristic 

algorithms based on the genetic algorithm (GA) and simulated annealing algorithm 

(SA) is suggested. The experimental results of algorithms are compared with some 
near optimal solutions derived from LINGO software. The comparisons show that the 

results of GA are more reliable than SA. 

Keywords: Project scheduling, Resource investment, Net present value, Progress 

payment. 
 

1-Introduction and Literature review 
   Introduced in the late 1950s, the project scheduling problem has been widely considered by researchers 

in different views resulting in different branches. One of the well-researched branches is resource leveling 

problem (RLP) which aims at minimization of the variation of the resource requirements during the 
project life cycle (Ahuja, 1976). The resource constrained project scheduling problem (Blazewicz et al., 

1983) is the most well-known and researched model in project scheduling which minimizes the make-

span of a project at scarce resource situation. The Resource investment problem is another well-known 

branch introduced by Mohring (1984) in which the resource availability is considered as decision variable 
with aim of finding a schedule for activities together with the availability of resources minimizing the 

renewable resource costs of the project.  
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   Demeulemeester (1995) presented an exact algorithm for RIP based on a branch and bound method 
previously designed for resource constrained project scheduling problem. Zimmermann and Engelhardt 

(1998) developed another branch and bound procedure for RIP under generalized precedence relations 

(RIP/max). Nübel (1999) suggested another method for RIP/max with the help of fictitious resource 

capacities and the resolution of resulting resource conflicts. Later on, Nübel (2001) developed a depth-
first branch-and-bound method for solving a generalized RIP/max. In addition, Drexel and Kimms (2001) 

employed Lagrangian relaxation for finding the lower and upper bound for the RIP. As for metaheuristic 

procedures, Yamashita et al. (2006) proposed a scatter search, Shadrokh and Kianfar (2007) suggested a 
GA where the penalty would be forced to the project if the tardiness is met, and Ranjbar et al. (2008) 

introduced a path relinking and genetic algorithm procedure to tackle the RIP.         Sabzehparvar et al. 

(2008) proposed a mathematical model for the RIP with multi-execution activities. Rodrigues and 
Yamashita (2010) proposed a hybrid method in which a heuristic algorithm feeds a branching approach to 

find optimal solution. Afshar-Nadjafi (2014) developed a mixed integer programming formulation for the 

multi-mode RIP wherein resources have recruitment and release dates. They also proposed a simulated 

annealing problem. Qi et al. (2015) designed a hybrid particle swarm optimization and scatter search to 
find satisfying solutions for the multi-mode RIP. Shahsavar et al. (2016) studied an integration of RIP and 

material ordering and proposed three hybrid metaheuristics. Javanmard et al. (2016) added multi-skilled 

view to the RIP to minimize total cost of recruiting different levels of skills. Two metaheuristic 
algorithms with calibrated parameters were also designed.  

   The integration of project scheduling and financial indexes was firstly done by Russel (1970) who 

considered the maximization of the project’s cash flows as the objective. Grinold (1972) presented an 
algorithm to evaluate the exact trade-off between net present value and project completion time. Smith-

Daniels and Aquilano (1987) considered Russell’s work in the presence of the time for occurring positive 

and negative cash flows of the project. They illustrated an example in which the NPV is maximized by 

scheduling all non-critical activities with negative cash flow at the latest possible time and scheduling 
activities with positive cash flows at the earliest possible time. Elmaghraby and Herroelen (1990) 

developed an approach for solving max-NPV problems without resource constraints in an AOA network 

and fixed cash flow. Later, Herroelen and Gallens (1993) showed more computational experience for the 
work of Elmaghraby and Herroelen (1990). Etgar et al. (1996) formulated a problem of time-dependent 

cash flows to maximize the NPV. In their model, the bonus and penalty for the early and late events were 

considered. In addition, the costs were assumed to be changing over time. Shtub and Etgar (1997) 

proposed a branch and bound algorithm for the problem of NPV maximization of time-dependent cash 
flows in project scheduling. Doersch and Patterson (1997) presented a zero-one mathematical model in 

the condition of limited budget.  Vanhoucke et al. (1999) considered the non-increasing linear cash flows 

in an AON network without resources constraints and in a condition where negative cash flows are 
occurred at the end of activities. They suggested a backtracking search algorithm in which the entire 

project activities are scheduled in the earliest possible time and then identified the series of activities that 

can maximize NPV by a backtracking search and then pushes the activities forwards as much as 
permitted. Etgar and Shtub (1999) assumed that the cash flows are linear functions of the events 

realization time and developed an optimal solution for the problem. Najafi and Niaki (2006) introduced 

the integration of RIP and max-NPV and proposed a GA for the problem. Later on, Najafi et al. (2009) 

studied RIP/max under max-NPV and presented a parameter-tuned GA. Najafi and Azimi (2009) 
permitted the problem to be tardy with penalty and proposed heuristic approaches. Shahsavar et al. (2011) 

assessed RIP/max with discounted cash flows under inflationary conditions where earliness and tardiness 

is also permitted with a bonus and penalty. 
   An essential part of real projects that is stipulated in the contracts is how the contractor receives the 

payments or cash outflows from the client. In the literature, there are four types of payment models. In 

Lump-sum payment (LSP) type, the whole payment is received at the completion time of the project. In 
the payments at event occurrence (PEO) type, some events of the project are predetermined for receiving 

the payment. In the equal time interval (ETI) type, some equal intervals throughout the project life cycle 

are determined for occurrence of payments. In the progress payment (PP) type, the client pays the 
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payments at equal intervals, for example monthly, of the project duration based on the progress of the 
project i.e. the work accomplished during that interval. Despite of being the most common type of 

payment in the real world situations, the progress payment has not been seriously taken into account by 

researchers so far. For example, none of research above have considered the progress payment. Among a 

limited number of efforts done we can refer to Kazaz and Sepil (1996) who presented a mixed integer 
programing for max-NPV problem with progress payment. Sepil and Ortac (1997) extended progress 

payment in resource constrained project scheduling and proposed three different heuristics to solve the 

model. Totally, where financial characteristics of a project are under deep consideration, the assessment 
of progress payment would be a necessary and open area for discussion and evaluation. Particularly, there 

is a real research gap in the RIP to be assessed under progress payment type leading to a more practical 

model. Therefore, what this paper is focusing on is to combine resource investment problem with 
maximization of NPV and the progress payment. In section 2, the mathematical formulation of the 

problem will be discussed. Owing to the NP-hardness of the problem, two meta-heuristic algorithms 

based on genetic algorithm and simulated annealing are taken into picture in section 3. Section 4 concerns 

with the computational results of algorithms and finally the conclusion of the study comes in section 5.  
 

2-Problem formulation 
   A project is given with a set of n activities indexed from 1 to n where activities 1 and n are dummies 

representing the start and completion event of the project, respectively. In order to execute activities K 

types of renewable resources are required. It is assumed that, the resources are not available at the starting 
point of the project and each resource is recruited when needed for the first time and is expulsed when 

there is no activity left requiring that resource. Between the recruiting and the expulsion time of each 

resource, its availability level is fixed to the maximum level of demands during the corresponding period. 
We impose zero-lag finish-to-start precedence constraints on the sequence of the activities. For each 

activity i, its predecessor and successor activity sets are denoted as P(i) and Suc(i), respectively. di 

denotes the duration of activity i where no preemption is permitted. Activity i uses rik units of resource k 

per period. The resource usage over an activity is taken to be uniform. The project is charged with a cost 
of Ck for one unit of recruited resource k per period of time. It is assumed that each activity i has a cash 

outflow ci
- and a profit margin i . The revenue from this activity i then amounts to  iii cc   1 . We 

further assume that the cash outflows ci
- occur at the completion of the activities. The cash inflows 

(receipt from employer), ci
+, are incurred as progress payments at the end of some time periods. These 

progress payments are received at fixed time points for the work completed (wit) during the current 
period, i.e. for the finished and partially finished activities where wit (i =1,2,.., n and t = T, 2T, ..., mT) 

denotes the portion of work completed during period [t-T, t) for activity i. The activities are to be 

scheduled such that the makespan of the project does not exceed a given due date (DD). Furthermore, we 

assume that the discount rate is . 

To formulate the problem, let us define the decision variables and symbols used as follows: 
Si: starting time of activity i, i = 1,2,..., n. 

Rk: maximum required level of resource k to be recruited (to be constant), k = 1,2,..., K. 

SRk: recruiting time of resource k, k = 1,2,..., K. 
FRk: expulsion time of resource k, k = 1,2,..., K. 

Xit: A binary variable where it is one if activity i starts at period t and zero otherwise, i = 1,2,..., n, and t = 

0,1, …, DD. 
PR(k): the set of activities that uses resource k but none of their predecessors use this resource, k = 1,2,..., 

K. 

UR(k): the set of activities that uses resource k but none of their successors use this resource, k = 1,2,..., K. 

ESi: earliest start time of activity i. i = 1,2,..., n. 
LSi: latest start time of activity i. i = 1,2,..., n. 

yit:  A binary variable where it is one if activity i is in progress at period t and zero otherwise, i = 1,2,..., n, 

and t = 0,1, …, DD. 
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We can now formulate the model as follows: 
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   The objective function in equation (1) maximizes the net present value of the project cash flows. The 

constraint (2) maintains the zero-lag finish-to-start precedence relations among the activities. The project 
due date, DD, is guaranteed in equation (3). Constraints (4) and (5) correspond to the recruiting and 

expulsion time points of the resources. Equation (6) ensures that the provided resource units are sufficient 

to implement the schedule. Equation (7) states that every activity must be started only once. Equation (8) 
computes the starting time of activities based on variables Xit. Equation (9) and equation (10) are to signal 

when an activity is in progress. Equation (11) represents the portion of work completed during period [t-

T, t) for each activity i. Sets of constraints (12) denote the domain of the variables. 

Mohring (1984) proved that RIP is an NP-hard problem. The present problem can be converted to RIP by 
elimination of constraints 4, 5, 9, 10, 11, and reducing the non-linear function to the linear one 

minimizing the resource costs. As a result, the problem under study is also NP-hard. 

 

3-Metaheuristics 
    In this section, we propose two widely employed metaheuristics, genetic algorithm and simulated 
annealing, for the problem. They are inspired from the GA proposed by Najafi and Niaki (2006) specially 

in terms of solution representation scheme.  Both algorithms use similar solution representation and 

fitness function. The details of these algorithms and their solution representation are as follows: 
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3-1- Solution representation 

   We build a vector with n elements (genes),  nFFF ,...,, 21 , each element is responsible for one activity 

such that iF  states the used floating time of activity i at the obtained schedule of the chromosome and is 

equal to the difference between iS  at the schedule and iES  obtained by the critical path method. We 

note that ii TFF 0  where iTF denotes the total floating time of activity i and is equal to the 

difference between the latest and the earliest starting time of that activity.  

In addition, considering dependences between elements of a chromosome, we have: 

(13) 
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Where jEF  is the earliest finish time of activity j. 

In order to generate a chromosome, we use two approaches; the one generating the gene values 
sequentially from gene 1 to gene n, the other moving from gene n to gene 1 sequentially. The description 

of these approaches is as follows: 

 

3-1-1- Forward approach for chromosome generation 

   In this approach, we generate gene 1, gene 2, gene 3, ..., and gene n of a chromosome consecutively by 

the following algorithm: 

1. Let 1i . 

2. Gene 1 is an integer value triangularly distributed on the interval [0,
1TF ] according to function shown 

at equation (14) 

(14)  
 

 
12

1

1 0,
2

TFx
TF

xTF
xf x 


 

3. 1 ii . 

4. Gene i is an integer value triangularly distributed on the interval  ii TFF ,  according to equation (15), 

where iF  can be obtained by equation (16), 
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5. If ni  , stop, otherwise go to step 3. 

 

3-1-2-Backward approach for chromosome generation 

   In this approach, we generate gene n, gene 1n , gene 2n , …, and gene 1, consecutively by the 

following algorithm : 

1. Let ni   . 

2. Gene n is an integer value triangularly distributed on the interval [0, nTF ] according to equation (17) 
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3. 1 ii . 

4. Gene i is an integer value triangularly distributed on the interval ],0[ iF  according to equation (18), 

where iF can be obtained by equation (19).  
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(19) iijj
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5. If 1i , stop, otherwise go to step 3. 

 
    Evaluating the fitness of chromosomes is the next step. In doing so, the schedule of each chromosome 

is firstly derived by setting the starting times of activity i to iii ESFS  . Then, accordingly, the 

resource profile of each schedule is decoded by calculating the required level of resources through the 

schedule. Subsequently, Rk, SRk, and FRk are obtained. Finally, the fitness of each solution is acquired by 

equation (1).  
 

3-2-Genetic algorithm 
   We propose, here, a GA as a powerful search algorithm for the problem under study. At first, a random 
population of chromosomes is generated by the procedure described in section 3.1. In each iteration of 

GA, a fixed number of best chromosomes are copied to the next generation and the rest are filled with 

chromosomes created using a crossover, mutation and local search operator. The algorithm stops when a 
specific number of generations is produced. The crossover and mutation operators are defined in the 

following way. 

 

3-2-1- Crossover operator 

   This operator depends on two definitions below.  

Definition 1. Backward floating time of activity i 


iF : the difference between the starting time of activity 

i and the possible earliest starting time of activity i, both determined at the same schedule which is 

calculated by equation (20). 

(20) 
 }{

)(
jj

iPj
iii EFFMaxESFF 




 

Definition 2. Forward floating time of activity i, 


iF : the difference between the possible latest starting 

time of activity i and the finishing time of activity i which is calculated by equation (21). 
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Now, two chromosomes (parents) P1 and P2 are selected to create two children, CH1 and CH2 by the 

following algorithm in which superscripts define the schedules under investigation: 

 

1) Generate a random integer value r from the interval [2, 1n ]. 

2) Generate a random number q from the interval [0,1], if 5.0q  go to step 3, otherwise go to step 4. 

3) Let 
11 P

j
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j FF  for nj ,...,2,1 , then change the value of genes for 

nrj ,...,1  by the use of the following equations: 
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4) Let 
11 P

j

CH

j FF  and 
22 P

j

CH

j FF  for  nj ,...,2,1 , then change the value of genes for 

nrj ,...,1  by the use of the following equations: 

(24) 
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3-2-2-Mutation operator 
Let P be the chromosome selected for mutation. The steps below describe the mutation process: 

1) Generate two uniformly distributed integers on the interval [1, 1n ]. We call the smaller and larger 

one as r1 and r2, respectively. If 
21 rr  or 121  rr , then copy chromosome P to the next 

population, absolutely and finish the algorithm, otherwise go to step 2. 

2) Generate a uniformly distributed random value q between zero and one. If 5.0q , go to step 3, 

otherwise go to step 4. 

3) Change randomly gene i, 1,...,1 21  rri  to an integer value, triangularly distributed according to 

equation (26) (from gene 11 r to gene 12 r , sequentially) 

(26) 
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4) Change randomly gene i, 1,...,1 21  rri  to an integer value, triangularly distributed according to 

Eq. (27) (from gene 12 r to gene 11 r , sequentially) 

(27) 
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3-2-3-Local search operator 

   After a chromosome gets out of mutation operation, this local search operator is performed to find better 
solutions in the neighborhood of that chromosome. The operator chooses each gene one by one and 

changes its corresponding floating time. If the change results in a better fitness, that will be fixed, 

otherwise other changes will be examined. The operator works as follows. 
 

 Let 𝑖 = 2;  

      While i< 𝑛  

             If    Forward float (i) > 0  

                        𝐹𝑖 = 𝐹𝑖 + 1;  

                     Leave the rest unchanged;  

                     Calculate new objective function Z*;  
                     If     Z*   is a better objective function, fix Fi;  

                     Else, Leave 𝐹𝑖 unchanged;  
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             Else if    Backward Float (i) > 0  

                        𝐹𝑖 = 𝐹𝑖 − 1;  

                     Leave the rest unchanged;  

                     Calculate new objective function Z*;  

                     If    Z*    is a better objective function, Fix Fi;  

                     Else, Leave 𝐹𝑖 unchanged;  

            Else  

                        𝑖 = 𝑖 + 1;  
       End 

 

   The parameters of GA have high influence on its performance and a good calibration of parameters 

reinforces the algorithm efficiency. The population size, crossover probability, mutation probability, and 
the number of generations have been determined by researches as some of the most important parameters 

of GA. In the following sub-section, we describe a statistical method for parameter calibration of this 

GA. 

 

3-2-4-Parameter calibration of the GA 

   Having considered the parameters of GA as input variables and its results as output, the response 
surface methodology abbreviated to RSM (Myers and Montgomery, 1995) is applied for calibration. 

Here, the population size, crossover probability, mutation probability, and the number of generations are 

considered as input variables of RSM. In addition, the fitness function as accuracy index and the CPU 

time consumed as the time index of the algorithm are considered as outputs. To experiment RSM, we 
define a lower, a high, and a middle point for each variable or parameter according to table 1. In this 

table, n shows the number of project activities. In the RSM application, the value of parameters Pop, Pcr, 

Pmu, and G are coded to -1, 0, and 1 for their low, middle, and high levels, respectively.  
 

Table 1.Search range and the levels of the input variables for the GA 

High middle low Range  Variable Parameter 

8n 4n n n-8n  X1 Population size (Pop) 

0.9 0.75 0.6 0.6-0.9  X2 Crossover probability (Pcr) 

0.1 0.05 0.0 0.0-0.1  X3 Mutation probability (Pmu) 

300 175 50 50-300  X4 Number of generations (G) 

 

   The RSM is an optimization technique to find the optimum level of a known response function obtained 

from a set of variables. Since such function is unknown, it makes sense to use a design that provides equal 
precision of estimation of the response function. The central composite face-centered (CCF) is an efficient 

design used for fitting a second order response function. In this research, a 24-1 fractional factorial CCF 

design with 4 central points and 8 axial points, (±1,0,0,0), (0,±1,0,0), (0,0,±1,0) and (0,0,0,±1), is selected 
to estimate the second order function. The CCF design is shown in table 2. 

   Then, a set of 45 test problems generated by PROGEN including problems with 20, 30 and 40 activities 

and 3, 4 and 5 resources are taken into account for experiments. The test problems are solved based on 

different levels of CCF defined in Table 2. The first response (Y1) is the accuracy performance index of 
GA defined as the ratio of the solution of GA to the maximum solution detected among 20 levels. The 

data in column Y1 is the mean of accuracy index for 45 test problems. The higher the value of Y1 is the 

better performance of the GA will occur. The second response (Y2) is the CPU time performance of GA 
defined as the ratio of the minimum time obtained among 20 levels to the time consumed by GA for each 

level. The data in column Y2 is the mean of time index for 45 test problems. The higher the value of Y2 is 

the better the performance of GA will occur. 
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Table 2. Result of the RSM experiments on the GA 

Runs Input variables Response variables 

 X1 X2 X3 X4 Y1 Y2 

1 0 0 0 0 0.0696 0.9633 

2 0 0 0 0 0.0698 0.9607 

3 0 0 0 0 0.0700 0.9702 
4 0 0 0 0 0.0699 0.9671 

5 1 0 0 0 0.0413 0.9849 

6 -1 0 0 0 0.2231 0.9452 
7 0 1 0 0 0.0645 0.9712 

8 0 -1 0 0 0.0754 0.9181 

9 0 0 1 0 0.0618 0.9451 

10 0 0 -1 0 0.0797 0.9682 
11 0 0 0 1 0.0387 0.9836 

12 0 0 0 -1 0.2773 0.9362 

13 1 -1 1 -1 0.1600 0.8770 
14 -1 1 1 -1 0.7045 0.8268 

15 1 1 -1 -1 0.1717 0.9659 

16 -1 -1 -1 -1 1.0000 0.8871 

17 1 1 1 1 0.0188 0.8798 
18 -1 1 -1 1 0.1317 0.9645 

19 -1 -1 1 1 0.1193 0.9238 

20 1 -1 -1 1 0.0288 0.9315 

 

 

   The results obtained from the analysis of variance of CCF are then used to estimate the second order 

functions for each response. The fitted responses are shown in equations  (28) and (29). 
 

2 2

1 2 3 4 1 2

2 2

3 4 2 3 2 4 3 4

1 0.969 0.019 0.026 0.007 0.009 0.012 0.015

0.027 0.007 0.026 0.005 0.007

Y X X X X X X

X X X X X X X X

      

    
 (28) 

2 2

1 2 3 4 1 2

2 2

3 4 2 3 2 4 3 4

2 0.058 0.198 0.035 0.029 0.176 0.108 0.021

0.020 0.082 0.146 0.036 0.036

Y X X X X X X

X X X X X X X X

      

    
 (29) 

 

   The final goal of RSM is to find a desired level of the GA parameter values such that both the accuracy 
index and the CPU time index of the GA are simultaneously optimized. In fact, we tackle a bi-objective 

decision-making problem with conflicting objectives. We use the weighted additive fuzzy goal 

programming (Tiwari et al., 1987) which converts the model into a single objective function defined as 
the weighted sum of achievement degrees of the goals with respect to their target values. The method uses 

a single utility function to show the overall preference index, which may be any aggregated function of all 

achieved values of goals for each feasible solution. To solve this problem, we first need to obtain the 

payoff table of the positive ideal solution (PIS) as presented in table 3.  
 

Table 3. Payoff table of PIS (in GA) 

 Y1 Y2 

Max Y1 1.009336 0.875 
Max Y2 -0.5534 0.766 
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The membership functions of these two objectives can be obtained as follows: 
 

1

1

1

1

1

0, 0.875

0.875
, 0.875 1.009336

1.009336 0.875

1, 1.009336

Y

Y

Y
Y

Y







  




 (30) 

2

2

2

2

0, 0.5534

0.5534
, 0.5534 0.766

0.766 0.5534

1, 0.766

Y

Y

Y
Y

Y



 



   




 (31) 

 

 

 
Then, the model becomes: 
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   Where j and wj denote the achievement degree and the weight of the jth goal, respectively. Since the 

accuracy index is more important than the CPU time index, we chose 75.01 w  and 25.02 w . Finally, 

the optimum values of the GA parameters are obtained and presented in Table 4. 

 
Table 4. Optimum value of input variables for the GA 

Parameter Optimum value 

Population size (Pop) 8n 
Crossover probability (Pcr) 0.6 

Mutation probability (Pmu) 0.08 

Number of generations (G) 300 

 

3-3-Simulated annealing algorithm  
   The simulated annealing as a well-known local search metaheuristic starts its search on an initial 
solution and moves gradually toward the better solutions using a neighborhood search. Naturally, SA 

starts in an initial temperature (T0) and finds a number of neighborhoods in that temperature. When a 

neighbor is produced, if its objective value is better than that of the current solution, it will take the 

position of the current solution. Even the worse neighbors have a chance to be kept alive during the 
search with a small probability, of course. Then, the temperature is reduced with a function named 

cooling scheme and again a number of neighbors are visited. As regards the problem under consideration, 

at first, a population of solutions is generated using two approaches previously explained in sections 3.1.1 
and 3.1.2 and the best solution of the population is chosen as the initial solution of the algorithm. Then, 

neighbors are generated as follows:  

 

3-3-1- Creating neighborhood and replacing 

1) Generate an integer value g, uniformly distributed on the interval [1, n]. 

2) According to the value of g, decide as follows: 

 If 1g , then replace elements 1 and 2  
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 If ng  , then replace elements n and 1n  

 Otherwise, generate a random value r, uniformly distributed on the interval [0, 1]. If 5.0r , 

replace elements g and 1g , otherwise replace elements g and 1g .  

3) Test the feasibility of the solution. If the solution is feasible, go to step 4, otherwise restore the 

changes and go to step 1. 

4) Calculate the objective value of the neighbor called nFF , Let cn FFFF   where cFF represents 

the objective value of the current solution. 

5) Generate a random variable q, uniformly distributed between zero and one, if 0   or 
)( Teq



 , 

replace the current solution by the neighbor, otherwise reject the neighbor and hold the current 

solution. (T represents the temperature at each stage)  

 
   In each temperature, a specific number of neighbors are produced and then the temperature reduces 

with cooling function below. Note that iT denotes the ith temperature and 10   is a constant named 

cooling rate which is highly influential of the quality of SA’s results. 

1 ii TT                                                                                                                                                   (33) 

The algorithm stops when the temperature reaches to a previously defined final temperature. 
 

3-3-2-Parameter calibration of SA 

  Similar to the GA, the RSM is applied to tune the SA parameters. Four parameters; initial temperature, 
cooling rate, number of repetition at each temperature, and final temperature are considered as input 

variables. Table 5 presents the search range and the levels of the input variables.  In the table, n shows the 

number of activities of project.  

  
Table 5. Search range and the levels of the input variables for the SA algorithm 

High Middle Low Range  Variable Parameter 

150 100 50 50-150  X1 Initial temperature (T0) 

0.99 0.895 0.8 0.8-0.99  X2 Cooling rate () 

8n 4n n n-8n 
 

 

X3 number of repetition at each  

temperature (N) 

10 5.00005 0.0001 0.0001-10  X4 Final temperature (Tf) 

 
   Similarly, a 24-1 fractional factorial CCF design with four central points and 8 axial points are used to 

do the analysis of variance and estimate the second order response functions. Y1 and Y2 are the accuracy 

index and CPU time index, respectively. Table 6 represents the input variable levels and their 
corresponding responses tested on 45 previously introduced problems in section 3.2.3.  
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Table 6. Result of the RSM experiments on the SA algorithm 

Runs Input variables Response variables 

 X1 X2 X3 X4 Y1 Y2 

1 0 0 0 0 0.2746 0.9364 

2 0 0 0 0 0.2707 0.9353 

3 0 0 0 0 0.2675 0.9360 
4 0 0 0 0 0.2685 0.9404 

5 1 0 0 0 0.3518 0.9408 

6 -1 0 0 0 0.0722 0.9346 
7 0 1 0 0 0.1739 0.9318 

8 0 -1 0 0 0.6953 0.9311 

9 0 0 1 0 0.0322 0.9410 

10 0 0 -1 0 0.4716 0.9302 
11 0 0 0 1 0.2553 0.9298 

12 0 0 0 -1 0.3528 0.9322 

13 1 -1 1 -1 0.1984 0.9371 
14 -1 1 1 -1 0.0044 0.9332 

15 1 1 -1 -1 0.4890 0.9384 

16 -1 -1 -1 -1 0.4483 0.9256 

17 1 1 1 1 0.0199 0.9349 
18 -1 1 -1 1 0.0823 0.9332 

19 -1 -1 1 1 0.0266 0.9377 

20 1 -1 -1 1 1.0000 0.9332 

 

 

 

Using the fuzzy goal programming for solving the functions estimated by the CCF above, the optimal 
values of the parameters are defined in table 7. 

 
Table 7. Optimum value of input variables for the SA algorithm 

Parameter Optimum value 

Initial temperature (T0) 99.53558505 ≈ 100 

Cooling rate () 0.99 

number of repetition at each temperature (N) 3.2440612n ≈ 3n 

Final temperature (Tf) 0.0001 

 

 

4-Computational experiments 
   In this section, the results obtained from examining the proposed GA and SA on some test problems are 

reported. Collections of problems generated by PROGEN with 20, 30, 40, 80, 100, and 120 activities are 

considered. For the set of 20, 30, and 40 activities, a collection of 3, 4, and 5 resources, each including 10 

problems is examined. For the set of 80, 100, and 120 activities, a collection of 5 test problems with 4 
resources are examined. Both algorithms, GA and SA, were programmed in Matlab software and then 

tested on the 105 produced test problems. Moreover, the mathematical formulations of these problems are 

also programmed in LINGO software to compare its results with the proposed algorithms. Throughout the 
running of LINGO, the CPU time is limited to 1800 seconds, i.e. if LINGO could not solve a problem at 

this time, the process is terminated. The experiments were performed on a PC with a Pentium 2000 core2 

Duo processor and 3000MB RAM. Table 8 shows the comparison results of these two algorithms and 

also the results of solutions found by LINGO. In this table, seven comparison criteria are utilized. The 
symbols of the table are defined as follows: 
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# : the number of instances for which the algorithm is able to found a solution before 1800 seconds 
#b : the number of instances for which the algorithm found a solution equal to the best solution among 

three ones 

AAD : the average absolute deviation from the best solution known 

MAD : the maximal absolute deviation from the best solution known 
ARD% : the average relative deviation from the best solution known 

MRD% : the maximal relative deviation from the best solution known 

CPU : the average computational time of the algorithm. 
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Table 8. Results of the experiments for the problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU time (s) MRD% ARD% MAD AAD #b # No. of 

problem

s 

No. of 

resource

s 

No. of 

activities SA GA 
LING

O 
SA GA SA GA SA GA SA GA SA GA 

LING

O 
SA GA 

LING

O 

26 14 15 31 14 18 8 100 42 53 25 0 0 10 10 10 10 10 3 

20 32 15 32 32 22 19 9 89 43 55 22 0 0 10 10 10 10 10 4 

32 16 13 22 8 14 5 75 32 56 22 0 0 10 10 10 10 10 5 

54 36 603 64 47 42 21 167 92 110 51 0 1 9 10 10 9 10 3 

30 57 34 292 54 19 33 8 196 94 130 32 0 2 8 10 10 8 10 4 

59 40 256 43 13 24 8 196 63 137 39 0 1 9 10 10 9 10 5 

83 73 842 50 18 32 7 239 90 161 31 0 5 5 10 10 5 10 3 

40 104 72 310 32 16 20 1 185 76 121 7 0 8 2 10 10 2 10 4 

103 84 450 27 3 18 0.4 174 22 122 2 0 9 1 10 10 1 10 5 

421 233 - 134 0 52 0 2003 0 966 0 0 5 0 5 5 0 5 4 80 

570 1017 - 35 0 28 0 1019 0 770 0 0 5 0 5 5 0 5 4 100 

980 1520 
- 

42 0 33 0 2124 0 
145

0 
0 0 5 0 5 5 0 5 4 120 
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5-Discussion and findings 
   In this section the reported results are analyzed and the findings are discussed in terms of seven criteria 

as follows.   

#-based results: according to table 8, LINGO is not able to find a solution within 1800 seconds for 4 out of 
30 problems with 30 activities, 22 out of 30 problems with 40 activities, and all of 80, 100, and 120 

activities while the other algorithms, GA and SA, are able to find solutions for all problems in reasonable 

time. These results show that the proposed metaheuristic algorithms are promising in tackling the RIP with 

progress payment problems since in real world large scale problems where no exact solution is available, 
having access to near optimal solutions is favored. 

 #b-based results: according to table 8, LINGO has expectedly found the best solution among other 

algorithms where a solution exists. In other cases, i.e. where LINGO has no solution for the problem, the 
GA has reached the best ones. These results demonstrate that the performance of GA is more reliable than 

SA since the results of GA outperform those of SA in all of 105 problems. 

AAD-based results: according to table 8, the average of ADD for GA and SA in 20-activity problems is 23 

and 54, respectively, in 30-activity problems are 41 and 126, respectively, and in 40-activity problems are 
13 and 135, respectively which substantiates previous results displaying better performance of GA. The 

AAD of 13 in the last set of activities for GA is a little strange, because when the size of the problems 

increases, it is expected that the accuracy of a metaheuristic based algorithm like GA decreases. The only 
reason for such outcome is the limited access to near optimal solutions in this set of problems as LINGO 

has found such solution for 8 out of 30 problems. In terms of large scale problems with 80, 100, and 120 

activities, as there are no solutions by LINGO and the GA has found better results in all of test problems, 
the ADDs of GA are zero. 

MAD-based results: according to table 8, these results also support higher acceptance of GA’s results. The 

maximum absolute deviation for GA among all 105 problems is 94 while that is 2124 for SA. In addition, 

the average of MAD for GA and SA are 46 and 547, respectively denoting better efficiency of GA. 

ARD%-based results: according to table 8, as expected, GA shows better results in this issue where the 

average of ARD% for SA (28) is more that four times of that for GA (6). 

MRD%-based results: according to table 8, the MRD% for GA is smaller than that of SA in all sets of the 
problems confirming the better performance of GA. 

CPU time-based results: according to table 8, the average of CPU time used by three methods in all 105 

problems is 313, 263, and 210 seconds for LINGO, GA, and SA, respectively. This comparison 
demonstrates that, the more complex the problems, the more CPU time used by algorithms, nevertheless 

LINGO could not tackle the large scale problems in reasonable time and its CUP time used grows 

exponentially while proposed algorithms do not show such behavior. In addition, the CPU time used by 

GA is lesser than that of SA in smaller problems (30 to 80 activities) while in larger problems (100 and 
120 activities) the SA consumes shorter time to reach solutions. 

In a nutshell, although LINGO finds optimal solutions in small problems, it is not applicable in coping 

with large problems while the proposed algorithms can solve the large problems in reasonable time. In 
addition, GA outperforms SA in regards to the accuracy of solutions in all of test problems. Although the 

GA solves smaller problems in shorter time, the SA finds a solution for larger problems sooner. 
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6-Conclusions and recommendations for future research 
   In this research, a class of project scheduling problems, called resource investment problem was con-

sidered. While, the RIP had been previously investigated under maximization of NPV where its payments 

occur at some events of the project, here the progress payment model was chosen to be combined with 
RIP. The mathematical formulation of the model was defined and due to NP-hardness of the problem, 

metaheuristic algorithms were taken into account to solve the model. Two well-known metaheuristics, SA 

and GA, were designed. In order to improve the efficiency of the proposed GA and SA, their parameters 

were statistically tuned using response surface methodology. Then, the tuned algorithms were examined 
on 105 test problems of small, medium, and large scales. The results of the applications of the proposed 

methodologies on these problems and the comparison of the results with solutions obtained from solving 

the mathematical formulation of the problems by LINGO software showed that the performance of GA not 
only is reliable when compared to LINGO results, is also highly better than SA algorithm. 

Some of potential extensions of the model are considering precedence relations with minimal and maximal 

time lag, multi-mode execution of activities, and permitting the earliness or tardiness deviation from the 

due date of the project with a bonus and penalty policy. 
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