An algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis

Parvaneh Samouei ${ }^{\mathbf{*}^{*}}$, Parviz Fattahi ${ }^{2}$
${ }^{l}$ Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran
${ }^{2}$ Department of Industrial Engineering, Alzahra University, Tehran, Iran
samouei_parvaneh@yahoo.com, p.fattahi@alzahra.ac.ir

Abstract

This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker's skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) and consists of two stages. In stage one, simultaneous balancing and worker assignment are studied. In stage two, bottleneck analysis and product-mix determination are carried out. In addition, a bi-level mathematical model is presented to describe the problem. The following objective functions are verified in this paper: (1) minimizing the number of mated-stations (2), minimizing the number of stations (3) minimizing the human costs (4) minimizing the weighted smoothness index and (5) maximizing the total profit. In addition to the proposed algorithm, another algorithm, which is based on the simulated annealing and the theory of constraints, is developed to compare the performance of the proposed algorithm in terms of the running time and the solution quality over the different benchmarked test problems. Moreover, several lower bounds are developed for the number of the stations and the number of the mated-stations. The results show and support the efficiency of the proposed approaches.

Keywords: Two-sided assembly line balancing problem (TSALBP), worker assignment, mixed-model, particle swarm optimization algorithm (PSO), simulated annealing algorithm (SA), theory of constraints.

1-Introduction

An assembly line is a production process that usually has several stations connected with a material handling device such as a conveyor belt. In this line, the unfinished products are launched down through the stations and a set of tasks with certain operation times and ordered relationships between them are carried out by robots or humans.
Salveson (1955) is the first author that introduced assembly line balancing problem (ALBP).Since then; many others have studied it with different constraints, objectives and solving methods in order to make better decisions in real-world situations. Several good surveys and taxonomies were published on ALBP in Scholl and Becker (2006), Boysen et al. (2007, 2008), Hu et al. (2011) and Battaïa and Dolgui (2013).

[^0]There are several classifications for ALBP. Based on the number of the product models that are assembled in a line, this problem is divided into single, mixed and multi-models. In the single-model, one type of product is assembled. In the mixed-model several models of one type of product and in the multi-model, different product types in batches are assembled. Through these lines, the mixedmodel assembly lines can reduce inventories, eliminate transfer costs among the models and meet ever-changing customer demands more efficiently (Hu et al. (2011)). Therefore, many factories use these assembly lines for their productions.
According to the properties of the products, the technical or operational requirements, layouts of the assembly lines can be one-sided, two-sided or U-shaped. In one-sided assembly lines, only one side of the line (right or left) is used; whereas, in the two-sided assembly line, both sides of the line are utilized. Since a two-sided line often has a shorter length, low-cost tools, fixtures and fewer material handling systems, this layout is used for large-sized products.
There are two famous objective functions for solving a two-sided assembly line balancing problems (TSALBP). Minimization of the number of the mated-stations (i.e., the line length) for a given time cycle is the Type-I and minimization of the cycle time for a given number of the mated-stations is the Type-II (Özcan and Toklu (2009)). Since the number of the stations for the same number of the mated-stations in Type-I can be different, the number of the mated-stations as well as the number of the stations may be verified in TSALBP.
According to the number of the objective function(s), TSALBP can be categorized based on one objective or multi-objective. For example, Xiaofeng et al. (2010) used one objective function and Simaria and Vilarinho (2009) had more than one objective in his research.
Similar to the one-sided ALBP, TSALBP is an NP-hard problem (Bartholdi (1993)). Therefore, metaheuristic algorithms, such as simulated annealing (Özcan et al. (2010)), Genetic Algorithm (Purnomo et al. (2013)), Ant Colony Optimization (ACO) (Simaria and Vilarinho (2009)) and Particle Swarm Optimization (Chutima and Chimklai (2012)) are used to solve the TSALBP in reasonable time to obtain optimal or near-optimal solutions.
Most of the research in ALBP assume that the operation times are deterministic (Hamta et al. (2013)), and do not depend on the worker's skill. However, in many real-world situations, the task times depend on the worker's skill. It is clear that when a worker is high-skilled, he (she) can do the specified task faster than a low-skilled worker. Thus, the worker's skill can affect the line balancing. In addition, distinguishing between the levels of skills permits a manager to decide which tasks should be done by a worker. Therefore, verifying the worker assignment in ALBP is necessary and several researchers have investigated this problem in their papers. For example, Miralles et al. (2008) defined a mathematical model for the assembly line worker assignment and balancing problem and presented a basic branch and bound ($\mathrm{B} \& B$) approach with three possible search strategies and different parameters to solve it. Costa and Miralles (2009) verified the effect of the job rotation in this problem and proposed a metric along with a mixed integer linear model and a heuristic algorithm. Furthermore, Blum and Miralles (2011) solved this problem with beam search. Their model's objective was cycle time minimization for the fixed number of stations and workers.
Mutlu et al. (2013) considered the workers' assignment and ALBP when task times depended on the skills of the operators and developed an iterative genetic algorithm to minimize the cycle time.
Zhang et al. (2008) addressed a Multi-Objective Genetic Algorithm (MOGA) for ALBP with worker allocation to, simultaneously, minimize (1) the cycle time (2) the variation of workload, and (3) the total cost. Moreover, Zaman et al. (2012) used a heuristic and an MOGA for assigning the operators to the predefined stations of an assembly line to get the sustainable result of fitness function of cycle time, the total idle time and the output.
A mixed integer programming model, a heuristic algorithm based on beam search, a task-oriented branch and a bound procedure, which used new reduction rules and lower bounds for solving worker assignment and balancing problems, are presented in Borba and Ritt (2014). Moreover, this problem led to the development of an exact enumeration algorithm for solving the problem (Vilà and Pereira (2014)).

Kellegöz (2017) presented a new mathematical formulation and Gantt based heuristic method for assembly line balancing problems with multi-manned stations. Also, Giglio et al. (2017) presented a new mathematical formulation for multi-manned assembly line balancing problem with skilled workers which allowed the workers in each multi-manned workstation to perform the different
assembly tasks of same product simultaneously to minimize the total operating cost of the assembly line. Furthermore, Roshani and Giglio used simulated annealing algorithms for the multi-manned assembly line balancing problem to minimize cycle time. Recently, Cannas et al. (2018) verified complexity reduction and kaizen events to balance manual assembly lines. Moreover, Dolgui et al. (2018) studied optimal workforce assignment to operations of a paced assembly line where workers can move among stations to adapt workstation capacities to workloads.

Table 1. Papers with assembly line balancing and worker assignment

Authors	Model	Layout			Method			Fixed		
	$\begin{aligned} & \text { D } \\ & \text { 菏 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{D}} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$\begin{aligned} & \tilde{J} \\ & \stackrel{\rightharpoonup}{v} \\ & \sim \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{W}} \\ & \text { un } \end{aligned}$			$\begin{aligned} & \ddot{B} \\ & . \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Solving method
Miralles et al.(2008)	*	*			*	*			*	A B\&B based heuristic
Costa \& Miralles (2009)	*	*				*			*	A heuristic algorithm
Sirovetnukul \& Chutima (2010)	* *			*			*	*		Multi-objective evolutionary algorithm
Zaman et al. (2012)	*	*					*		*	Genetic Algorithm (GA)
Moreira et al. (2012)	*	*				*	*		*	Hybrid GA
Zhang et al. (2008)	*	*					*		*	MOGA
Song et al. (2006)	*	*				*				Two recursive algorithms
Araujo et al. (2012)	*	*				*		*		A heuristic algorithm
Blum \& Miralles (2011)	*	*					*		*	Beam Search
Mutlu et al. (2013)	*	*					*		*	Iterative GA
Vilà \& Pereira (2014)	*	*			*			*		B\&B
Miralles et al. (2007)	*	*			*				*	Using CPLEX 9.0 software
Borba \& Ritt (2014)	*	*			*	*	*		*	A heuristic based on beam search, taskoriented B\&B

As well as a suitable worker assignment and line balancing, considering the bottlenecks and eliminating them can increase the system's efficiency and permit the production managers to have a better decision-making ability and determine how many products are needed to be produced for each model (product-mix). In this area, Pastor (2011) presented the lexicographic bottleneck ALBP (LBALBP). This approach hierarchically minimized the workload of the most heavily loaded stations, followed by the workload of the second most heavily loaded stations, and so on. Pastor et al. (2012) proposed an algorithm to improve the results of the previous heuristic procedures to solve the LBALBP.
Table1 shows that there is no paper that has addressed the worker assignment and two-sided assembly line balancing problems for single or mixed-model products. Furthermore, there is a little attention paid to the bottlenecks in ALBP. Thus, in this paper, not only a worker assignment and mixed-model TSALBP are considered, but also bottleneck analyses are carried out as well.
The innovations of the current paper are as follows:

1) Verifying the mixed-model products in the assembly line balancing and worker assignment.
2) Verifying the two-sided layout for the ALBP and worker assignment.
3) The analysis of the bottlenecks for TSALBP and worker assignment.
4) Proposing a new hierarchical-cyclic algorithm for solving the integrated problem.
5) Presenting a bi-level mathematical model for the current problem.
6) Product-mix determination in TSALBP.
7) Developing several lower bounds for the problem.
8) Comparison between two methods to solve the problem.

The rest of this paper is structured as follows: Section 2 considers the definition of the problem, the related assumptions, and the mathematical model. Section 3 presents the details of the proposed algorithm and its flowchart. The algorithm is illustrated by an example with details in section 4 . Section 5 provides numerical experiments for analysis of the proposed algorithm. Finally, the last section is devoted to including a summary, conclusions and future research directions of this paper.

2-Problem definition

Mixed-model two-sided assembly lines are often applied in a range of industries that assemble large-sized products and/or produce different models of one product.

In the real-world situations, human workers and their abilities and skills have important roles in the assembly lines. Furthermore, considering the bottlenecks can increase the system efficiency.
In this section, the problem assumptions, the notations and the mathematical model for the mixedmodel TSALBP and workers' assignment with considering the bottlenecks are presented.

2-1-Problem assumptions

The assumptions of the problem are as follows:

1. Different models of one product with certain precedence diagrams are produced on a twosided assembly line.
2. Each task must be assigned once and only to one station.
3. Each worker can do only one task at a time.
4. Workers with different levels of skill are available (low-skilled, medium-skilled, high-skilled) and the operation times depend on these levels.
5. Each worker is assigned to one station with each station having only one worker.
6. In each station, the demand and the contribution margin of each model and the capacity are known.
7. The number of stations, the number of mated-stations and the cycle time are not known.

2-2- Mathematical model

Given the above assumptions, the mathematical model based on the formulation of mixed-model two-sided ALBP presented in Özcan and Toklu (2009) is developed for the mentioned problem. The following indices, parameters, and variables are used.

Indices:

$i, h, p, r \quad$ Task
$j, g \quad$ Mated-station
l Skill
$m \quad$ Product model
$k, k^{\prime} \quad$ Side of the line; (1: indicates a left -side station) and (2: indicates a right-side station)

Parameters and variables:

I Set of tasks in the combined precedence diagram
$J \quad$ Set of mated-stations
$L \quad$ Set of skills (low, high, ...)
$A_{L} \quad$ Set of tasks which should be performed at a left-side station; $\mathrm{A}_{\mathrm{L}} \subset \mathrm{I}$
$A_{R} \quad$ Set of tasks which should be performed at a right-side station; $\mathrm{A}_{\mathrm{R}} \subset \mathrm{I}$
$A_{E} \quad$ Set of tasks which may be performed at either side of a station; $\mathrm{A}_{\mathrm{E}} \subset \mathrm{I}$
$P(i) \quad$ Set of immediate predecessors of task i
$P_{a}(i) \quad$ Set of all predecessors of task i
$S_{a}(i) \quad$ Set of all successors of task i
$P_{0} \quad$ Set of tasks that have no immediate predecessors
$\psi \quad$ A very large positive number
$N(i) \quad$ Set of tasks whose operation directions are opposite to operation direction of task i;
$N(i)=\left\{\begin{array}{ccc}A_{L} & \text { if } & i \in \mathrm{~A}_{R} \\ A_{R} & \text { if } & i \in \mathrm{~A}_{L} \\ \emptyset & \text { if } & i \in \mathrm{~A}_{E}\end{array}\right.$
$K(i) \quad$ Set of indicating the preferred operation directions of task i;
$K(i)=\left\{\begin{array}{lll}\{1\} & \text { if } & i \in \mathrm{~A}_{R} \\ \{2\} & \text { if } & i \in \mathrm{~A}_{L} \\ \{1,2\} & \text { if } & i \in \mathrm{~A}_{E}\end{array}\right.$
C Cycle time
M Number of models
$P r_{m} \quad$ Profit of model m
$Q_{m} \quad$ Decision variable representing the quantity of model m
$D_{m} \quad$ Bound of Q_{m} (market demand for model m)
$t_{i m l} \quad$ Operation time of task i for model m with skill l
$\operatorname{cap}_{j k l} \quad$ Capacity of mated-station j and side k when a worker with skill l works
$H C_{l} \quad$ Human cost of a worker with skill l
$D P \quad$ Production planning horizon
${ }_{m} L S_{j}^{k} \quad$ Load station of mated-station j and side k including unavoidable idle times for model m when a worker with skill l works there.
$L S_{\max } \quad$ Maximum of Load stations
$N M \quad$ Total number of Mated-stations
NS Total number of stations
THC Total human cost
WSI Total weighted smoothness index
TP Total Profit
$G_{j k l} \quad 1$, if a worker with skill l is assigned to mated-station j and side $k ; 0$, otherwise.
$x_{i j k l} \quad 1$, if task i is assigned to mated-station j and side k with skill level $l ; 0$, otherwise.
$t_{i m l}^{f} \quad$ Finish time of task i for model m with skill l
$F_{j} \quad 1$, if mated-station j is utilized; 0 , otherwise.
$z_{i p} \quad 1$, if task i is assigned before task p in the same station; 0 , if task p is assigned before task i in the same station
In this paper, a multi-objective mathematical model for mixed-model TSALBP and workers assignment with different levels of skills is proposed. This mathematical model is as follows:
$\operatorname{Max} T P=\sum_{m \in M} P r_{m} Q_{m}$
S.to:

$$
\begin{array}{ll}
Q_{m} \leq D_{m} & \forall \quad m \epsilon M \\
\sum_{i \epsilon I} \sum_{k \epsilon K(i)} x_{i j k l} \cdot t_{i m l} \leq \operatorname{cap}_{j k^{\prime} l} & \forall m \in M, l \epsilon L, k^{\prime} \in K(i), j \epsilon J \tag{3}\\
Q_{m} \geq 0 \& \text { integer } & \forall \quad m \in M
\end{array}
$$

$$
\begin{equation*}
\operatorname{Min} N M=\sum_{j \epsilon J} F_{j} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Min} N S=\sum_{j \epsilon J} \sum_{k=1}^{2} \sum_{l \epsilon L} G_{j k l} \tag{5}
\end{equation*}
$$

Min THC $=\sum_{j \in J} \sum_{k=1}^{2} \sum_{l \epsilon L} H C_{l} \cdot G_{j k l}$
Min WSI $=\sqrt{\sum_{m \epsilon M} \frac{Q_{m}\left(\sum_{j \epsilon J} \sum_{k=1,2}\left(m L S_{j}^{k}-L S_{\max }\right)^{2}\right)}{\sum_{m \in M} Q_{m} \cdot N S}}$
S.to:
$\sum_{j \epsilon J} \sum_{k \in K(i)} \sum_{l \epsilon L} x_{i j k l}=1 \quad \forall i \epsilon I$
$\sum_{g \epsilon J} \sum_{k \epsilon K(h)} g \cdot x_{h g k l}-\sum_{j \epsilon J} \sum_{k \epsilon K(i)} j \cdot x_{i j k l} \leq 0 \quad \forall i \epsilon I-P_{0}, h \in P(i), \quad l \epsilon L$
$C \geq t_{\text {iml }}$
$\forall i \epsilon I, m \in M$, $l \in L$
C. $\sum_{m \in M} Q_{m} \geq D P$
$t_{i m l}^{f} \leq C \quad \forall i \epsilon I, m \in M, l \in L$
$t_{i m l}^{f} \geq t_{i m l} \quad \forall i \epsilon I, m \in M, l \in L$
$t_{i m l}^{f}-t_{h m l}^{f}+\psi\left(1-\sum_{k \epsilon K(h)} x_{h j k l}\right)+\psi\left(1-\sum_{k \epsilon K(h)} x_{i j k l}\right) \geq t_{i m l}, \forall i \epsilon I-P_{0}, h \epsilon P(i), j \epsilon J, m \in M, l \in L$
$t_{i m l}^{f}-t_{p m l}^{f}+\psi \cdot\left(1-x_{p j k l}\right)+\psi \cdot\left(1-x_{i j k l}\right)+\psi \cdot z_{i p} \geq$
$t_{i m l} \forall i \epsilon I, m \in M, p \epsilon\left\{r \mid r \epsilon I-\left(P_{a}(i) \cup S_{a}(i) \cup \mathrm{N}(\mathrm{i})\right)\right.$ and $\left.\mathrm{i}<r\right\}, j \epsilon J, k \in K(i) \cap k(p), l \in L$
$t_{p m l}^{f}-t_{i m l}^{f}+\psi \cdot\left(1-x_{p j k l}\right)+\psi \cdot\left(1-x_{i j k l}\right)+\psi \cdot\left(1-z_{i p}\right) \geq$
$t_{p m l} \forall i \epsilon I, m \in M, p \epsilon\left\{r \mid r \in I-\left(P_{a}(i) \cup S_{a}(i) \cup \mathrm{N}(\mathrm{i})\right)\right.$ and $\left.\mathrm{i}<r\right\}, j \epsilon J, k \in K(i) \cap K(p), l \in L$
${ }_{m} L S_{j}^{k}-\sum_{j \in J} \sum_{k \in K(i)} \sum_{l \in L} x_{i j k l} . t_{i m l}^{f}=0 \quad \forall m \in M$
$L S_{\text {max }} \geq{ }_{m} L S_{j}^{k} \quad \forall j \epsilon J, k \in K(i), m \in M, l \in L$
$\sum_{j \epsilon J} \sum_{k=1,2} \sum_{l \epsilon L} y_{j k l} \leq 2 \sum_{j \epsilon J} F_{j}$
$\sum_{l \in L} y_{j k l} \leq 1$
$\forall j \in J, \quad k \in K(i)$
$x_{i j k l} \in\{0,1\} \quad \forall i \in I, j \in J, k \in K(i), l \in L$
$z_{i p} \in\{0,1\} \quad \forall i \epsilon I, p \in\left\{r \mid r \in I-\left(P_{a}(i) \cup S_{a}(i) \cup \mathrm{N}(\mathrm{i})\right) \& \mathrm{i}<r\right\}$
$F_{j} \in\{0,1\}$
$\forall j \epsilon J$

$$
\begin{equation*}
y_{j k l} \in\{0,1\} \tag{25}
\end{equation*}
$$

$$
\forall j \epsilon J, l \in L, k=1,2
$$

Objective function 1 maximizes the total profit. Constraint 2 shows that the maximum number of production of each model is equal to the number of demands. Constraint 3 demonstrates that it is impossible to assign a task which is more than the capacity of each station. Constraint 4 shows that the quantity of the demand of each model is an integer and more than zero.

Objective functions (5)-(7) minimize the number of the mated-stations, the number of stations and the total human cost. Objective function (8) minimizes the weighted smoothness index. By using this index, the idle time between the stations will be as equal as possible. Constraint (9) shows that each task should be assigned to one station. Constraint (10) represents the precedence relations between tasks. Constraints (11) and (12) estimate the cycle time. Constraints (13) and (14) determine the finish time of each task i for model m that is done with a worker with skill l. It is less than the cycle time and equal or greater than its operation time. Constraints (15) -(17) simultaneously control the sequencedependent finishing time of the tasks for each model and skill. Constraints (18) and (19) show the workload of each station and how to calculate WSI. Constraint (20) represents the relations between the number of the stations and the mated stations. Constraint (21) demonstrates that the maximum number of operators for each station is 1 . Constraints (22)-(25) points out that the variables are binary.

3-The solving method

In this section, before introducing the proposed algorithm for solving mixed-model TSALBP and worker assignment with considering to the bottleneck, the standard PSO algorithm is presented.

3-1- The Standard PSO Algorithm

One of the population-based metaheuristic algorithms is particle swarm optimization that was introduced by Kennedy and Eberhart (1995). In PSO algorithm, a swarm of particles seeks a Ddimensional space to find the best solution.

Each particle has a certain velocity, position, and fitness value (objective function) at each iteration. These values are updated through the running algorithm based on the current and the previous information available from each particle and population.
The standard PSO structure is as follows:
Step 1. Generate the initial position $\left(X_{i, 0}^{j}\right)$ and the velocity $\left(V_{i, 0}^{j}\right)$ of each particle in the swarm by using the following relations:
$X_{i, 0}^{j}=X_{\text {Min }}+\operatorname{Random}\left(X_{\text {Max }}-X_{\text {Min }}\right)$
$V_{i, 0}^{j}=V_{\text {Min }}+\operatorname{Random}\left(V_{\text {Max }}-V_{\text {Min }}\right)$
Step 2. Compute the new positions and velocities of the particles by using equations (28) and (29).
$V_{i, k+1}=c_{1} r_{1}\left(X_{i, k}^{p b e s t}-X_{i, k}\right)+c_{2} r_{2}\left(X_{k}^{\text {gbest }}-X_{i, k}\right)+W_{k} V_{i, k}$
$X_{i, k+1}=X_{i, k}+V_{i, k+1}$
Step 3. Compute the best objective function of each particle (Pbest) and the best objective function of the total swarm (gbest).
Step 4. Update the best position of each particle $\left(X_{i, k}^{p b e s t}\right)$ and the best position of the total swarm $\left(X_{k}^{g b e s t}\right)$.
Step 5. If the stopping criterion (for example, a given maximum number of iterations or a certain running time) is not met, go to step 2 ; otherwise, stop.
Several parameters of the PSO algorithm are shown in equation (28). Two positive constants (c_{1} and c_{2}) that are called cognitive and social coefficients respectively, two uniform random values (r_{l} and r_{2}) between 0 and 1, the inertia weight (W), the maximum and the minimum position ($X_{m a x}$ and $X_{m i n}$), and the maximum and the minimum velocity $\left(V_{\max }\right.$ and $V_{\min }$). All of these values are constant in the standard PSO algorithm.

3-2- The proposed hybrid algorithm

In this paper, a cyclic-hierarchical two-stage algorithm is proposed for solving worker assignment and mixed-model two-sided assembly line balancing with bottleneck analysis.

Stage 1 of the proposed algorithm is used to solve the simultaneous line balancing and the worker assignment using a multi-objective PSO algorithm. Stage 2 analyzes the bottlenecks and determines the product-mix of the problem using the theory of constraints. If the stopping rules (no existing bottleneck and no change in the previous cycle time) are satisfied, the running algorithm will be finished; otherwise, the outputs of stage 2 will be the inputs of stage 1, and the algorithm should be run from stage 1 . The structure of the proposed algorithm is presented in figure 1 .

Fig 1. The structure of the proposed algorithm
After creating a station, it is necessary to assign a worker to it. It leads to determining which operator is assigned to the station and how long the task times are. The tasks should be assigned to the station until the initial cycle time is satisfied. The initial cycle time (C) can be computed as follows:
$C=\max \left\{\max \left\{t_{i m 1}\right\}, \frac{D P}{\sum_{i} D_{i}}\right\}$ for all m and all i
Where $D P$ is the production planning horizon, D_{i} is the quantity demand of model i that is desired to be produced, and $t_{i m 1}$ is the processing time of task i for model m when a high-skilled worker is performing the task.
After determining the cycle time, worker assignment and line balancing are verified simultaneously. According to the necessary side of the tasks, precedence relationships, the initial cycle time and the station worker, assigned randomly, the tasks should be assigned to the station. Then, the bottleneck should be analyzed and eliminated by changing the operators of the current line or product-mix determination to maximize the total profit.

3-2-1- Stage 1

In the PSO algorithm that is used in this stage, the inertia weight (W) and the social coefficient (C_{2}) are not constant and vary through the running algorithm. These parameters are computed by using the following equations:
$W=W_{\text {max }}-\frac{W_{\text {max }}-W_{\text {min }}}{I t r_{\text {max }}} \times I t r$
$C_{2}=C_{2 \text { min }}+\frac{c_{2 \text { max }}-c_{2 \text { min }}}{I t r_{\text {max }}} \times I t r$
Where $W_{M a x}, W_{M i n}, C_{2 \min }, C_{2 \max }$, Iter $_{\text {Max }}$, and Itr are the initial inertia weight, the final inertia weight, the first social coefficient, the last social coefficient, the maximum number of iterations and the current iteration, respectively. Table 2 shows the other parameters of the hybrid PSO-TOC algorithm.

Table 2. Several parameters of the proposed hybrid PSO-TOC algorithm

Parameter	Value
cognitive coefficients (c1)	A constant value
$\boldsymbol{X}_{\max }$	n
$\boldsymbol{X}_{\min }$	-n
$\boldsymbol{V}_{\max }$	n
$\boldsymbol{V}_{\min }$	-n
Maximum iteration	A constant value
Swarm size	A constant value

a) Initial solution generation

First, a random worker should be assigned to each station in stage 1. The initial solution for assigning the tasks to the stations is shown on a list of priorities (LP). It is generated randomly and consists of the tasks that have no preceding tasks or their precedence tasks are satisfied. The value and the position of each element show the name of the task and its priority, respectively. For example, $\mathrm{LP}=\{2,1,4,5,3\}$ shows five tasks should be assigned to the stations, and task 2 and task 3 have the highest and the lowest priority.

b) A feasible solution for stage 1

For creating a feasible solution, the approach of Özcan and Toklu (2009) for solving a mixed-model two-sided ALBP is used. However, it was changed and adapted for the problem being studied in this paper.
In this process, if a mated-station is opened, according to the direction and the priority of the task that should be assigned, a worker with a random skill will be assigned to it to have a simultaneous worker assignment and line balancing.
If both sides of the mated-station are loaded to the max, then the current mated-station is closed and another mated-station is created so that the other tasks could be assigned to it.

c) Objective functions of stage 1

Based on the weighted sum method (Deb (2001)), the objective function of stage 1, which consists of $N M, N S, T H C$, and $W S I$, is shown by the Equation (33):

Minimize $Z=W_{1}\left(\frac{N M}{N M_{0}}\right)+W_{2}\left(\frac{N S}{N S_{0}}\right)+W_{3}\left(\frac{T H C}{T H C_{0}}\right)+W_{4}\left(\frac{W S I}{W S I_{0}}\right)$
Where, $N M_{0}, N S_{0}, T H C_{0}$ and $W S I_{0}$ are the initial objective function values and W_{l}, W_{2}, W_{3} and W_{4} are the weights of the objective functions.
Note: In the first step, Q_{m} in WSI denotes the highest demand over the planning horizon for model m that is desired to be produced. However, in the next steps, it shows the quantity of model m that can be produced.

3-2-2- Stage 2

Stage 2 of the proposed algorithm pertains to the bottleneck analysis and the product-mix determination. Several input data used in this stage are from stage 1, and in some cases, the outputs of this stage can be the input of stage 1.

Since in stage 1 the worker assignment is random, a high-skilled worker may not work in the bottleneck station. Whereas, in the non-bottleneck station, a high-skilled operator works. Therefore, first, it is tried to change the position of two operators to eliminate the bottleneck. But if it is impossible to change them, the quantity of each model that should be produced to maximize the efficiency system should be determined.
In this stage, the theory of constraints is used for bottleneck analysis and product-mix determination. Since the objective function of this theory is maximization of the total profit, it is calculated by the equation (1).

3-3-Stopping rules

If there is no bottleneck in the system and no change in the previous cycle time, the stopping rules of the algorithm will be satisfied.
Note: if whole on demand cannot be produced, the cycle time will change, and it will lead to change in line balancing. In this condition, the output of stage 2 will be the input of stage 1 .
The flowchart of the proposed algorithm is shown in Figure 2 and the notations used are given as follows:

$N L$	Number of left-side station
$N R$	Number of right-side station
$A T$	Set of assignable tasks
${ }_{m} L S_{N M}{ }^{l}$	The load of station including unavoidable idle times on the left-side station of the current mated-station for all $m=1, \ldots, M$
${ }_{m} L S_{N M}{ }^{2}$	The load of station including unavoidable idle times on the right-side station of the current mated-station for all $m=1, \ldots, M$

$S T_{N M}{ }^{1} \quad$ The set of tasks which are assigned to the left side station of the current mated-station $S T_{N M}{ }^{2}$ The set of tasks which are assigned to the right-side station of the current mated-station
Skill 1 Number of high-skilled worker
Skill 2 Number of medium-skilled worker
Skill 3 Number of low-skilled worker
$L P \quad$ The list of priority
$\mathrm{t}_{\mathrm{iml}} \quad$ Operation time of task i for model m with high-skilled worker
Rand A random value between 0 and l
THC Total human cost

Fig 2. Flowchart of the proposed algorithm

3-4- Lower Bound

In this section, several lower bounds for the number of the stations and the number of the matedstations of two-sided assembly lines are developed.

a) Lower Bound1

A lower bound for the number of the stations of the mixed-model two-sided assembly lines based is developed in Özcan and Toklu (2009). In this paper, their lower bound is adapted for mixed model TSALBP and the worker assignment with different levels of skill. In these equations, $t_{i m l}$ shows the operation time of task i for model m when a high-skilled worker is performing it. It means that without considering the human costs, the number of the stations will be minimized if all the stations have high-skilled workers. In this lower bound, the precedence relations are relaxed.
$A=\max \left\{\left[\frac{\sum_{m \in M} \sum_{i \epsilon A_{L}} q_{m} t_{i m 1}}{C}\right],\left[\frac{\sum_{m \in M} \sum_{i \epsilon A_{R}} q_{m} t_{i m 1}}{C}\right]\right\}$
$L B_{1 N S}=2 . A+\max \left\{0,\left[\frac{\sum_{m \epsilon M} \sum_{i \epsilon A_{E}} q_{m} t_{i m 1}-\left(\operatorname{Max} . C-\sum_{m \epsilon M} \sum_{i \epsilon A_{L}} q_{m} t_{i m 1}\right)-\left(M a x . C-\sum_{m \epsilon M} \sum_{i \epsilon A_{R}} q_{m} t_{i m 1}\right)}{C}\right]\right\}$
$L B_{1 N M}=\frac{L B_{1 N S}}{2}$
Where q_{m} is computed by $q_{m}=\frac{D_{m}}{\sum_{m \epsilon M} D_{m}}$.

b) Lower Bound2

Scholl (1999) demonstrated a lower bound for the single-model one-sided assembly lines. This lower bound was based on the number of the tasks that their operation times exceeded $t C / 2$. This value was a lower bound on the number of the stations because all of these tasks had to be assigned to different stations. The lower bound is strengthened by adding half of the number of tasks with task time $C / 2$.
This lower bound is developed based on the task time of the low-skilled workers and the maximum time of each task for all models. Half of this lower bound can be a lower bound of the number of the mated-stations.

c). Lower Bound3

This lower bound is presented in Scholl (1999) and is the generalized form of the lower bound 2 with respect to the thirds of the cycle time. Similar to lower the bound 2, the lower bound 3 is developed based on the task time of the low-skilled workers and the maximum time of each task for all models. Half of this lower bound can be the lower bound for the number of the mated-stations.

d) Lower Bound4

This lower bound can be computed as the maximum $L B_{1}, L B_{2}$, and $L B_{3}$. It presents a better result.
$L B_{4}=\operatorname{Max}\left\{L B_{1}, L B_{2}, L B_{3}\right\}$

4- Parameters setting and a numerical example

In this section, the method of parameters setting is reported and a numerical example is solved with details.

4-1- Parameters setting

Since setting the parameters has an influence on the performance of the algorithms; in this paper, the Taguchi (1986) method, one of the most famous methods for the parameter selections, with five levels for each parameter is used. Table 3 shows these factors and their levels.

Table 3. Factors and their levels

Factor	Swarm size					C_{1}					$C_{2 \text { min }}$				
Level	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Value	$2 \mathrm{n}^{*}$	4n	6 n	8n	10n	0.5	1	1.5	2	2.2	0.5	1	1.2	1.5	1.7
Factor	$C_{2 \text { max }}$					$W_{\text {Max }}$					$W_{\text {Min }}$				
Level	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3
Value	1.8	2.2	2.7	3	1.8	2.2	2.7	3	1.8	2.2	2.7	3	1.8	2.2	2.7

In the Taguchi method, orthogonal arrays are used to decrease the number of experiments. These arrays are presented in table 4 . It shows that 25 tests are necessary to select the best parameters.

Table 4. The orthogonal arrays for the proposed approach

Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$S_{\text {warm size }}$	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
$C 1$	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
$C_{2 \min }$	1	2	3	4	5	2	3	4	5	1	3	4	5	1	2	4	5	1	2	3
$C_{2 \max }$	1	2	3	4	5	3	4	5	1	2	5	1	2	3	4	2	3	4	5	1
$W_{\max }$	1	2	3	4	5	4	5	1	2	3	2	3	4	5	1	5	1	2	2	2
$W_{\min }$	1	2	3	4	5	5	1	2	3	4	4	5	1	2	3	3	4	5	1	2

Each test is run five times and the average of the objective function is obtained to calculate the (S / N) ratio. These values help to make a better decision. This ratio is given as follows:

$$
\begin{equation*}
S N=-10 \log \left(\frac{1}{n} \sum_{i=1}^{n}(\text { objective function })^{2}\right) \tag{38}
\end{equation*}
$$

Fig 3. The mean SN ratio plot for the selected levels of each factor
According to figure 3, the maximum $S N$ ratio shows the best level for each factor. The obtained results for parameter selections are presented in table 5.

Table 5. The parameters of PSO algorithm and their selected levels

FactorSwarm size	Cognitive coefficient $\left(C_{l}\right)$	Minimum Social coefficient $\left(C_{2 \min }\right)$	Maximum Social coefficient $\left(C_{2 \max }\right)$	Maximum inertia weight $\left(W_{\text {Max }}\right)$	Minimum inertia weight $\left(W_{\text {Min }}\right)$	
Level	5	4	5	4	2	1
value	$10 n$	2	1.7	3	1	0.3

4-2- Numerical example

In this section, the proposed approach is illustrated by using a problem with nine tasks, two models and three levels of skills. The production planning horizon and the capacity of each station are 480 units of time. The required data for this example are shown in table 6.

Fig 4. The precedence diagram between the tasks

Table 6. Data of the example

Task	Side	Model A			Model B		
		Skill 1	Skill 2	Skill 3	Skill 1	Skill 2	Skill 3
1	L	1	2	3	0	0	0
2	R	2	3	4	1	2	3
3	E	0	0	0	1	2	4
4	L	2	3	5	0	0	0
5	R	1	3	4	1	3	4
6	E	1	2	3	1	2	3
7	E	1	3	4	2	3	4
8	L	0	0	0	3	4	6
9	E	1	3	5	1	2	3
Human cost	900	600	400	900	600	400	
Profit							
Demand		50			90		

According to the task times, production planning horizon and the demand of each model, the first cycle is 6 . An initial worker assignment and line balancing are presented in table 7 . It shows the assembly line has two mated-stations and four stations.

Table 7. Initial tasks and worker assignments to the mated-stations

	Mated-station 1		Mated-station 2	
	Left-side	Right-side	Left-side	Right-side
Task	1,4	2,3	$6,7,8$	5,9
Skill	1	2	1	2

The required time for each station according to table 7 is presented in table 8 .
Table 8. Initial required time for each station and model

	Mated-station 1		Mated-station 2	
	Left-side	Right-side	Left-side	Right-side
Skill	1	2	1	2
Required time1(A)	3	3	2	6
Required time1(B)	0	4	6	5

The required capacity for each station is shown in table 9 . This table shows that if there are these workers in the stations and line balancing; the right side of the mated-station 2 will be a bottleneck.

Table 9. The initial required capacity for each station

	Mated-station 1		Mated-station 2	
	Left-side	Right-side	Left-side	Right-side
Skill	$\mathbf{1}$	2	1	$\mathbf{2}$
Required capacity1(A)	300	300	200	600
Required capacity1(B)	0	160	240	200
Total required capacity1	$\mathbf{3 0 0}$	460	440	$\mathbf{8 0 0}$

In this situation, it is tried to eliminate the bottleneck by interchanging the positions of the two operators on this line. Clearly, the bottleneck has a medium-skilled worker. However, the left-side of the mated-station 1 that is not a bottleneck has a high-skilled worker. Therefore, it is necessary to verify that if this change occurs, will the station time be lower than the cycle time or not? Table 10 and table 11 shows these results.

Table 10. The required time for each station and model after changing the positions of two operators

	Mated-station 1		Mated-station 2	
	Left-side	Right-side	Left-side	Right-side
Skill	$\mathbf{2}$	2	1	$\mathbf{1}$
Required time2(A)	5	3	2	2
Required time2(B)	0	4	6	2

Table 11．The required capacity for each station after changing the positions of two operators

	Mated－station 1		Mated－station 2	
	Left－side	Right－side	Left－side	Right－side
Skill	$\mathbf{2}$	2	1	$\mathbf{1}$
Required capacity2（A）	500	300	200	200
Required capacity2（B）	0	160	240	80
Total required capacity2	$\mathbf{5 0 0}$	460	440	$\mathbf{2 8 0}$

Table 11 shows that changing the position of the operators led to the reduction of the work overload of the line；however，the bottleneck was not eliminated．Thus，determining the＇R＇index for product－ mix is necessary：

$$
R_{A}=\frac{50}{5}=10, \quad R_{B}=\frac{90}{0}=\infty
$$

Since $R_{B}>R_{A}$ ，the first priority of the production is of model B．The product－mixes are $Q_{B}=40$ and $Q_{A}=\left[\frac{480}{5}\right]=96$ ．

Table 12．The required capacity for each station after product－mix determination

	Mated－station 1		Mated－station 2	
	Left－side	Right－side	Left－side	Right－side
Skill	$\mathbf{2}$	2	1	$\mathbf{1}$
Required capacity3（A）	480	288	192	192
Required capacity3（B）	0	160	240	80
Total required capacity	$\mathbf{4 8 0}$	448	432	$\mathbf{2 7 8}$

In this condition，the cycle time may change．As the result，it will be necessary to recalculate it．
$C=\max \left\{6, \frac{480}{96+40}\right\}=6$
Since the cycle time does not change and there is no bottleneck，the algorithm should be stopped，and the objective functions can be calculated．

5－Computational results and discussion

In this section，alongside the proposed algorithm，another algorithm is developed based on the structure of the proposed algorithm．Simulated annealing and theory of constraints were used and it was called hybrid SA－TOC．The efficiencies of both algorithms are examined over a set of benchmarked test problems in terms of running time and solution quality．
In these problems，there are two product models and three skill levels（low，medium，and high）with $\$ 400, \$ 600$ and $\$ 900$ human cost for each operator．The weights of the objective functions are $W_{1}=W_{2}=W_{3}=0.3$ and $W_{4}=0.1$ ．Furthermore，for better analysis，three demand levels are used for each model．More details of the problems are shown in table 13.

Table 13．The number of tasks，demands and the profit of each model

Problem	$\overline{\mathrm{a}}$	$\hat{\hat{2}}$	$\hat{\hat{2}}$	$\stackrel{\overline{2}}{2}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\bar{Z}}{2}$	$\frac{\tilde{V}}{\tilde{2}}$	$\stackrel{\cong}{\underset{\imath}{\mathrm{I}}}$		Nิ	Nิ	ה্त	$\begin{aligned} & \text { Na } \\ & \text { an } \\ & \hline \end{aligned}$	Nิ	亏े	Ô	$\begin{gathered} \text { n } \\ \text { în } \end{gathered}$	$\overline{\hat{N}}$	Nิ	$\underset{\tilde{\sim}}{\tilde{\sim}}$	$\underset{\underset{Z}{\underset{Z}{A}}}{ }$	$\frac{\tilde{A}}{\underset{Z}{む}}$		$\begin{aligned} & \overline{\hat{A}} \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { ה⿵ } \\ & \text { î } \\ & \hline \end{aligned}$	n
No．tasks	\square	\square	a	\sim	$\stackrel{1}{ }$	\sim	\pm	\pm	\pm	$\stackrel{1}{1}$	$\stackrel{1}{1}$	－	\cdots	$\stackrel{\sim}{2}$	$\stackrel{\sim}{2}$	－	¢	¢	ले	ले	ल	广	＇	F	6	\％	๕
$\mathrm{D}_{\text {A }}$	8	\％	\bigcirc	8	そ	\cdots	\bigcirc	¢	in	$\stackrel{\text { ® }}{ }$	¢	i	∞	\bigcirc	－	\bigcirc	－	in	8	¢	そ	－	∞	\pm	\bigcirc	¢	in
$\mathrm{D}_{\text {B }}$	\％	$\stackrel{1}{1}$	$\stackrel{1}{2}$	ヶ	8	\checkmark	¢	$\stackrel{1}{2}$	in	－	\bigcirc	i	\bigcirc	$\stackrel{\infty}{m}$	＋	¢	$\stackrel{\square}{2}$	in	¢	8	ケ	∞	$\stackrel{1}{2}$	\pm	¢	\bigcirc	in
$\mathbf{P r}_{\text {A }}$	8	8	8	8	8	8	\bigcirc	$\stackrel{\square}{2}$	$\stackrel{1}{2}$	8	2	8	\bigcirc	$\stackrel{\square}{2}$	$\stackrel{\square}{2}$	\bigcirc	\bigcirc	$\stackrel{1}{2}$	$\stackrel{\rightharpoonup}{2}$	\bigcirc	$\stackrel{\square}{2}$	2	8	8	8	8	8
$\mathrm{Pr}_{\text {B }}$	in	i	in	in	in	な	尔	\％	in	in	in	in	in	in	令	令	\％										
DP	$\stackrel{\circ}{+}$	$\stackrel{\otimes}{\square}$	$\stackrel{\circ}{+}$	$\stackrel{\circ}{+}$	$\stackrel{\circ}{+}$	¢	$\stackrel{\circ}{+}$	$\stackrel{\circ}{+}$	$\stackrel{\circ}{\square}$	8	$\stackrel{\circ}{\circ}$	\％	\％	$\stackrel{\circ}{\circ}$	\％	\％	\％	\％	\％	$\stackrel{\circ}{\circ}$	\％	$\stackrel{\infty}{\infty}$	8	8	$\begin{aligned} & \text { ọ } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { ợ } \\ & \text { O} \end{aligned}$	＋

The algorithm is coded in MATLAB software and run on a personal computer with Intel（R）Core （TM）i3－2120 CPU＠ 3.30 GHz and 4 GB of RAM memory．Each problem is solved four times．

Table 14 shows the results of using the proposed algorithms for the minimum, average and maximum WSI, THC and Z.

Table 14. Obtained results for WSI, THC and Z by hybrid PSO-TOC and hybrid SA-TOC algorithms

Problem	$\begin{gathered} \text { WSI } \\ \text { (hybrid SA-TOC) } \\ \hline \end{gathered}$			$\begin{gathered} \text { WSI } \\ \text { (hybrid PSO-TOC) } \end{gathered}$			$\begin{gathered} 0.01 \times \mathrm{THC} \\ \text { (hybrid SA-TOC) } \\ \hline \end{gathered}$			$\begin{gathered} 0.01 \times \mathrm{THC} \\ \text { (hybrid PSO-TOC) } \end{gathered}$			$\begin{gathered} 100 \times \mathrm{Z} \\ \text { (hybrid SA-TOC) } \\ \hline \end{gathered}$			$\begin{gathered} 100 \times \mathrm{Z} \\ \text { (hybrid PSO- } \\ \text { TOC) } \\ \hline \end{gathered}$		
	M ${ }^{* * *}$	A**	M*	M	A	m	M	A	m	M	A	M	M	A	m	M	A	M
P9D1	0.71	0.18	0.00	2.00	0.50	0.00	18	15.75	15	15	15	15	48	41	38	28	27	25
P9D2	0.38	0.38	0.38	1.54	0.90	0.38	18	17.25	15	15	15	15	53	40	30	24	23	21
P9D3	3.76	1.32	0.50	1.50	1.30	0.71	21	18.75	18	18	15.75	15	66	56	50	26	25	23
P12D1	1.60	1.06	0.71	2.17	1.47	0.92	30	28.50	28	27	24.25	22	66	53	42	29	29	28
P12D2	1.73	1.27	0.86	2.43	1.89	1.61	33	29.25	26	22	72.75	22	89	59	45	29	29	27
P12D3	1.94	1.38	0.73	1.73	1.41	1.05	31	30.25	30	27	25.75	22	53	50	47	30	29	29
P14D1	5.50	3.41	2.02	2.83	2.39	1.58	46	43.25	39	41	38.75	37	60	58	56	46	46	44
P14D2	5.32	3.98	2.69	6.56	5.23	3.54	47	45.75	44	43	40.50	37	75	72	57	45	44	43
P14D3	4.60	3.23	2.02	4.96	3.02	1.37	49	45.00	42	42	39.25	37	74	66	56	47	46	45
P20D1	6.98	5.93	4.38	4.42	3.13	2.27	59	56.50	54	51	49.50	48	79	72	61	52	50	47
P20D2	5.23	4.57	3.98	8.25	6.69	6.12	61	58.00	53	55	53.25	52	79	74	72	51	50	49
P20D3	5.75	4.81	3.45	6.32	4.92	3.82	62	58.25	56	54	53.00	52	85	76	68	51	50	48
P25D1	10.53	10.23	10.05	19.3	18.5	17.6	93	89.75	87	81	79.25	77	91	85	76	63	62	62
P25D2	14.83	12.27	10.68	10.8	10.64	10.56	92	83.75	80	84	79.50	75	85	80	77	60	59	57
P25D3	14.32	11.73	10.50	14.88	14.85	14.80	90	83.00	79	79	77.25	75	79	76	72	63	61	60
P30D1	6.01	5.52	4.57	5.05	4.56	4.05	82	80.75	78	75	71.50	64	87	82	74	57	55	55
P30D2	6.90	5.28	4.33	4.72	4.23	3.78	83	79.50	77	82	77.50	72	82	77	74	57	56	56
P30D3	6.10	5.64	5.11	5.76	5.36	4.96	88	83.25	79	76	73.25	72	91	80	64	57	56	56
P39D1	8.27	7.76	7.54	9.98	8.68	6.48	93	90.50	87	91	85.00	79	92	80	70	55	54	52
P39D2	7.29	6.62	5.50	10.64	9.55	8.62	97	90.25	80	93	84.50	78	95	82	76	57	55	54
P39D3	7.36	7.29	7.22	10.67	10.17	9.24	93	87.75	81	85	81.50	77	85	78	74	56	55	54
P47D1	16.56	15.22	14.20	28.16	26.20	24.82	120	109	102	101	98.3	96	97	86	78	61	60	59
P47D2	18.22	16.59	14.93	30.87	28.69	26.56	109	104	99	108	101.8	95	86	81	76	61	61	60
P47D3	19.82	17.67	15.69	29.87	28.19	27.26	114	102	96	107	98.75	88	89	85	73	62	62	61
P65D1	124.90	106.07	78.20	127.1	106.8	83.62	84	79.75	78	71	69.50	67	79	74	67	53	52	52
P65D2	123.76	108.48	102.68	161.3	134.8	115.0	87	83	79	79	67.25	57	93	81	73	53	53	51
P65D3	124.01	116.97	108.53	140.1	120.7	101.1	90	83.25	77	72	70.	68	91	84	75	54	53	53

Table 15 presents the obtained product-mix and the total profit of the both algorithms.

Table 15. The obtained results for the product-mix and the total profit

Problem	Product-mix(hybrid SA-TOC)		Product-mix(hybrid PSO-TOC)		TP(hybrid SA-TOC)			TP(hybrid PSO-TOC)		
	A(m,Ave,M)	B(m,Ave,M)	A(m,Ave, M)	B(m,Ave,M)	M ${ }^{* * *}$	Ave**	M*	M	Ave	M
P9D1	(80, 84, 96)	(0, 0, 0)	(80, 80, 80)	(0, 0, 0)	8640	7560	7200	7200	7200	7200
P9D2	(40, 40, 40)	$(40,52,56)$	(40, 40, 40)	(40, 40, 40)	7200	6200	5600	5600	5600	5600
P9D3	$(70,70,70)$	$(12,22.5,26)$	$(70,70,70)$	$(10,12.75,21)$	7600	7425	6900	7350	6937.5	6800
P12D1	(90, 90, 90)	(10, 23, 36)	(90, 90, 90)	$(10,15.25,31)$	9900	9250	8600	9650	8862.5	8600
P12D2	$(45,45,45)$	(61, 68.25, 80)	$(45,45,45)$	$(55,57.75,66)$	8850	7462.5	7100	7350	6937.5	6800
P12D3	$(65,65,65)$	$(37,47.5,65)$	$(65,65,65)$	$(35,45.5,54)$	9100	8225	7700	8550	8125	7600
P14D1	$(50,51.5,53)$	(0, 0, 0)	$(50,50,50)$	(0, 0, 0)	3710	3605	3500	3500	3500	3500
P14D2	(30, 30, 30)	(20, 26.5, 30)	(30, 30, 30)	(20, 22.5, 24)	3600	3425	3100	3300	3225	3100
P14D3	$(50,50,50)$	$(0,2.25,6)$	(50, 50, 50)	$(0,0.75,3)$	3800	3612.5	3500	3650	3537.5	3500
P20D1	$(68,69,70)$	$(0,1.75,4)$	$(68,68,68)$	(0, 0, 0)	6500	6297.5	6120	6120	6120	6120
P20D2	$(30,30,30)$	(40, 46.5, 60)	$(30,30,30)$	(38, 39.5, 40)	6500	5025	4700	4700	4675	4600
P20D3	$(50,50,50)$	$(23,31.25,36)$	$(50,50,50) \mathrm{s}$	$(22,22,22)$	6300	6062.5	5650	5600	5600	5600
P25D1	$(35,36.75,38)$	$(2,6.25,10)$	$(34,36.25,38)$	$(4,7.25,10)$	2950	2885	2760	2950	2900	2860
P25D2	$(10,10,10)$	$(31,35.25,38)$	(10, 10, 10)	$(31,32.5,34)$	2950	2462.5	2250	2400	2325	2250
P25D3	(24, 24, 24)	(16, 22, 24)	(24, 24, 24)	$(16,19,21)$	2880	2735	2400	2730	2630	2480
P30D1	(68,69.5,70)	$(1,3.75,5)$	$(68,68,68)$	(0,0,0)	5125	4988.75	4805	4760	4760	4760
P30D2	(30, 30, 30)	(40, 43.25, 46)	$(30,30,30)$	$(38,39.5,41)$	5125	4046.25	3900	3945	3877.5	3810
P30D3	(50, 50, 50)	$(18,21.75,25)$	$(50,50,50)$	(18, 18.5, 20)	4625	4433.8	4130	4400	4332.5	4310
P39D1	$(60,60,60)$	$(4,7,12)$	$(60,60,60)$	$(4,5,8)$	4800	4550	4400	4600	4450	4400
P39D2	(30, 30, 30)	$(34,37.5,40)$	(30, 30, 30)	(34, 37.5, 40)	4400	3975	3800	4100	3975	3800
P39D3	$(45,45,45)$	$(19,21.5,23)$	$(45,45,45)$	$(19,19,19)$	4300	4225	4100	4100	4100	4100
P47D1	(20, 20, 20)	$(3,3.75,4)$	(20, 20, 20)	$(3,4.5,5)$	2000	1962.5	1950	2050	2025	1950
P47D2	$(8,8,8)$	$(17,17.5,19)$	$(8,8,8)$	$(15,15.5,16)$	1950	1595	1570	1520	1495	1470
P47D3	(14, 14, 14)	$(9,10.25,11)$	$(14,14,14)$	$(10,10.75,11)$	1810	1772.5	1710	1810	1797.5	1760
P65D1	$(70,70,70)$	$(18,23,25)$	$(70,70,70)$	$(22,23.25,25)$	74250	73350	71100	74250	73462.5	72900
P65D2	(30, 30, 30)	$(60,65.25,70)$	$(30,30,30)$	$(59,63,66)$	73800	56362.5	54000	56700	55350	53550
P65D3	(50, 50, 50)	$(41,45.25,50)$	$(50,50,50)$	(43, 44.5, 46)	67500	65362.5	63450	65701	65025.25	64350

m^{*} : minimum; Ave ${ }^{* *}$: average; $\mathrm{M}^{* * *}$: maximum; A: model A; B: Model B
Table 16 displays the lower bounds, the average and the best numbers of the stations and the matedstations which are obtained using the hybrid PSO-TOC and the hybrid SA-TOC.

Table 16. The lower bounds and the number of stations and the number of mated-stations by the both algorithms

$\begin{aligned} & \text { E } \\ & \frac{0}{\mathrm{D}} \\ & \text { en } \end{aligned}$					$\stackrel{n}{n}$	祡		$\begin{gathered} n \\ \\ \end{gathered}$					$\underset{\sim}{n}$	${\underset{\sim}{n}}_{\substack{x}}^{5}$	$\underset{\sim}{\underbrace{n}_{n}}$	
P9D1	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
P9D2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
P9D3	2.25	2	2	2	1	1	1	1	1.25	1	1	1	1	1	1	1
P12D1	4	3	4	3	2	0	0	2	2	2	2	2	1	0	0	1
P12D2	4	3	4	3	2	0	0	2	2	2	2	2	1	0	0	1
P12D3	4	3	4	3	2	0	0	2	2	2	2	2	1	0	0	1
P14D1	6.25	5.25	6	5	4	3	2	4	3.5	3	3	3	2	2	1	2
P14D2	7	5.25	6	5	3	3	2	3	3.75	3	3	3	2	2	1	2
P14D3	6.75	5.75	6	5	3	3	2	3	3.75	3	3	3	2	2	1	2
P20D1	9.25	6.5	7	6	5	5	3	5	4.75	3.25	4	3	3	3	2	3
P20D2	9	7.25	8	7	4	5	3	5	4.5	4	4	4	2	3	2	3
P20D3	9.75	7.5	9	7	4	5	3	5	5	4	5	4	2	3	2	3
P25D1	14	13	14	12	8	8	12	12	7	7	7	7	4	4	6	6
P25D2	14	13	14	13	7	8	12	12	7.75	7	7	7	4	4	6	6
P25D3	14	13	14	13	7	8	12	12	7.25	7	7	7	4	4	6	6
P30D1	13.25	12	13	12	8	6	6	8	7	6	7	6	4	3	3	4
P30D2	14	11.75	14	11	8	6	6	8	7.25	6	7	6	4	3	3	4
P30D3	13.25	12	13	12	8	6	6	8	7	6	7	6	4	3	3	4
P39D1	14	12	13	11	7	6	5	7	7.75	6.25	7	6	4	3	3	4
P39D2	14.5	12.25	14	11	8	6	5	8	7.75	6.5	7	6	4	3	3	4
P39D3	14.75	12	14	12	7	6	5	7	8	6.25	8	6	4	3	3	4
P47D1	17.75	16.25	17	16	9	5	7	9	9	8.5	9	8	4	3	4	4
P47D2	17.25	15.25	16	15	9	5	7	9	9.75	8	9	8	4	3	4	4
P47D3	17.5	16	17	16	9	5	7	9	9.5	8.5	9	8	4	3	4	4
P65D1	13.25	12	12	12	8	2	4	8	6.75	6	6	6	4	1	2	4
P65D2	13.75	12	13	12	8	2	4	8	7	6	7	6	4	1	2	4
P65D3	13.5	12	13	12	8	2	4	8	7	6	7	6	4	1	2	4

Figure 5 and figure 6 show the differences between the obtained results from the number of the stations, the number of the mated-stations and the best lower bound. They demonstrate that the hybrid PSO-TOC has better results for the number of the mated-stations and the number of the stations. It means that by using this algorithm a shorter line is obtained. In addition, these figures show that the differences between both algorithms and the lower bound for small-sized problems are negligible. Moreover, the difference between the obtained results utilizing the hybrid PSO-TOC and the lower bound is small.

Fig 5. Comparison between the obtained results for the number of mated-stations by hybrid PSO-TOC, hybrid SA-TOC and lower bound

Fig 6. Comparison between the obtained results for the number of stations by hybrid PSO-TOC, hybrid SATOC and best lower bound

One of the most significant decisions in stage 1 of the proposed algorithm is the value of each skill worker's determination. The obtained results for the minimum, the average and the maximum number of each skilled worker are illustrated in table 17.

Table 17. Minimum (m), average (Ave) and maximum (M) numbers of each skill for both algorithms

Problem	$\begin{gathered} \text { Skill1 } \\ \text { (hybrid SA-TOC) } \end{gathered}$			Skill1(hybrid PSO-TOC)			$\begin{gathered} \text { Skill2 } \\ \text { (hybrid SA-TOC) } \end{gathered}$			$\begin{gathered} \hline \text { Skill2 } \\ \text { (hybrid PSO-TOC) } \\ \hline \end{gathered}$			$\begin{gathered} \text { Skill3 } \\ \text { (hybrid SA-TOC) } \end{gathered}$			$\begin{gathered} \hline \text { Skill3 } \\ \text { (hybrid PSO-TOC) } \\ \hline \end{gathered}$		
	m	Ave	M															
P9D1	1	1.25	2	0	0	0	0	0.75	1	0	0	0	0	0	0	0	0	0
P9D2	1	1.75	2	1	1	1	0	0.25	1	1	1	1	0	0	0	0	0	0
P9D3	1	1.75	2	1	1.25	2	0	0.5	2	0	0.75	1	0	0	0	0	0	0
P12D1	2	2	2	2	2.75	3	1	1.25	2	0	0.5	1	0	0.75	1	0	0.25	1
P12D2	2	2.25	3	2	2.75	3	0	1	2	0	0	0	0	0.75	2	0	0.75	1
P12D3	2	2.25	3	2	2.75	3	1	1.5	2	0	0	0	0	0.25	1	0	0.25	1
P14D1	1	2.75	4	3	3.75	4	1	2.25	3	0	0.75	1	0	1.25	3	1	1.25	2
P14D2	0	2.25	3	3	3.5	4	2	4.25	6	0	1	2	0	1.5	2	0	0.75	1
P14D3	3	4.5	6	2	2.75	3	0	1	2	1	2.5	4	0	0.75	1	0	1	2
P20D1	1	2.5	5	2	4	5	1	3.25	6	1	1.75	3	1	3	7	0	0.75	3
P20D2	1	2.5	3	3	3.5	5	3	4.75	8	0	1.5	3	0	1.75	4	1	1.5	2
P20D3	2	4.25	5	3	3.5	4	3	6.25	11	2	2.75	3	1	3.5	6	0	1.25	2
P25D1	2	4.25	5	2	3.25	5	3	6.25	11	2	5.5	7	1	3.5	6	3	4.25	5
P25D2	2	2.75	4	3	3.5	4	5	7	8	5	6	7	2	4.25	6	3	3.5	5
P25D3	1	2.5	4	1	2.25	3	5	7.25	9	6	7	9	3	4.25	6	3	3.75	4
P30D1	2	3.25	4	2	2.5	3	5	5.75	7	3	5.5	7	3	4.25	6	3	4	7
P30D2	1	2	3	2	3.5	6	6	6.75	8	1	5.75	9	5	5.25	6	0	2.5	4
P30D3	2	4	6	3	3.5	4	3	4.75	7	2	4.25	6	4	4.75	6	3	4.25	6
P39D1	3	4.5	7	5	5.5	7	1	6	8	4	4.75	5	,	3.5	6	1	1.75	3
P39D2	2	3.75	6	3	5	7	5	6.75	9	2	5.25	8	3	4	5	0	2	4
P39D3	1	3.75	4	3	4	5	5	7.5	11	6	6.75	8	3	4.5	6	0	1.25	2
P47D1	4	5	6	2	3.25	5	5	6.5	9	6	8.5	11	3	6.25	9	3	4.5	7
P47D2	3	3	3	3	5.25	6	8	10	11	5	7.25	9	3	4.25	7	0	2.75	5
P47D3	1	2	4	2	3.75	5	9	11	14	6	8	10	2	4.5	7	2	4.25	7
P65D1	0	2.25	4	1	2.5	3	6	7.75	11	3	4.5	7	1	3.25	6	4	5	6
P65D2	2	3.75	5	1	1.75	3	3	5.25	9	2	5.25	8	3	5	7	1	4	9
P65D3	1	2.25	4	2	2	2	7	9	10	5	6	7	1	2.25	3	3	4	5

Figure 7 shows the obtained results of the best human costs of the hybrid PSO-TOC and the hybrid SA-TOC. This figure indicates that the results of the hybrid PSO-TOC are better than the results of the hybrid SA-TOC. It means that in addition to impacting the number of stations and the number of the mated-stations, the hybrid PSO-TOC algorithm produces better results for human costs.

Fig 7. Comparison between the obtained results for total human cost by hybrid PSO-TOC and hybrid SA-TOC
Figure 8 compares the obtained weighted smoothness indexes of both algorithms. It shows that in most of the cases the result of WSI of the hybrid SA-TOC is better than the WSI of the hybrid PSOTOC.

Fig 8. Comparison between the best obtained results for WSI by hybrid PSO-TOC and hybrid SA-TOC
Figure 9 presents the obtained ' Z ' for both algorithms and indicates that the results of the hybrid PSO-TOC are better than the hybrid SA-TOC.

Fig 9. Comparison between the best obtained results for ' Z ' by hybrid PSO-TOC and hybrid SA-TOC
The only objective function of stage 2 is total profit maximization and product-mix determination using the theory of constraints. Figure 10 shows that hybrid SA-TOC has better total profit than the hybrid PSO-TOC algorithm.

Fig 10. Comparison between the total profit by hybrid PSO-TOC and hybrid SA-TOC
In addition to the above figures, two comparisons between both algorithms are presented for the average number of iterations and the elapsed time to obtain the Z-best in figure 11 and figure 12.

Fig 11. Comparison between the average number of iterations to obtain the best results of ' Z ' by hybrid PSOTOC and hybrid SA-TOC

Figure 11 shows that there is no discipline for the number of iterations to achieve the best results from worker assignment and line balancing.

Fig 12. Comparison between the elapsed time to obtain the best results of ' Z ' by hybrid PSO-TOC and hybrid SA-TOC

Figure 12 demonstrates that the hybrid SA-TOC is faster than the hybrid PSO-TOC. However, the differences between the elapsed times for the small-sized problems are negligible.
Figure 13 presents the percentage of the stations which were bottlenecks (Bottleneck \%) in the last part of stage 1. It shows that the values of the small-sized problems for the hybrid PSO-TOC are more than the results of the hybrid SA-TOC and large-sized problems.

Fig 13. The average of Bottleneck\% for the both algorithms

6- Conclusion

This paper dealt with a multi-objective mixed-model TSALBP with worker assignment and bottleneck analysis when the task times are dependent on the worker's skill. The considered objective functions were Minimizing the number of mated-stations, the number of stations, the human costs, the weighted smoothness index and maximizing the total profit.
To solve the mentioned problem, a cyclic-hierarchical algorithm (hybrid PSO-TOC) was presented and another algorithm based on the structure of the proposed algorithm was developed (hybrid SATOC). In addition, several problems with different conditions were tested using the proposed approach.
These algorithms had two stages. In stage one, worker assignment and line balancing were done simultaneously. In stage two, eliminating the bottlenecks and product-mix determination were considered. Additionally, several lower bounds were developed for the number of stations and the number of mated-stations. The obtained results indicated that the hybrid PSO-TOC has fewer numbers of mated-stations, stations and human costs than the hybrid SA-TOC. However, the hybrid SA-TOC showed better results for the total profit, the product-mix determination and the elapsed time. Alongside using the other methods to solve the problem, this research can be enriched with other assumptions, such as the learning effect, the U-shaped lines and the parallel stations for future research.

References

Araújo, F.B., Costa, A, M., \& Miralles, C. (2012). Two extensions for the ALWABP: Parallel stations and collaborative approach. International Journal of Production Economics, 140, 483-495.

Bartholdi, J.J. (1993). Balancing two-sided assembly lines: a case study. International Journal of Production Research, 31(10), 2447-2461.

Battaïa, O., \& Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. International Journal of Production Economics, 142(2), 259-277.

Blum, C., \& Miralles, C. (2011). On solving the assembly line worker assignment and balancing problem via beam search. Computers \& Operations Research, 38, 328-339.

Borba, L., \& Ritt, M. (2014). A heuristic and a branch-and-bound algorithm for the Assembly Line

Worker Assignment and Balancing Problem. Computers \& Operations Research 4587-4596.
Boysen, N., Fliedner, M., \& Scholl, A. (2007). A classification of assembly line balancing problems. European Journal of Operational Research, 183, 674-693.

Boysen, N., Fliedner, M., \& Scholl, A. (2008). Assembly line balancing: Which model to use when?. International Journal of Production Economics, 111, 509-528.

Chutima, P., \& Chimklai, P. (2012). Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge. Computers and Industrial Engineering, 62, 39-55.

Costa, A. M., \& Miralles, C. (2009). Job rotation in assembly lines employing disabled workers. International Journal of Production Economics, 120, 625-632.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, Inc, New York, NY, USA.

Hamta, N., Fatemi Ghomi, S.M.T., Jolai, F., \& Akbarpour Shirazi, M. (2013). A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. International Journal of Production Economics, 141(1), 99-111.

Hu, S.J., Ko, J., Weyand, L., El Maraghy, H.A., Lien, T.K., Koren, Y., Bley, H., Chryssolouris, G., Nasr, N., \& Shpitalni, M. (2011). Assembly system design and operations for product variety. CIRP Annals-Manufacturing Technology, 60, 715-733.

Kennedy, J., \& Eberhart, R.C. (1995). Particle swarm optimization. In proceedings of IEEE international Conference on Neural Networks (Perth, Australia). 1942-1948.

Miralles, C., García-Sabater, J. P., Andrés, C., \& Cardos, M. (2007). Advantages of assembly lines in Sheltered Work Centres for Disabled. A case study. International Journal of Production Economics, 110, 187-197.

Miralles, C., Garía-Sabater, J. P., Andrés, C., \& Cardós, M. (2008). Branch and bound procedures for solving the Assembly Line Worker Assignment and Balancing Problem: Application to Sheltered Work centres for Disabled. Discrete Applied Mathematics, 156, 352-367.

Moreira, M. C. O., Ritt, M., Costa, A. M., \& Chaves, A. A. (2012). "Simple heuristics for the assembly line worker assignment and balancing problem. Journal of Heuristics, 18, 505-524.

Mutlu, Ö., Polat, O., \& Supciller, A. A. (2013). An iterative genetic algorithm for the assembly line worker assignment and balancing problem of type-II. Computers \& Operations Research, 40 (1), 418426.

Özcan, U., \& Toklu, B. (2009). Balancing of mixed-model two-sided assembly lines. Computers and Industrial Engineering, 57, 217-227.

Özcan, U., Gokcen, H., \& Toklu, B. (2010). Balancing parallel two-sided assembly lines. International Journal of Production Research, 48 (16), 4767-4784.

Pastor, R. (2011). LB-ALBP: the lexicographic bottleneck assembly line balancing problem. International Journal of Production Research, 49(8), 2425-2442.

Pastor, R., Chueca, I., \& García-Villoria, A. (2012). A heuristic procedure for solving the Lexicographic Bottleneck Assembly Line Balancing Problem (LB-ALBP). International Journal of Production Research, 50(7), 1862-1876.

Purnomo, H. D., Wee, H. M., \& Rau, H. (2013). Two-sided assembly lines balancing with assignment restriction. Mathematical and Computer Modeling, 57, 189-199.

Salveson, M.E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18-25.

Scholl, A. (1999). balancing and sequencing of assembly lines. Physica-Verlag.

Scholl, A., \& Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168, 666-693.

Simaria, A. S., \& Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimization algorithm for balancing two-sided assembly lines. Computers \& Industrial Engineering, 56, 489-506.

Sirovetnukul, R., \& Chutima, P. (2010). The Impact of Walking Time On U-Shaped Assembly Line Worker Allocation Problems. Engineering Journal, 14 (2), 53-78.

Song, B.L., Wong, W.K., Fan, J.T., \& Chan, S.F. (2006). A recursive operator allocation approach for assembly line balancing optimization problem with the consideration of operator efficiency. Computers \& Industrial Engineering, 51, 585-608.

Taguchi, G. (1986). Introduction to Quality Engineering. Asian Productivity organization.
Vilà, M., \& Pereira, J. (2014). A branch-and-bound algorithm for assembly line worker assignment and balancing problems. Computers \& Operations Research, 44, 105-114.

Xiaofeng, H., Erfei, W., Jinsong, B., \& Ye, J. (2010). A branch-and-bound algorithm to minimize the line length of a two-sided assembly line. European Journal of Operational Research, 206, 703-707.

Zaman, T., Paul, S. K., \& Azeem, A. (2012). Sustainable operator assignment in an assembly line using genetic algorithm. International Journal of Production Research, 50 (18), 5077-5084.

Zhang, W., Gen, M., Lin, L. (2008). A Multi-objective Genetic Algorithm for Assembly Line Balancing Problem with Worker Allocation, IEEE International Conference on Systems, Man and Cybernetics.

[^0]: *Corresponding author
 ISSN: 1735-8272, Copyright c 2018 JISE. All rights reserved

