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Abstract 

This article addresses a general tri-objective two-echelon capacitated vehicle 
routing problem (2E-CVRP) to minimize the total travel cost, customers 
waiting times and carbon dioxide emissions simultaneously in distributing 
perishable products. In distributing perishable products customers’ 
satisfaction is very important this is inversely proportional to the customers 

waiting times. The proposed model is a mixed integer non-linear 
programming (MINLP). By applying some linearization methods, the 
MINLP model exchanged to a mixed integer linear programming (MILP). 
This paper uses a non-dominated sorting genetic (NSGA-II) algorithm to 
solve the presented mathematical model. The related results would be 
compared with Lp-metric results in small-sized test problems and with multi 
objective particle swarm optimization (MOPSO) algorithm in medium and 

large sized test problems. In order to evaluate the quality of the solution 
sets, the results of two meta-heuristic algorithms are compared based on 
four comparison metrics in medium sized problems. The obtained results 
indicate the efficiency of the NSGA-II algorithm.  
Keywords: 2E-CVRP, carbon dioxide emissions, perishable products, 
customers waiting times, linearization, multi objective optimization 

 

1-Introduction 
   The application that motivated the introduction of the 2E-CVRP is city logistics. Several studies on 

the 2E-CVRP cite the paper by Crainic, Ricciardi and Storchi (2009) as the one that introduced the 
first formal definition of a 2E-CVRP, even if the term 2E-CVRP appeared later in the literature. The 
problem tackled in their paper is a 2E-CVRP with time-dependent, synchronized, multi-depot, multi-
product, heterogeneous fleets (on each echelon), and time windows. The authors provide an ILP 
formulation of the problem and design solution methods, but do not report any computational 
experiment (Cuda, Guastaroba and Speranza, 2013). The term 2E-CVRP was introduced in the paper 
of Perboli, Tadei and Vigo (2011) where a formal definition of the problem is provided. The authors 

propose a MILP formulation along with two families of valid inequalities and two matheuristics for 
the 2E-CVRP. According to review by Cuda, Guastaroba and Speranza (2013), the best performing 
heuristic for the 2E-CVRP is the ALNS introduced by Hemmelmayr, Cordeau and Crainic (2012), 
while the best exact algorithm is proposed by Baldacci et al. (2013). It is worth highlighting that some 
researchers compare the effectiveness of a delivery strategy implementing a 2E-CVRP with a single-

                                                   
*Corresponding author 
ISSN: 1735-8272, Copyright c 2018 JISE. All rights reserved 
 

Journal of Industrial and Systems Engineering  

Vol. 11, No.2, pp. 62-84  

Spring (April) 2018 

 

 

mailto:m_esmaili@shahed.ac.ir
mailto:sahraeian@shahed.ac.ir


63 
 

echelon strategy adopting a CVRP. Soysal, Bloemhof-Ruwaard and Bektaş (2015) present a 
comprehensive MILP formulation for a time-dependent two-echelon capacitated vehicle routing 
problem (2E-CVRP) that accounts for vehicle type, traveled distance, vehicle speed, load, multiple 
time zones and emissions. The results suggest that an environmentally friendly solution is obtained 

from the use of a two-echelon distribution system, whereas a single-echelon distribution system 
provides the least-cost solution. Crainic et al. (2010) study the impact of instance parameters on the 
global cost. They present the results of a broad experimental study aimed at analyzing the impact on 
the total distribution cost of several. A branch-and-cut-and-price algorithm for the two-echelon 
capacitated vehicle routing problem is introduced by Santos, Mateus and da Cunha (2014). In the 
research by Zeng, Xu and Xu (2013) a two-phase hybrid heuristic is proposed for 2E-VRP, which is 
composed of a greedy randomized adaptive search procedure (GRASP) and a variable neighborhood 
descent (VND), called GRASP+VND in the sequel. Baldacci et al. (2013) describe a new 

mathematical formulation of the 2E-CVRP used to derive valid lower bounds and an exact method 
that decomposes the 2E-CVRP into a limited set of multi depot capacitated vehicle routing problems 
with side constraints. Jepsen, Spoorendonk and Ropke (2013) present an exact method for solving the 
symmetric two-echelon capacitated vehicle routing problem. The presented method is based on an 
edge flow model that is a relaxation and provides a valid lower bound. Hemmelmayr, Cordeau and 
Crainic (2012) propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle 
Routing Problem (2E-VRP) and the Location Routing Problem (LRP). They have developed new 

neighborhood search operators by exploiting the structure of the two problem classes considered and 
have also adapted existing operators from the literature. A novel mathematical formulation of time-
dependent vehicle routing problems with heterogeneous fleet, hard time widows and multiple depots, 
is proposed by Afshar- Nadjafi and Razmi-Farooji (2014). To deal with the traffic congestions, they 
also considered that the vehicles are not forced to come back to the depots, from which they were 
departed. To solve the problem two well-known Meta-heuristic algorithms were presented namely 
NSGA-II and MOSA.  

   Green logistics has emerged recently and has attracted some researchers attention and has a great 
role in supply chain management in recent years. In the traditional logistics model, only economic 
objective is considered, but in green logistics, societal and environmental objectives are considered in 
addition to the economic objective. Integrating vehicle routing problem (VRP) and green logistics 
developed a new field in logistics problem called Green Vehicle Routing Problem (GVRP) (Rabbani, 
Farrokhi-Asl and Asgarian, 2017). Lin et al. (2014) published a complete review on GVRP and 
provided a classification of GVRP. They categorize these problems into three branch lines including 
Green-VRP, Pollution Routing Problem and VRP in reverse logistics. The proposed model in this 

paper is a pollution routing problem since it aims at minimizing the total carbon dioxide (𝑐𝑜2) 
emissions in routing problem. The Pollution Routing Problem (PRP) aims at choosing a vehicle 

dispatching scheme with less pollution, in particular reduction of carbon emissions (Lin et al., 2014). 
Govindan et al. (2013) introduce a two-echelon location-routing problem with time-windows (2E-
LRPTW) for sustainable SCN design and optimizing economic and environmental objectives in a 
perishable food SCN. The goal of 2E-LRPTW is to determine the number and location of facilities 
and to optimize the amount of products delivered to lower stages and routes at each level. It also aims 
to reduce costs caused by carbon footprint and greenhouse gas emissions throughout the network. The 
proposed method includes a novel multi-objective hybrid approach called MHPV, a hybrid of two 

known multi-objective algorithms: namely, multi-objective particle swarm optimization (MOPSO) 
and adapted multi-objective variable neighborhood search (AMOVNS). Esmaili and Sahraeian (2017) 
represent a two-echelon capacitated vehicle routing problem (2-ECVRP). The paper proposes a novel 
bi-objective model that minimizes: 1) total customers waiting time, and 2) total travel cost. A 
restriction on maximum allowable carbon dioxide (CO2) emissions from transport in each route is 
considered as environmental issue in the problem. The sensitivity analysis performed on the model 
reveals that less restrictive policies on carbon emissions lead to more total emissions but less total 
travel cost and customers waiting times. 

   In distribution systems customer's satisfaction is an important issue, especially for food products. In 
general, food products are characterized as perishable items. The quality of perishable food products 
decays rapidly during the delivery process. Their freshness is significantly affected by the time 
duration and environment temperature during the delivery. Hence, it is important that perishable foods 
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must be delivered within allowable delivery time windows, or a penalty shall be incurred for late 
arrivals (Chen, Hsueh and Chang, 2009). Song and Ko (2016) developed a nonlinear mathematical 
model to maximize the total level of the customer satisfaction which is dependent on the freshness of 
delivered food products and assumed that each vehicle has a maximum allowable delivery time. 

Angel-Bello, Martínez-Salazar and Alvarez (2013) introduce a routing problem with multiple use of a 
single vehicle and service time in demand points (clients) with the aim of minimizing the sum of 
clients waiting time to receive service. They consider vehicle capacity and travel distance constraints 
which force multiple use of the vehicle in the planning horizon. The vehicle routing problem with 
simultaneous pickup and delivery considering customer satisfaction is presented by Fan (2011). 
Customer satisfaction is based on a time window at each customer location. In such a problem, the 
transportation requests have to be performed by vehicles, each request having to be met as early as 
possible. The customer’s satisfaction is inversely proportional to the waiting time for the vehicle from 

the lower bound of the time window. Wang et al. (2016) propose a multi-objective vehicle routing 
problem with time windows dealing with perishability (MO-VRPTW-P). They design an effective 
distribution route that can minimize the total costs and maximize the freshness state of the delivered 
products. A two-phase heuristic algorithm based on Pareto variable neighborhood search genetic 
algorithm considering temporal-spatial distance (STVNS-GA) is applied to solve the problem.  

The multi objective 2E-CVRP in this paper is a development of 2E-CVRP in the paper of Esmaili 
and Sahraeian (2017). The model in Esmaili and Sahraeian (2017) was presented by the authors of 

this paper. The previous research has presented a two objective model which considers the customers 
waiting time from satellites in second echelon. But this paper presents a tri-objective model which 
considers customer waiting time from depot in first echelon. The customer waiting time was’nt 
considered from the first echelon in pervious papers. The objectives are minimizing 1) total travel 

costs, 2) sum of customers waiting times and 3) total 𝑐𝑜2 emissions. This paper also considers a 
maximum allowable delivery time for perishable goods that they should be delivered within that. The 
end customer's satisfaction has a reverse relation with his waiting time. This means that the less 
waiting time they have, the more satisfaction they will achieve specially for perishable products. The 
proposed model is a mixed integer non-linear programming (MINLP) problem. By applying some 
linearization methods the model exchanges to a mixed integer linear programming (MILP) problem. 

The MILP problem is solved by Lp-metric method in CPLEX for small size instances. Medium and 
large sized test problems are solved by NSGA-II algorithm. The results are compared with MOPSO 
algorithm through four comparison metrics.  
   The rest of this paper is organized as follows. Section 2 contains an optimization model to minimize 
the total costs, total customers waiting times and total carbon emissions and the procedure of 
linearization. The solution of the model and the suitable algorithm are presented in section 3. In 
section 4, the results obtained from the computational experiments are shown for different size of the 

problem. Finally, we conclude the paper in section 5 by providing several topics for future research. 

2-Problem Description 
   Freight transportation can be broadly categorized into two classes according to the presence of one 
or more intermediate facilities. Direct shipping takes place when freight is delivered directly from its 
origin to its destination. Conversely, indirect shipping takes place when freight, or part of the freight, 
is moved through some intermediate facilities (e.g., cross-docks or distribution centers) before 
reaching its destination. Two-echelon distribution systems are a special case of multi-echelon systems 

where the network is composed of two echelons. In this case, after leaving its origin, freight is first 
delivered to an intermediate facility where storage, merging, consolidation or transshipment 
operations take place. The freight is then moved from the intermediate facility towards its destination. 
Given this framework, the flow of freight in one echelon must be coordinated with that in the other 
echelon. As a consequence, routing problems arising in two-echelon distribution systems cannot be 
merely decomposed into two sub-problems and then solved separately. Two-echelon routing problems 
can be classified according to the type of decisions involved (Cuda, Guastaroba and Speranza, 2013). 

 Strategic planning decisions: they include decisions concerning the infrastructure of the 
network, typically the number and the location of the facilities. 

 Tactical planning decisions: they include the routing of freight through the network and the 
allocation of customers to the intermediate facilities. 



65 
 

Cuda, Guastaroba and Speranza (2013) refer to the Two-Echelon Vehicle Routing Problems (2E-
VRPs) when the problem definition involves only tactical planning decisions, and the routing is 
present at both echelons. In a 2E-VRP the set of depot and the set of satellites to use is given, and no 
cost is associated with the use of any depot and any satellite. 

The two-echelon capacitated vehicle routing problem (2E-CVRP) is a distribution system where 
intermediate facilities, known as satellites are capacitated (Perboli, Tadei and Vigo, 2011). Satellites 
capacities are limited according to the number of second level vehicles in it. The 2E-CVRP is an NP-
hard problem. Figure 1 shows a feasible solution to the 2E-CVRP. 

The current paper proposes a tri-objective two-echelon capacitated VRP. The goal is to 

simultaneously minimize the total travel costs, the customers waiting times and total 𝑐𝑜2 emissions 
for perishable product delivery. In perishable goods distribution the customer satisfaction is inversely 
proportional to customer waiting time. If the customer has less waiting time, it means that the product 
has passed less time in truck; so, it is fresher and more customer satisfaction would be achieved. So 
minimizing customers waiting times can lead to customers’ satisfaction. This research counts the 

customers waiting time from depot in first echelon which wasn’t considered in previous studies.  
Because of the nature of perishable products they should be delivered within a time window. They 

would be decayed after the maximum allowable time. Thus a maximum allowable delivery time is 
considered for products delivery, inspired from Song and Ko (2016). In order to measure the 

environmental impact of the transportation network, 𝐺𝐻1 and 𝐺𝐻2 coefficients are considered as 𝐶𝑂2 
produced by first level and second level vehicles in each unit of distance, respectively. Considering 
these coefficients is inspired from Mirzapour Al-e-hashem and Rekik (2014). 

The two echelon base model is adopted from Perboli, Tadei and Vigo (2011) and this paper is a 
development of author’s pervious research in Esmaili and Sahraeian (2017).  

To formulate the mathematical model, the assumptions are as follows:  

1. Vehicles in the same level have the same capacity and speed.  
2. Fixed costs of the vehicles are not considered, since they are available in fixed numbers.  
3. Each satellite receives freight from one or more 1st level vehicles, but each customer receives its 

freight from one of the 2nd level vehicles.  
4. The satellites are capacitated and each satellite is supposed to have its own capacity, usually 

expressed in terms of maximum number of secondary vehicles in it. 
5. There is just one perishable product type which has to be distributed. 

6. The traveling cost of each unit of distance is equal to 1 (𝑐́𝑖𝑗 = 1). 
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Fig 1. A feasible solution of the 2E-CVRP 

The proposed mathematical model is as follows: 

2-1-Sets 
𝑉𝑂 Depot 

𝑉𝑆 Set of satellites and 𝑘 ∈ 𝑉𝑆 

𝑉𝐶 Set of customers and 𝑗 ∈ 𝑉𝐶  



66 
 

 

2-2-Parameters 
𝑛𝑠 Number of satellites 

𝑛𝑐  Number of customers 

𝑚1 Number of the 1st-level vehicles 

𝑚2 Number of the 2nd-level vehicles 

𝑚𝑠𝑘
 Capacity of the satellite k 

𝐾1 Capacity of the 1st level vehicles  

𝐾2 Capacity of the 2nd level vehicles  

𝑑𝑖  Demand required by customer i 

𝐶𝑖𝑗 Length of the arc (i, j) 

𝑆𝑘 Cost for loading/unloading operations of a unit of freight in satellite k 

𝐺𝐻1 Carbon emissions in each distance unit for first level vehicle (kg/km) 

𝐺𝐻2 Carbon emissions in each distance unit for second level vehicle 

(kg/km) 

𝑣1 Speed of 1st level vehicles (km/h) 

𝑣2 Speed of 2nd level vehicles (km/h) 

𝑇𝑚𝑎𝑥 Maximum allowable travel time for each perishable product 

𝑠𝑡𝑗 The service time in node j, 𝑠𝑡𝑜 = 0 

 

2-3-Decision Variables 
𝑄𝑖𝑗

1  Flow passing through the 1st-level arc (i, j) 

𝑄𝑖𝑗𝑘
2  Flow passing through the 2st-level arc (i, j) and coming from satellite k 

𝑥𝑖𝑗 Number of 1st-level vehicles using the 1st-level arc (i, j) 

𝑦𝑖𝑗
𝑘  Boolean variable equal to 1 if the 2nd-level arc (i, j) is used by the 2nd-level vehicle starting 

from satellite k 

𝑦𝑖𝑗 Boolean variable equal to 1 if the 1st-level arc (i, j) is used by the 1st-level vehicle 

𝐷𝑘  The freight passing through satellite k 

𝑡𝑗 Total waiting time for customer j 

𝑡𝑘
1 Elapsed time to get to satellite k in first level, 𝑡𝑜

1 = 0 

𝑡𝑖𝑗 The time spent in second level arc (i, j)  

𝑡𝑖𝑗
1  The time spent in first level arc (i, j) 

 

2-4-Mathematical formulation 
We now present the formulation, starting with the objective functions: 
 

min 𝑍1 = ∑ 𝐶𝑖𝑗𝑐́𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝑉𝑂∪𝑉𝑆 ,𝑖≠𝑗

+ ∑ ∑ 𝐶𝑖𝑗𝑐́𝑖𝑗𝑦𝑖𝑗
𝑘

𝑖,𝑗∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

+ ∑ 𝑆𝑘𝐷𝑘

𝑘∈𝑉𝑆

 (1) 

min 𝑍2 = ∑ 𝑡𝑗

𝑗∈𝑉𝐶

 (2) 

min 𝑍3 = ∑ 𝐺𝐻1𝐶𝑖𝑗𝑦𝑖𝑗

𝑖,𝑗∈𝑉𝑆∪𝑉𝑂,𝑖≠𝑗

+ ∑ ∑ 𝐺𝐻2𝐶𝑖𝑗𝑦𝑖𝑗
𝑘

𝑖,𝑗∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

                            (3) 

The objective function (1) minimizes sum of the traveling and handling operations costs. It 
comprises three parts. The two first parts are total travel costs in first and second echelon, 
respectively. The third part is total handling operations costs in satellites. The second objective 
function (2) is minimizing the total customers waiting times. The third objective (3) minimizes the 

total 𝐶𝑂2 emissions in both first and second level. 
 

∑ 𝑥𝑖𝑘 ≤ 𝑚1

𝑘∈𝑉𝑆

                                                                                             ∀𝑖 ∈ 𝑉𝑆 ∪ 𝑉𝑂 (4) 
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      ∑ ∑ 𝑦𝑘𝑗
𝑘

𝑗∈𝑉𝐶 𝑘∈𝑉𝑆

≤ 𝑚2 (5) 

∑ 𝑦𝑘𝑗
𝑘

𝑗∈𝑉𝐶

≤ 𝑚𝑠𝑘
                                                                                                    ∀𝑘 ∈ 𝑉𝑆  (6) 

Constraints (4)–(6) are related to the number of vehicles. The number of first and second level 
vehicles is considered in constraints (4) and (5), respectively. Constraints (6) ensure the capacity of 
the satellites. 

 

∑ 𝑥𝑗𝑘

𝑗∈𝑉𝑆∪𝑉𝑂 ,𝑘≠𝑗

= ∑ 𝑥𝑘𝑖  

𝑖∈𝑉𝑆 ∪𝑉𝑂 ,𝑖≠𝑘

                                                         ∀𝑘 ∈ 𝑉𝑆 ∪ 𝑉𝑂 (7) 

∑ 𝑦𝑖𝑗

𝑖∈𝑉𝑆∪𝑉𝑂 ,𝑖≠𝑗

= ∑ 𝑦𝑗𝑖

𝑖∈𝑉𝑆∪𝑉𝑂 ,𝑖≠𝑗

                                                              ∀𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂  (8) 

∑ 𝑦𝑘𝑗
𝑘

𝑗∈𝑉𝐶

= ∑ 𝑦𝑗𝑘
𝑘

𝑗∈𝑉𝐶

                                                                                             ∀𝑘 ∈ 𝑉𝑆 (9) 

∑ ∑ 𝑦𝑖𝑗
𝑘

𝑖∈𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

+ ∑ 𝑦𝑘𝑗
𝑘

𝑘∈𝑉𝑆

= 1                                                                        ∀𝑗 ∈ 𝑉𝐶 (10) 

∑ ∑ 𝑦𝑖𝑗
𝑘

𝑖∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

= ∑ ∑ 𝑦𝑗𝑖
𝑘

𝑖∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

= 1                                               ∀𝑗 ∈ 𝑉𝐶  (11) 

∑ 𝑦𝑖𝑗
𝑘

𝑖∈𝑉𝑆∪𝑉𝐶

= ∑ 𝑦𝑗𝑙
𝑘

𝑙∈𝑉𝑆∪𝑉𝐶

                                                                   ∀𝑗 ∈ 𝑉𝐶 , ∀𝑘 ∈ 𝑉𝑆 (12) 

𝑦𝑘𝑗
𝑘 ≤ ∑ 𝑥𝑘𝑙

𝑙∈𝑉𝑆∪𝑉𝑂

                                                                               ∀𝑘 ∈ 𝑉𝑆 , ∀𝑗 ∈ 𝑉𝐶  (13) 

𝑥𝑖𝑗 ≤ 𝑀𝑦𝑖𝑗                                                                                     ∀𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂, 𝑖 ≠ 𝑗 (14) 

𝑥𝑖𝑗 ≥ 𝑦𝑖𝑗                                                                                          ∀𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂, 𝑖 ≠ 𝑗 (15) 

 

Relations (7)-(15) are routing constraints. (7) and (8) equalities are first level routing constraints 
while second level routing constraints are (9)-(13). Constraints (7)-(9) and (11)-(12) indicate that in a 
node both in first and second level, the number of input paths is equal to the number of output paths. 
Inequalities in (10) ensure the visiting of each customer. Constraints (13) relate the two echelons to 
each other. These constraints allow a 2nd-level route to start from satellite k just once a 1st-level route 

has served it. The relation between 𝑥𝑖𝑗 and 𝑦𝑖𝑗 is peresented by (14) and (15) constraints which 

express that if some primary vehicles are used in a first level path (𝑥𝑖𝑗>0), that path should be selected 

(𝑦𝑖𝑗=1) and should not be selected, otherwise. 

∑ 𝑄𝑖𝑗
1

𝑖∈𝑉𝑆∪𝑉𝑂 ,𝑖≠𝑗

− ∑ 𝑄𝑗𝑖
1

𝑖∈𝑉𝑆∪𝑉𝑂 ,𝑖≠𝑗

= {

  𝐷𝑗     𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑡

∑ −𝑑𝑖

𝑖∈𝑉𝐶

     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        ∀𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂 (16) 

∑ 𝑄𝑖𝑗𝑘
2

𝑖∈𝑉𝑆∪𝑉𝐶,𝑖≠𝑗

− ∑ 𝑄𝑗𝑖𝑘
2

𝑖∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗

= {
∑  𝑦𝑖𝑗𝑘𝑑𝑗

𝑖∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗

   𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒

−𝐷𝑗

   

 

(17) 

𝑄𝑖𝑗
1 ≤ 𝐾1𝑥𝑖𝑗                                                                                   ∀𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂, 𝑖 ≠ 𝑗 (18) 

𝑄𝑖𝑗𝑘
2 ≤ 𝐾2𝑦𝑖𝑗

𝑘                                                                    ∀𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝐶 , 𝑖 ≠ 𝑗, 𝑘 ∈ 𝑉𝑆 (19) 

       ∑ 𝑄𝑖𝑣𝑜

1

𝑖∈𝑉𝑆

= 0 (20) 

∑ 𝑄𝑗𝑘𝑘
2

𝑗∈𝑉𝐶

= 0                                                                                                       ∀𝑘 ∈ 𝑉𝑆 (21) 
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𝐷𝑘 = ∑ ∑ 𝑑𝑗𝑦𝑖𝑗𝑘

𝑖∈𝑉𝑆∪𝑉𝐶 ,𝑖≠𝑗𝑗∈𝑉𝐶

                                                                            ∀𝑘 ∈ 𝑉𝑆  (22) 

 
Constraints (16)-(22) are flow constraints. Equations in (16) assure that in first echelon the demand 

of node j if it is a satellite is equal to its demand and if it is depot is equal to the minus of total 
customers’ demands. Equation (17) indicates that in second echelon the demand of node j if it is a 

customer is equal to his demand and if it is a satellite is equal to the minus of its demand. In fact, each 
node receives an amount of flow equal to its demand to prevent the presence of sub tours.  
   The vehicle capacity constraints are formulated in (18) and (19), for the 1st-level and the 2nd-level, 
respectively. Constraints (20) and (21) do not allow residual flows in the routes, making the returning 
flow of each route to the depot (1st-level) and to each satellite (2nd-level) equal to 0. 
Equations (22) count the total demand of satellite k. 

 

𝑡𝑖𝑗
1 × 𝑣1 = 𝐶𝑖𝑗                                                                                             𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂  (23) 

𝑡𝑖𝑗 × 𝑣2 = 𝐶𝑖𝑗                                                                                             𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝐶  (24) 

𝑡𝑘
1 = max

𝑖∈𝑉𝑂∪𝑉𝑆 ,𝑖≠𝑘
{(𝑡𝑖

1 + 𝑠𝑡𝑖 + 𝑡𝑖𝑘
1 )𝑦𝑖𝑘}                                                          ∀𝑘 ∈ 𝑉𝑆 (25) 

𝑡𝑗 = ∑ (𝑡𝑘
1 + 𝑠𝑡𝑘 + 𝑡𝑘𝑗)𝑦𝑘𝑗

𝑘

𝑘∈𝑉𝑆

+ ∑ ∑ (𝑡𝑖 + 𝑠𝑡𝑖 + 𝑡𝑖𝑗)𝑦𝑖𝑗
𝑘

𝑖∈𝑉𝐶 ,𝑖≠𝑗𝑘∈𝑉𝑆

               ∀𝑗 ∈ 𝑉𝐶  (26) 

𝑡𝑗 ≤ 𝑇𝑚𝑎𝑥                                                                                                                ∀𝑗 ∈ 𝑉𝐶  (27) 

       
   Time constraints are formulated in (23)-(27). Equations (23) and (24) calculate the required time to 
pass arc (i,j) in first and second level, respectively. Constraints (25) show the arrival time to satellite 
k. It is the summation of arrival time to pervious node, service time in that node and required time to 

pass the arc (i,k) in first level. The arrival time to customer j is formulated in constraints (26). It 
consists of two parts. First part is used when the customer j is visited directly after satellite k and 
second part usage is when the customer j is visited after customer i. Inequalities in (27) ensure that the 
arrival time to customer j don't exceed the maximum allowable perishable product delivery time. 
 

𝑦𝑖𝑗
𝑘 ∈ {0,1}                                                                                    𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝐶 , 𝑘 ∈ 𝑉𝑆 (28) 

𝑦𝑖𝑗 ∈ {0,1}                                                                                                   𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂  (29) 

𝑥𝑖𝑗 ∈ 𝑍+                                                                                                       𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂  (30) 

𝑄𝑖𝑗
1 ≥ 0                                                                                                         𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂  (31) 

𝑄𝑖𝑗𝑘
2 ≥ 0                                                                                         𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝐶 , 𝑘 ∈ 𝑉𝑆 (32) 

𝑡𝑘
1 ≥ 0                                                                                                        𝑘 ∈ 𝑉𝑆, 𝑡𝑂

1 = 0                                                                                          (33) 

𝑡𝑖𝑗
1 ≥ 0                                                                                             𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝑂                                                                                                                                       (34) 

𝑡𝑖𝑗 ≥ 0                                                                                                          𝑖, 𝑗 ∈ 𝑉𝑆 ∪ 𝑉𝐶  (35) 

𝑡𝑗 ≥ 0                                                                                                                        𝑗 ∈ 𝑉𝐶  (36) 

    

   Constraints (28)–(36) represent the binary and non-negativity restrictions imposed on the decision 
variables. Constraints (28) and (29) show the binary variables. Constraint  (30) shows positive integer 
variables. Finally, constraints (31)-(36) show the positive continuous variables. 

2-5-Linearization 
   The proposed model in section 3.4 is a nonlinear mathematical model. Constraints (25) and (26) are 
the non-linear constraints because they both have production of continues and binary variables. 
Besides, Constraints (26) are maximizing expressions. Linearization procedures for these constraints 
are as follows: 

   According to Glover and Woolsey (1974) for linearizing the product of a binary and a continuous 

variable suppose your expression is 𝑍 = 𝑥1 × 𝑥2 where 𝑥2 is a continuous variable and x1 is a binary 
variable. Now if x1 = 1 then Z has to be equal to continuous variable; otherwise Z is zero. For 
linearizing this expression Glover and Woolsey added the inequalities (37)-(39). 
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(37) 𝑍 ≤ 𝑥2 

(38) 𝑍 ≤ 𝑀 × 𝑥1 

(39) 𝑍 ≥ 𝑥2 − 𝑀(1 − 𝑥1) 

 

Therefore, in order to linearizing constraints (25) and (26) the inequalities sets (40)-(41) and (42)-
(45) will be added, respectively.  

 

𝑡𝑖
1 × 𝑦𝑖𝑘 = 𝑍1(𝑖, 𝑘)   (40) 

𝑍1(𝑖, 𝑘) ≤ 𝑡𝑖
1 𝑍1(𝑖, 𝑘) ≤ 𝑀 × 𝑦𝑖𝑘 𝑍1(𝑖, 𝑘) ≥ 𝑡𝑖

1 − 𝑀(1 − 𝑦𝑖𝑘)  

𝑡𝑖𝑘
1 × 𝑦𝑖𝑘 = 𝑍2(𝑖, 𝑘)   (41) 

𝑍2(𝑖, 𝑘) ≤ 𝑡𝑖𝑘
1  𝑍2(𝑖, 𝑘) ≤ 𝑀 × 𝑦𝑖𝑘  𝑍2(𝑖, 𝑘) ≥ 𝑡𝑖𝑘

1 − 𝑀(1 − 𝑦𝑖𝑘)  

    

𝑡𝑘
1 × 𝑦𝑘𝑗

𝑘 = 𝑍3(𝑘, 𝑗)   (42) 

𝑍3(𝑘, 𝑗) ≤ 𝑡𝑘
1 𝑍3(𝑘, 𝑗) ≤ 𝑀 × 𝑦𝑘𝑗

𝑘  𝑍3(𝑘, 𝑗) ≥ 𝑡𝑘
1 − 𝑀 × (1 − 𝑦𝑘𝑗

𝑘 )  

𝑡𝑘𝑗
1 × 𝑦𝑘𝑗

𝑘 = 𝑍4(𝑘, 𝑗)   (43) 

𝑍4(𝑘, 𝑗) ≤ 𝑡𝑘𝑗
1  𝑍4(𝑘, 𝑗) ≤ 𝑀 × 𝑦𝑘𝑗

𝑘  𝑍4(𝑘, 𝑗) ≥ 𝑡𝑘𝑗
1 − 𝑀 × (1 − 𝑦𝑘𝑗

𝑘 )  

𝑡𝑖 × 𝑦𝑖𝑗
𝑘 = 𝑍5(𝑖, 𝑗, 𝑘)   (44) 

𝑍5(𝑖, 𝑗, 𝑘) ≤ 𝑡𝑖 𝑍5(𝑖, 𝑗, 𝑘) ≤ 𝑀 × 𝑦𝑖𝑗
𝑘  𝑍5(𝑖, 𝑗, 𝑘) ≥ 𝑡𝑖 − 𝑀 × (1 − 𝑦𝑖𝑗

𝑘 )  

𝑡𝑖𝑗 × 𝑦𝑖𝑗
𝑘 = 𝑍6(𝑖, 𝑗, 𝑘)   (45) 

𝑍6(𝑖, 𝑗, 𝑘) ≤ 𝑡𝑖𝑗 𝑍6(𝑖, 𝑗, 𝑘) ≤ 𝑀 × 𝑦𝑖𝑗
𝑘  𝑍6(𝑖, 𝑗, 𝑘) ≥ 𝑡𝑖𝑗 − 𝑀 × (1 − 𝑦𝑖𝑗

𝑘 )  

    
   By adding these inequalities sets, constraints (25) and (26) modify to constraints (46) and (47), 
respectively. 

 

𝑡𝑘
1 = max

𝑖∈𝑉𝑂∪𝑉𝑆 ,𝑖≠𝑘
{ 𝑍1(𝑖, 𝑘) + 𝑠𝑡(𝑖) × 𝑦𝑖𝑘 + 𝑍2(𝑖, 𝑘)}                          ∀𝑘 ∈ 𝑉𝑆   

(46) 

𝑡𝑗 =  ∑ (𝑍3(𝑘, 𝑗) +

𝑘∈𝑉𝑆

𝑠𝑡(𝑘) × 𝑦𝑘𝑗
𝑘 + 𝑍4(𝑘, 𝑗)) + 

∑ ∑ (𝑍5(𝑖, 𝑗, 𝑘) + 𝑠𝑡𝑖

𝑖∈𝑉𝐶,𝑖≠𝑗𝑘∈𝑉𝑆

 × 𝑦𝑖𝑗
𝑘 + 𝑍6(𝑖, 𝑗, 𝑘))                                  ∀𝑗 ∈ 𝑉𝐶  

(47) 

𝑍𝑙(𝑖, 𝑘) ≥ 0                                                                  𝑘 ∈ 𝑉𝑆, 𝑖 ∈ 𝑉𝑂 ∪ 𝑉𝑆, 𝑙 = 1,2 (48) 

𝑍𝑚(𝑘, 𝑗) ≥ 0                                                                       𝑘 ∈ 𝑉𝑆, 𝑗 ∈ 𝑉𝐶 , 𝑚 = 3,4 (49) 

𝑍ℎ(𝑖, 𝑗, 𝑘) ≥ 0                                                       𝑘 ∈ 𝑉𝑆 , 𝑖 ∈ 𝑉𝐶, 𝑗 ∈ 𝑉𝐶 , ℎ = 5,6 (50) 
 

   The inequalities in (46) by having maximization expressions are not linear. For linearizing these 
constraints according to operational research methods, inequalities in (52) are added. 
 

(51) 𝑋 = max
𝑖

{𝑎(𝑖)} 

 

(52) 𝑋 ≥ 𝑎(𝑖)                                                                                                                    ∀𝑖 

 
So, the maximization constraints are linearized. 

Constraints (46) will be replaced by (53) and (54) inequalities to be linearized. 
 

(53) 𝑍1(𝑖, 𝑘) + 𝑠𝑡(𝑖) × 𝑦𝑖𝑘 + 𝑍2(𝑖, 𝑘) = 𝑡𝑖𝑚𝑒(𝑖, 𝑘)           ∀𝑖 ∈ 𝑉𝑂 ∪ 𝑉𝑆, ∀𝑘 ∈ 𝑉𝑆 

(54) 𝑡𝑘
1 ≥ 𝑡𝑖𝑚𝑒(𝑖, 𝑘)                                                                   ∀𝑖 ∈ 𝑉𝑂 ∪ 𝑉𝑆, ∀𝑘 ∈ 𝑉𝑆 
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    Therefore, after all these procedures the proposed mixed integer nonlinear programming (MINLP) 
model is linearized and exchange to a mixed integer linear programming (MILP) model. The 
linearized model will be solved in next section.  

3-Solution method 
   There are two general approaches for optimizing multi objective problems: Classic approaches and 
evolutionary techniques. Classic approaches include decomposition methods such as sum of weighted 

additive (SAW), 𝜀-constraint, Lp-metric, goal programming and goal attainment methods. These 
approach exchange the multi objective problem to single objective problem. Each run of the model 
can find a Pareto solution. So to find a Pareto front, the problem must be run several times. These 
approaches can be implemented by the aid of business solvers and usually they are not appropriate for 
large sized problems. But the evolutionary techniques are direct methods for problem solving. These 
techniques can find the Pareto front at once. They are fast and usually appropriate for large sized 
problems, such as multi objective meta-heuristics. 
   In this paper to solve the problem by decomposition methods, the Lp-metric method is considered 

and to solve the problem by evolutionary techniques, NSGA-II and MOPSO are implemented. 

3-1-Lp-metric method 
   Lp metric method is a simple method for forming a combined objective function. The purpose of Lp 
metric method is minimizing deviations of the existing objective functions from an ideal solution. 
Therefor the overall objective function will be as follows (Mahmoodjanloo, Esmaili and Hajiaghaei-
Keshteli, 2016): 
 

(55) 𝑀𝑖𝑛𝑇 = (∑ 𝑤𝑖(
𝑓𝑖 − 𝑓𝑖

∗

𝑓𝑖
∗ )𝑟

𝑛

𝑖=1

)

1/𝑟

 

𝑓𝑖: The amount of objective function 𝑖 
𝑓𝑖

∗: The amount of ideal objective function 𝑖 
𝑤𝑖: Importance coefficient of objective function 𝑖 
𝑟: Parameter to emphasize the deviations 
 

3-2-NSGA-II for solving the problem 

3-2-1-NSGA-II algorithm 

   Genetic algorithm proposed by John Holland (1975) is one of the most popular and applicable 
evolutionary meta-heuristic to solve problems which are hard to find exact and optimal solutions. 

NSGA-II is an extension for the genetic algorithm and is used for solving the multi objective 
problems and is proposed by Deb et al. (2002). Algorithm starts with the initialization step. In this 
step, initial population is generated according to the section mentioned previously. After this step 
obtained solutions are improved each iteration by means of crossover and mutation operators. 
   The manner in which fitness function is calculated is critical and important factor in evolutionary 
algorithms (Rabbani, Farrokhi-Asl and Asgarian, 2017). A flowchart of the algorithm is depicted in 
figure 2. 

3-2-2-Solution representation in NSGA-II 

   The manner in which the solutions of the problem are coded has a significant impact on the quality 
of the solutions and computational time. The initial structure of the solutions in both algorithms is 

described. 
   The initial structure of the solutions in NSGA-II algorithm is made up from two strings of 
permutations. These structures in the context of NSGA-II are called chromosomes. The first string 
shows all routes between satellites and customers. It’s related to second level routes and vehicles. 
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Creating Initial population

start

Algorithm parameters setting

Evaluating initial population

Ranking the solutions according to the concept of dominance

Caculating crowding distance

Sorting the population

Stop condition

Perform crossover operator on selected members of the population

Perform mutation operator on selected members of the population

Merging the initial population and the offsprings obtained from 

crossover and mutation operators

Ranking the merged solutions according to the concept of dominance

Caculating crowding distance

Sorting the merged solutions

Truncating the merged solutions to reach the number of desirable 

population size

Reporting pareto 

front

End

No

Yes

 
 

Fig 2. Flow chart of NSGA-II algorithm 

 

   This string consists of 𝑛𝑐 + 𝑚2 − 1 permutation numbers. The numbers 1 to 𝑛𝑐, represent the 

customers. The numbers between 𝑛𝑐 and 𝑛𝑐 + 𝑛𝑠, show satellite’s delimiters. They show also that the 

numbers bigger than 𝑛𝑐 are vehicle’s delimiters. For example, by considering 4 customers, 2 satellites 
and 3 secondary vehicles a feasible permutation would be as figure 3. 

 
Fig 3. Second level string in NSGA-II  

   In this permutation a secondary vehicle is allocated to satellite1 and two ones are allocated to 
satellite2. The attained routes are 1-2-3-1, 2-4-2 and 2-1-2. 
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   Note that cumulative demands of customers in each second level route must not exceed the capacity 
of secondary vehicle. Also, the maximum allowable delivery time constraints and the satellite’s 
capacity constraint must be considered. We use penalty in all objective functions for trespassing from 
these limitation in each secondary route. 

    Second string depicts the routes between the depot and satellites. This string contains (𝑛𝑠 ∗ 𝑚1) +
𝑚1 − 1 numbers. Since it is allowable to visit a satellite for several times, the number of that satellite 

should be repeated as many as the primary vehicles and 𝑚1 − 1 zeros should be added to the set as 
primary vehicles delimiters. Then a random permutation of the numbers should be created. For 
example by considering 2 satellites and 2 primary vehicles a feasible permutation is as figure 4. The 
created routes are 0-1-2-0 and 0-2-1-0. 
   It must be attended that cumulative demands of satellites in each first level route must not exceed 

the capacity of  primary vehicle. Also, the maximum allowable delivery time constraints must be 
considered. We use penalty in all objective functions for trespassing from these limitation in each 
primary route. 

 
Fig 4. First level string in NSGA-II 

3-2-3-Crossover operator 

   The performance of NSGA-II algorithm is highly dependent on crossover and mutation operators. 
By these operators, we can search in the solution area and explore new solutions and exploit good 
solutions. In genetic algorithm literature, there are vary crossover and mutation operators that can be 
used according to type of problem (Rabbani, Farrokhi-Asl and Asgarian, 2017). In this paper the 
permutation crossover operator is implemented on the population. First, we select parents to perform 

crossover operation by binary tournament selection operator. After selection of parents, we produce 
one integer random number (c) between 1 and the number of chromosome’s genes. The first part of 
the parents is from 1 to c genes and the others are second part of the parents. The first offspring is 
constructed by first part of the first parent and second part of the second parent. There may be some 
repetitive genes in a offspring. The repetitious genes of first offspring should be replaced by 
repetitious genes of second offspring and vice versa. The crossover operator is applied on both first 
and second string. 

 

3-2-4-Mutation operator 

   First a parent is selected by binary tournament selection operator. After that, we produce one integer 

random number between 1 and 3. In case 1, swap mutation is applied on both first and second string. 
In case 2 and 3, reversion and insertion mutation is applied on the strings, respectively. Swap 
mutation selects two genes in chromosome randomly and swaps them to generate new solutions. In 
reverse mutation, two genes are selected randomly and the genes position between two selected genes 
is reversed. In insertion, two genes are selected randomly and the second one is inserted after the first 
one. The mutation operator is applied on both first and second string. 
 

3-3-MOPSO for solving the problem 

3-3-1-MOPSO Algorithm 

   MOPSO firstly introduced by Eberhart & Kennedy (1995), is a population-based algorithm that 
works on the basis of social behavior of animals. Similar to chromosomes in GA, particles in this 
algorithm are generated and evaluated in order to find a global optimal solution in a D-dimensional 

space. The particles use three important features, namely velocity, position, and the best personal 
position, to depart from one point to another in the solution space. These features have essential effect 
on the quality of the solutions obtained using MOPSO. The position of each particle in the solution 
space is determined by an objective function value while the velocity of each particle is defined as the 
distance that the particle should pass from one position to another. The best position that a particle 
visits during its movement is called its best personal position. The mathematical expressions of the 
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velocity and the position of each particle are obtained using the following equations (Maghsoudlou et 
al., 2016): 
 

𝑉𝑖
𝑡+1 = 𝑤 × 𝑉𝑖

𝑡 + 𝐶1 × 𝑟1 × (𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝐶2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) (56) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (57) 

 

The following notations are used in equations (56) and (57). These equations are used to update the 
particles velocity and position in each iteration. 

- 𝑉𝑖
𝑡+1 and 𝑉𝑖

𝑡 are the velocity of the 𝑖𝑡ℎ particle in iterations 𝑡 and 𝑡 + 1 

- 𝑋𝑖
𝑡+1 and 𝑋𝑖

𝑡 are the position of the 𝑖𝑡ℎ particle in iterations 𝑡 and 𝑡 + 1 

- 𝑃𝑏𝑒𝑠𝑡𝑖
𝑡 is the best position of 𝑖𝑡ℎ particle in iteration 𝑡 

- 𝑔𝑏𝑒𝑠𝑡𝑖
𝑡 is the best position among all the particles in iteration 

- 𝐶1 and 𝐶2 are positive constant values 
- 𝑟1 and 𝑟2 are random values between 0 and 1 

- 𝑤 is the inertia weight 

3-3-2-Solution Representation in MOPSO 

   Here the solution representation is like NSGA-II. The difference is in the way of number generation. 
In NSGA-II the strings are a permutation of the numbers, but in MOPSO first some real numbers are 
generated randomly. One integer number is assigned for each real number consecutively. After this, 
the real numbers are sorted in ascending order and the assigned numbers are moved with 
corresponding real numbers. The result of this work is a random permutation of integer numbers. The 

first string consists of 𝑛𝑐 + 𝑚2 − 1 real numbers and its permutation depicted in table 1.  

Table 1: Second level string in MOPSO 

Integer numbers 1 2 3 4 5 6 

Real numbers 0.95 0.16 0.29 0.72 0.41 0.84 

Rank of real numbers 6 1 2 4 3 5 

Permutation 2 3 5 4 6 1 

    

   The assignment to satellites and secondary vehicles are similar to NSGA-II solution representation. 

The second string is consisting of (𝑛𝑠 ∗ 𝑚1) + 𝑚1 − 1 real numbers. They would be sorted in 

ascending order. Then the first 𝑚1 ranks are 1, the next 𝑚1 ranks are 2 and so on. The remained ranks 
are 0. The permutation is shown in table 2. 

 
Table 2. First level string in MOPSO 

Integer numbers 1 2 3 4 5 

Real numbers 0.07 0.69 0.51 0.22 0.35 

Rank of real numbers 1 5 4 2 3 

Sorted ranks 1 4 5 3 2 

Permutation 1 2 0 2 1 

   The permutation states that the first primary vehicle serves satellites 1 and 2 while the second 
primary vehicle serves satellites 2 and 1. The first level routes are 0-1-2-0 and 0-2-1-0. 

4-Experimental results 
   In this section the results of Lp-metric method in CPLEX software on small sized instances are 
reported. The Lp-metric method on model is coded in IBM ILOG CPLEX 12.6.0.0. The VRP and also 
2E-VRP problems are NP-hard. For solving the medium and large sized problems, the NSGA-II meta- 
heuristic is implemented on the model. The results of proposed technique are compared based on four 
comparison metrics in medium and large sized problems with MOPSO algorithm. The algorithms are 
coded in MATLAB R2015a and executed on Intel Core i7 CPU 2.00 GHz personal computer with 8 

GB RAM. 
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4-1-NSGA-II Parameters setting 
   In this study, Taguchi method is utilized because it is based on the design of experiment (DOE). The 
purpose of the design of experiments is performing a set of tests that make meaningful changes in 

input variables to evaluate the impact of response variables. The response variable is obtained at the 
end of each experiment. A number of experiments are obtained considering how many factors and 
levels are defined. For NSGA-II algorithm four factors and three levels for each factor are considered. 
The factors are Crossover rate (pc), Mutation rate (pm), Maximum Iterations (MaxIt) and population 
(npop). They are shown in table 3. By considering these factors and levels L9 design is recommended 
for NSGA-II. The outputs are normalized using formula (56). The response variable contains four 
measures of NPS, DM, MID and SNS. The weighted sum of normalized measures (RPD) represents 

the response variable. The NPS, DM, MID and SNS weights are 2, 3, 4 and 3, respectively. 
 

Table 3. Considered levels for NSGA-II parameters 

npop MaxIt pm pc levels 

50 100 0.1 0.6 low 

70 300 0.2 0.8 medium 
90 500 0.4 0.9 high 

 

  (56) 𝑅𝑃𝐷 =
|𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛|

𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100 

 Number of Pareto Solutions (NPS): The number of non-dominated solutions that the 

algorithm can find. The bigger one is better one (Rabbani, Farrokhi-Asl and Asgarian, 

2017). 

 Diversification Metric (DM): measures the spread of the non-dominated solution set and is 

calculated as follows: 

   (57) 𝐷𝑀 = √∑ max(‖𝑥𝑖
′ − 𝑥𝑗

′‖)𝑛
𝑖=1                                                            𝑗 ∈ 1,2, … , 𝑛                                                             

Where ‖𝑥𝑖
′ − 𝑥𝑗

′‖ is the Euclidean distance between the non-dominated solutions 𝑥𝑖
′ and 𝑥𝑗

′.                            

The algorithm with a higher mean distance (DM) has a better capability (Govindan et al, 
2013). 

 Mean Ideal Distance (MID): calculates the mean distance between the non-dominated set 

and ideal point 𝑓𝐼𝑑𝑒𝑎𝑙 . The equation of MID is computed as: 𝑀𝐼𝐷 =
∑ 𝑐𝑖

𝑛
𝑖=1

𝑛⁄ , where n is 

the number of non-dominated solutions. 𝑓𝐼𝑑𝑒𝑎𝑙=(0,0,0) and 𝑐𝑖 = ‖𝑓𝑖 − 𝑓𝐼𝑑𝑒𝑎𝑙‖. 

The algorithm with a lower value of MID has better performance (Govindan et al, 2013). 

 Spread of Non-dominance Solution (SNS): pigeonholed as a diversity measure, it 

evaluates standard deviation of ideal solution from Pareto solutions and is calculated as 

follows: 

 (58)      𝑆𝑁𝑆 = √
∑ (𝑀𝐼𝐷 − 𝑐𝑖)2𝑛

𝑖=1

𝑛 − 1
 

 
The higher value of SNS brings the better solution quality (Govindan et al, 2013). The computations 
are executed in 2013 Minitab 16.2.4. on the instance E-n13-k4-62. In order to interpret results, two 
criteria of the mean of means and signal to noise ratio (SN) are defined.  
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Fig 5. Mean of means of instance E-n13-k4-17 

 
 

 
Fig 6. SN ratio of instance E-n13-k4-17 

    
   The lower values of the mean of means and the higher SN ratio show the better results. Each 
experiment is performed five times and the metrics in an experiment are expressed as the average of 
five iteration. The tuned parameters are population; crossover rate, mutation rate, and iteration which 

based on figure 5 and 6 are set to 90, 0.9, 0.2 and 500, respectively. 

4-2-Small sized problems  
   The 2E-VRP is a Np-hard problem. By enhancing the size of the problem, CPU time will increase 
exponentially. So, the CPLEX solver is economic just in small sized problems. We consider three 
small sized problems. In these problems respectively 10, 11 and 12 nodes of E-n13-k4-62 instance in 
(Christofides and Eilon, 1969) data sets which are presented on OR-Library website are considered. 
   In these problems we have 2 satellites and 1 depot. Solving the larger instances would take more 

than one hour time. The two methods results are reported in table 4. The 𝑓𝑖
𝑏𝑒𝑠𝑡is the best amount of 

𝑖th objective function in pareto front. NSGA-II and CPLEX column values in table 4 are the average 
of nine runs of the NSGA-II algorithm and the average of nine different weight combinations of 
objective functions in Lp-metric method, respectively. 
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Table 4. Results of CPLEX and NSGA-II algorithm on small sized problems 

CPU time(s) 𝑓3
𝑏𝑒𝑠𝑡  𝑓2

𝑏𝑒𝑠𝑡  𝑓1
𝑏𝑒𝑠𝑡  

𝑛𝑐  𝑛𝑠 nodes row 

C
P

L
E

X
 

N
S

G
A

-I
I 

C
P

L
E

X
 

N
S

G
A

-I
I 

C
P

L
E

X
 

N
S

G
A

-I
I 

C
P

L
E

X
 

N
S

G
A

-I
I 

8.53 460.04 129.11 149.2 16.55 14.10 247.97 265.66 7 2 10 1 

139.50 448.25 138 155.68 18.35 15.98 274 282.37 8 2 11 2 

524.63 465.18 167.64 155.33 21.27 17.75 306 286.38 9 2 12 3 

One can observe that NSGA-II is capable to find near optimal solutions and in two first case can even 

find a better 𝑓2
𝑏𝑒𝑠𝑡.  

 
Fig 7. Comparing CPU times for solving small sized instances by NSGA-II and CPLEX 

   The run times in figure 7 show that time increment in NSGA-II is lower than CPLEX. A feasible 
solution of instance 3 of table 4 achieved by CPLEX is depicted in figure 8. 
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Fig 8. A feasible solution of third small sized instance 
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4-3-Medium sized problems 
   We consider instances cover up to 51 nodes (1 depot and 50 customers and 5 satellites) and which 
are grouped in four sets as medium sized problems. The first three sets have been built from the 

existing instances for VRP by Christofides and Eilon denoted as E-n13-k4, E-n22-k4, E-n33-k4 and 
E-n51-k5 (1969), while the fourth set is taken from Crainic et al. (2010), comprises randomly 
generated instances simulating different geographical distributions, including customer’s distribution 
in urban and regional areas. All the instance sets can be downloaded from OR-Library website 
(Beasley, 1990). These instances are used in Perboli, Tadei and Vigo (2011). 
   These instances and the results of NSGA-II and MOPSO algorithms are presented in table 5. In 
order to parameter setting in MOPSO algorithm some assumptions are considered. Inertia weight (w) 

is 0.6, the cognitive learning factor (𝑐1) and the social learning factor (𝑐2) are 1 and 2, the mutation 
rate is 0.1, quantity of repository members (nrep) is 90 and the maximum iteration (MaxIt) is 500. As 
it is seen in this table, MOPSO cannot find a feasible solution for instances 13, 14, 16, 17 and 21 after 

five algorithm repetitions for each instance while NSGA-II has found a feasible solution for all 
instances. 
   Figures 9, 10 and 11 depict the comparison of three objective functions; respectively in the cases 
both algorithms presented feasible solutions. It can be seen that NSGA-II algorithm represented much 
better results for all objective functions.  

 
Fig 9. Comparison of 𝑓1

𝑏𝑒𝑠𝑡 in NSGA-II and MOPSO algorithms 

 

   It shows the superiority of the NSGA-II versus MOPSO in such problems. In these three figures it is 
observable that by increasing the instance size the difference of two algorithms in solution 
presentation will increase. 
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Table 5. Results of NSGA-II and MOPSO 

 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 

 
Fig 10. Comparison of 𝑓2

𝑏𝑒𝑠𝑡 in NSGA-II and MOPSO algorithms 

 

 

MOPSO NSGA-II 
Instance Name row 

𝑓3
𝑏𝑒𝑠𝑡  𝑓2

𝑏𝑒𝑠𝑡  𝑓1
𝑏𝑒𝑠𝑡  𝑓3

𝑏𝑒𝑠𝑡  𝑓2
𝑏𝑒𝑠𝑡  𝑓1

𝑏𝑒𝑠𝑡  

207.84 24.49 388.22 131.04 19.57 255.42 E-n13-k4-17 1 

194.16 26.56 396.3 117.28 20.6 250.38 E-n13-k4-39 2 

208.08 25.9 408.26 132.72 21.45 265.36 E-n13-k4-48 3 

231.2 31.2 454.5 167.6 24.22 321.86 E-n13-k4-62 4 

488.69 88.78 1020.18 280.6 56.01 589.88 E-n22-k4-s9-19 5 

335.4 71.04 761.29 218.38 54.09 518.63 E-n22-k4-s10-14 6 

412.28 73.84 832.79 250.93 56.95 541.64 E-n22-k4-s13-17 7 

372.91 85.66 862.62 248.02 59.61 600.87 E-n22-k4-s19-21 8 

602.6 178.46 1124.62 367.97 117.03 788.36 E-n33-k4-s2-13 9 

644.01 189.29 1313.26 417.98 119.06 835.72 E-n33-k4-s7-25 10 

578.31 176.27 1320.45 353.91 113.27 808 E-n33-k4-s16-24 11 

628.96 187.48 1333.82 362.40 114.14 788.4 E-n33-k4-s22-26 12 

- - - 416.79 179.87 936.47 E-n51-k5-13-44 13 

- - - 465.81 194.5 1018.37 E-n51-k5-40-42 14 

668.03 304.14 1495.1 327.52 166.41 713.18 E-n51-k5-41-42 15 

- - - 881.32 265.52 1792.46 Instance50-3 16 

- - - 834.06 291.99 1674.18 Instance50-11 17 

1823.6 465.06 3446.14 868.15 259.75 1691.18 Instance50-20 18 

1653.27 412.63 3203.12 837.1 255.79 1612.94 Instance50-26 19 

1792.65 405.56 3414.9 902.22 266.49 1798.64 Instance50-31 20 

- - - 892.89 278.92 1790.34 Instance50-35 21 

1975.42 453.93 3545.38 892.45 258.06 1747.12 Instance50-40 22 

1882.51 453.62 3361.6 794.19 256.66 1514.32 Instance50-44 23 

2070.7 473.24 3664.37 835.98 268.25 1625.18 Instance50-50 24 

2154.02 461.42 3764.25 846.4 256.45 1637.1 Instance50-54 25 
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Fig 11. Comparison of 𝑓3

𝑏𝑒𝑠𝑡 in NSGA-II and MOPSO algorithms 

    

   The Pareto fronts for Instance50-50 by NSGA-II and MOPSO algorithm are shown in figures 12 
and 13.  

 
Fig 12. Pareto front for Instance50-50 by NSGA-II 

 
   In order to evaluate the performance of the proposed algorithms more than one metric is needed and 
it cannot be measured adequately with only one performance metric. Hence; for evaluating solutions 
four NPS, DM, MID and SNS metrics are calculated for Pareto fronts. 
   The evaluation metrics and Run time for solving the instances are reported in table 6. The values in 
tables 5 and 6 are means of five repetitions of the algorithms for each instance. 
   Figure 14 shows the computational time for both algorithms. Obviously the NSGA-II algorithm run 

time is more than MOPSO. Since, NSGA-II searches more regions of solution space, and finds better 
number of non-dominated solutions, this higher computational time is reasonable. 
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Fig 13. Pareto front for Instance50-50 by MOPSO 

 
 
 

 
Fig 14. Run times for NSGA-II and MOPSO algorithms 

 

 

   According to table 6 and by comparison of the not empty rows, it can be observed that in all 
instances NSGA-II has better performance based on DM and MID metrics and also in 95 and 75 
percent of the instances based on NPS and SNS metrics, respectively. The empty rows show that the 
MOPSO algorithm wasn’t able to find a feasible solution for the corresponding instances after five 
algorithm repetition. So, it is concluded that totally, NSGA-II algorithm outperforms MOPSO 
algorithm.  
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Table 6. Comparison of two algorithms based on evaluation metrics 

MOPSO NSGA-II 
Instance Name row 

time SNS MID DM NPS time SNS MID DM NPS 

234.8 20.21 468.28 52.93 69 451.23 15.64 312.45 58.18 87.8 E-n13-k4-17 1 

212.15 45.22 487.09 34.91 16.4 458.22 24.50 318.97 75.38 89 E-n13-k4-39 2 

232.78 27.54 499.18 49.17 60.4 472.26 35.14 342.20 89.03 88.6 E-n13-k4-48 3 

209.89 49.21 566.47 55.41 34.2 443.57 53.74 434.37 110.87 89 E-n13-k4-62 4 

262.67 5.95 1141.42 28.87 61.25 475.32 20.36 677.65 62.75 89 E-n22-k4-s9-19 5 

247.1 3.97 840.09 32.01 90 485.61 3.86 570.27 35.46 88.66 E-n22-k4-s10-14 6 

333.84 16.56 953.76 50.34 82.33 472.55 29.81 645.65 79.68 81.33 E-n22-k4-s13-17 7 

343.59 8.22 957.17 41.79 89 482.83 30.22 696.78 80.05 89 E-n22-k4-s19-21 8 

363.7 60.01 1465.72 59.23 38 507.39 72.69 978.23 124.38 89 E-n33-k4-s2-13 9 

368.65 54.33 1547.74 76.04 72 491.21 76.35 1043.85 128.21 88.8 E-n33-k4-s7-25 10 

230.38 24.88 1480.37 54.96 53.5 472.61 14.26 911.01 65.82 88 E-n33-k4-s16-24 11 

237.06 30.62 1537.45 49.93 53.25 458.33 44 940.69 95.18 82.4 E-n33-k4-s22-26 12 

- - - - - 499.69 3.77 1044.8 36.06 86.5 E-n51-k5-13-44 13 

- - - - - 519.99 11.03 1160.1 60.81 86 E-n51-k5-40-42 14 

254.9 67.87 1751.82 43.86 29.4 487.29 35.85 868.54 85.99 73.4 E-n51-k5-41-42 15 

- - - - - 488.03 100.01 2151.2 155.65 86.6 Instance50-3 16 

- - - - - 517.03 189.51 2098.28 197.83 83.6 Instance50-11 17 

293.79 39.03 3977.78 66.23 66.8 477.53 187.2 2225.42 205.01 88.8 Instance50-20 18 

270.15 58.87 3740.57 63.54 41.75 478.51 189.42 2139.88 198.76 80.8 Instance50-26 19 

275.04 99.11 3998.25 85.24 68 528.56 156.38 2241.46 194.06 88.6 Instance50-31 20 

- - - - - 487.64 280.82 2342.04 238.63 88.8 Instance50-35 21 

321.11 37.95 4124.18 78.15 76.8 487.12 177.61 2210.76 207.27 89.2 Instance50-40 22 

301.84 38.48 3957.03 77.73 62 519.65 221.43 2002.04 216.78 81.2 Instance50-44 23 

313.6 49.83 4301.85 66.51 53.25 472.72 190.34 2148.32 218.42 89.2 Instance50-50 24 

310.48 12.18 4357.17 46.17 69.5 475.55 171.48 2090.96 199.44 82.4 Instance50-54 25 

 

4-4-Large sized problems 
   The prodhonce data sets with the link http://prodhonce.free.ir/ are used as large sized instances. 
These data sets are applicable to the Two Echelon Location Routing Problem (2-ELRP). But by 
considering vehicles capacity coordinates of the points, the number of customers and satellites and the 
demand of the customers, we use these data sets for proposed 2E-CVRP problem. These instances 
cover up to 211 nodes (1 depot and 200 customers and 10 satellites).  
   These instances and the results of both NSGA-II and MOPSO algorithms are presented in table 7. 
The MOPSO algorithm is not capable of finding a feasible solution for large sized problems except in 

two instances. These two instances are in rows 2 and 12 of table 7. While NSGA-II algorithm has the 
capability of finding a feasible solution in all large sized instances. The values in table 7 are means of 
five repetitions of the algorithms for each instance. The NSGA-II algorithm has presented better 
quantities for instances 2 and 12 in comparison with MOPSO algorithm. 

5-Conclusion and future research 
   This paper has presented a tri objective 2E-CVRP problem for perishable products. It aims at 
minimizing 1) total travel and handling costs, 2) total customers waiting times and 3) total carbon 
dioxide emissions. The second objective leads to increasing the customer’s satisfactions since the 

products are perishable and the less delivery time cause the more freshness and so more satisfaction. 
The proposed model is a mixed integer non-linear programming. By applying some linearization 
methods the problem exchange to the mixed integer linear programming (MILP). The model is solved 
by Lp-metric method in CPLEX for small sized problems. In order to solving the medium and large 
sized problems NSGA-II meta-heuristic algorithm is implemented on the model.  
   Comparing NSGA-II and CPLEX results indicate that the proposed algorithm can find near optimal 
solutions in much less time. The results of NSGA-II on medium sized problems are compared to the 

MOPSO results based on four comparison metrics. Based on these metrics the NSGA-II algorithm is 
capable in finding better Pareto solution but in a more run time versus MOPSO algorithm and by 

http://prodhonce.free.ir/
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problem size enhancement the difference between two algorithms will increase. In large sized 
instances MOPSO can find a feasible solution just in two instances, while NSGA-II can find a feasible 
solution in all instances. By comparing the two instances can find NSGA-II algorithm outperforms 
MOPSO. 

Table 7. Results of NSGA-II on large sized instances 

MOPSO NSGA-II 
Instance Name row 

𝑓3
𝑏𝑒𝑠𝑡  𝑓2

𝑏𝑒𝑠𝑡  𝑓1
𝑏𝑒𝑠𝑡  𝑓3

𝑏𝑒𝑠𝑡  𝑓2
𝑏𝑒𝑠𝑡  𝑓1

𝑏𝑒𝑠𝑡  

- - - 739.56 274.74 1672.74 coord100-5-1 1 

1521.8 440.08 3234.6 775.5 247.9 1740.42 coord100-5-1b 2 

- - - 916.5 182.08 2118.58 coord100-5-2 3 

- - - 605.74 208.18 1346.13 coord100-5-2b 4 

- - - 954.58 188.24 2212.88 coord100-5-3 5 

- - - 677.33 236.78 1536.48 coord100-5-3b 6 

- - - 1146.92 275.87 2436.78 coord100-10-1 7 

- - - 852.14 329.34 1826.3 coord100-10-1b 8 

- - - 1013.49 275.83 2188.95 coord100-10-2 9 

- - - 783.99 308.28 1649.75 coord100-10-2b 10 

- - - 893.13 263.96 1877.77 coord100-10-3 11 

1403.8 541.63 2726.8 715.78 288.2 1540.03 coord100-10-3b 12 

- - - 2467.42 650.33 5692.35 coord200-10-1 13 

- - - 1764.73 766.91 4095.7 coord200-10-1b 14 

- - - 2080.8 606.69 4734.44 coord200-10-2 15 

- - - 1483.62 703.32 3313.37 coord200-10-2b 16 

- - - 2000.08 587.31 4698.3 coord200-10-3 17 

- - - 1490.52 686.34 3500.67 coord200-10-3b 18 

 

   In general, the results show the validity and high performance of the NSGA-II algorithm. The 
results also indicate the efficiency of the proposed algorithm. 

The following recommendations can be considered for future study: 

 Because of the road traffic in different hours’ of a day, different speeds can be considered 
for the vehicles and solve the problem based on robust optimization programming 

 Using the vehicles with different capacities  

 Distribute multi products instead of one product 

 Solving the model by exact algorithms such as branch and cut 

 Extending the two echelon VRP problem to multi echelon VRP 

 Generalize the problem to location routing problem 
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