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Abstract 
In this paper, the optimizations problems to seek robust solutions under uncertainty 
are considered. The light robust approach is one of the strong and new methods to 
achieve robust solutions under conditions of uncertainty. In this paper, we tried to 
improve the quality of the solutions obtained from the Light Robust method by 
introducing a revised approach. Considering the problem concerned, an algorithm was 
also developed to properly choose the weight parameter in the proposed approach 
presented as much as possible. In addition, the data obtained from the proposed 
approach were investigated using the regression analysis. The results indicate that 
increased ratio of the number of constraints to the number of variables is directly 
correlated with increased likelihood of improving the quality of the solution. In 
conditions where the proposed approach has provided a solution better than the 
solution presented by the simple Light Robust approach, the mean value of the 
improvement accounts for about 9%. 
Keywords: Robust Optimization, Light Robust, Uncertainty 

 

1-Introduction 
   The basic premise of classical mathematical programming is to develop a model, which input data 
are certain values (Bertsimas and Sim, 2004). However, this assumption is often violated in real-world 
problems. This problem can be either attributed to the fact that the parameters used in the model are 
only the estimates of the real parameters or in a more general state due to the effect of uncertainty on 
some parameters. 
   The optimization issues affected by non-deterministic or uncertain parameters have been in the 
focus of attention from a long time ago. Two important factors in problems involving uncertainty are 
quality and feasibility of the solution. The optimization models occurring in uncertainty conditions 
may produce solutions so far from the optimal solution or even infeasible. Therefore, it seems natural 
to look for designing of solution methods capable of securing the planning models against uncertainty, 
or in other words, the solutions that are "robust" (Bertsimas and Sim, 2004). 
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In this paper, we focus mainly on the linear programming problem in the following form: 

(1)  min j j
j N

c x
∈
∑  

(2)                ij j i
j N

a x b i M
∈

≥ ∈∑  

(3)  0       jx j N≥ ∈  

  

   Some values of the coefficients matrix A can vary in the range ,ˆ ˆ
ij ij ij ija a a a − +  . The 

ija and îja are the relevant nominal values and the input noise data, respectively. The actual values of 

the coefficients are also independent of each other. Since the uncertainty in vectors b and c can be 
eliminated directly, they are considered in the model. In this model, we assumed that 
n N= andm M=  are respectively the number of variables and the number of constraints. 

The purpose of this paper is to display and improve the solution's robustness. In fact, we tried to 
improve the quality of the solutions obtained from the Light Robust method by introducing a revised 
approach. Considering the problem concerned, an algorithm was also developed to properly choose 
the weight parameter in the proposed approach presented as much as possible. The related literature is 
presented in Section 2. In Section 3, the proposed Light Robust approach will be described. An 
innovative algorithm is presented in Section 4. The computational results on random data are 
presented in Section 5 and finally, Section 6 draws some conclusions and suggestions for future 
studies. 
 
2- Literature Review 
   The sensitivity analysis approaches and stochastic programming were previously used in the 
classical methods to consider the uncertainty of parameters (Birge and Louveaux (2011)). In the first 
method, the effect of uncertainty on data was initially ignored, and subsequently, the sensitivity 
analysis was used to confirm the solutions obtained. However, the sensitivity analysis is only a tool 
for analyzing the solution's goodness and cannot be used to generate robust solutions. In addition, 
performing sensitivity analysis on the parameters simultaneously in models with a lot of unreliable 
data appears to be impossible. 
The stochastic programming considers and uses scenario with different probabilities to scale the 
parameters (See Ruszczynski and Shapiro (2003); Linderoth et al (2006) and Birge and Louveaux 
(2011)). However, there are three main problems in the case of this approach: 

• Identifying the distribution of data, and thus, numerating the scenarios using these 
distributions. 

• The chance constraints eliminate the convexity characteristic of the main problem and 
significantly adds to its complexity 

• The dimensions of the optimization model obtained will astronomically increase with 
increasing scenarios, which raises many computational challenges. 

   Another approach to consider the uncertainty is robust optimization (Bertsimas et al. (2011); Ben-
Tal and Nemirovski (1999); Gabrel et al, (2014)). A robust solution is a solution that can remain 
feasible even when some of the input parameters change. In other words, it is desirable to provide a 
solution that is not necessarily optimal for a nominal problem but its feasibility and the cost generated 
by would not be grossly overwhelming by changing the coefficients (Mulvey, 1995). The first step in 
this direction was taken by Soyster (1973). He proposed a linear optimization model for generating a 
solution that will be feasible for all the data in a convex set. The provided model was highly 
conservative; meaning that, in order to ensure the feasibility, a relatively large proportion of the 
solution optimality of the nominal problem will be lost. In fact, the Soyster proposed approach was 
very strict and for the worst case. Ben-Tal and Nemirovski (2002) developed other robust approach 
with less conservatism compared to Soyster (1973). In their proposed model, the uncertainty was 
considered ellipsoidal. The problem with their method is the fact that it turns a linear programming 
problem into the form of quadratic or conical programming. Goerigk and Schöbel (2016) argue that 
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the algorithm engineering methodology fits very well to the field of robust optimization and yields a 
rewarding new perspective on both the current state of research and open research directions. 
   Bertsimas and Sim (2004) considered a different viewpoint of robustness (See Section 2-1). Their 
approach is based on the fact that, in real conditions, it is unrealistic to assume that all coefficients 
take their worst-case value at the same time. This approach preserved the linearity of the model. In his 
proposed approach, a new Norm called D-Norm has been used instead of the Euclidean Norm. The 
classical robust counterpart of a problem requires the solution to be feasible for all uncertain 
parameter values in a so-called uncertainty set and offers no guarantees for parameter values outside 
this uncertainty set. The globalized robust counterpart (GRC) extends this idea by allowing controlled 
constraint violations in a larger uncertainty set (Ben-Tal, et al.  2017). 
   In addition to the mentioned approaches in the modeling of the uncertainty of input data, there is 
also another approach known as Light Robust that is presented by Fischetti and Monaci (2009) and is 
described in Section 2-2 of this paper. In general, the Light Robust approach has been developed to 
create balance between the optimality and feasibility of the solution. Ide and Schöbel (2016) extended 
the concepts of highly, and lightly robust efficiency and collected different types of min-max robust 
efficiency. 

2-1- Bertsimas and Sim approach’s 
   The Bertsimas and Sim approach is based on the fact that in real-world problems, all uncertain 
parameters rarely happen to get their worst cases at the same time. Then, it seems logical to present a 
model in which the optimal solutions will still remain robust for any variation from the maximumΓi  

parameters in the ith row. Here, the parameterΓi  is an input parameter that is determined based on our 

expectation from the robustness of the solution (Bertsimas and Sim (2004)). Therefore, in the robust 
counterpart model for the problem, the following constraint will replace the constraint associated with 
each row: 

(4) ( ),Γij j i i
j N

a x x bβ
∈

+ ≤∑  

Where,  

( ),Γixβ is the protective level that is defined proportional to the uncertainty of each row, as follows. 

)5(  ( )
:| | Γ

,Γ max ˆ
i

i ij
S N S

j
j S

xx aβ
⊂ ≤ ∈

= ∑  

Therefore, ( ),Γixβ is the maximum amount of increase on the left side of the constraint, while the 

maximumΓi  parameters in the rowi gets their worst values. 

As stated, Γi provides the possibility to control the level of uncertainty: Γ 0i = means that we have 

failed to consider the uncertainty and chosen the nominal constraints, whileΓi n= means that all the 

uncertain parameters at the ith row can get the worst amount, which is the same situation considered 
by Soyster (1973). Thus, the robust model of the problem is formulated as follows (to find the detail 
description about the model and constrain please see Bertsimas and Sim (2004)): 

)6(  min j j
j N

c x
∈
∑  

)7(  Γij j i i
j N j N

i ija x z i Mp b
∈ ∈

+ ≤ ∈+∑ ∑  

)8(  ˆ 0ij j i ija x z p i M j N− + + ≥ ∈ ∈  

)9(  0iz i M≥ ∈  

)10(  0ijp i M j N≥ ∈ ∈  

)11(  0jx j N≥ ∈  
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A remarkable point in the BS approach is that if the uncertain parameters under the assumptions 
change, the solutions will definitely be feasible. However, even if the number of coefficients that 
change in the ith row would be more thanΓi , the solution provided by this approach will remain 

feasible with a high probability. 

2-2- Light robust approach 
   As noted in the previous sections, the Light Robust approach provides a compromise between the 
robustness of the solution of one hand and the quality of the solution on the other hand (Fischetti and 
Monaci (2009)). In other words, in this approach, we are looking for the best robust solution that does 
not have a very large distance from the optimal solution of the nominal problem. To explain this issue, 
considering the robust optimization model (BS) proposed by Bertsimas and Sim (2004), which 
mentioned in the previous section, the Light Robust counterpart will be as follows: 

)12(  min i i
i M

w γ
∈
∑  

)13(  ( ),Γ -ij j i i i
j N

a x x b i Mβ γ
∈

+ ≤ ∈∑  

)14(  ij j i
j N

a x b i M
∈

≤ ∈∑  

)15(  
*(1 )j j

j N

c x zδ
∈

≤ +∑  

)16(  0jx j N≥ ∈  

)17(  0i i Mγ ≥ ∈  

 

   The auxiliary variables ofiγ act as the second stage source variables and are used to avoid the 

possible infeasibility and their linear weight combination is minimized in the target function. Each of 
these variables specifies the robustness level of the solution in connection with the constraint 
associated with this auxiliary variable (constraint 12). More precisely, each of these variables gets a 
very positive amount, if and only if, the relevant constraint is violated. The constraint (15) also 
ensures that the worst valued obtained would not be less than a multiple of the optimal value of the 
nominal problem. The role of parameterδ is to create equilibrium between the robustness and the 
quality of the solution provided. The weightiω used in the target function actually creates a kind of 

penalty on different values of the auxiliary variables. 
   It should be noted that the Light Robust approach significantly depends on the robustness definition 
of the BS. Therefore, this approach can only be used only when the existing uncertainty can be 
formulated and described linearly. However, various forms of Light Robust approach can be used for 
a single problem. There is also another approach of the LR, which is not dependent on the BS, but is 
directly related to the auxiliary variables associated with the nominal problem constraint. The basic 
idea used here is that the robustness degree of a solution, in some way, is expressed by the value of 
auxiliary variables with uncertainty. Assume that *x is the optimal solution of the nominal problem. 
Then, we suppose: 

(18)  
* *ˆ( )i ij ij j i

j N

L a a x b
∈

= + −∑  

The maximum amount of violation of i constraint related to the optimal solution is equal to *x . We 
also show the set of all the constraints, for which the above is positive, as follows: 

(19) *{ : 0}iU i M L= ∈ >  
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In other words, U is the set of the constraints experiencing the problem of uncertainty that must be 

resolved. Without diminishing the totality, we can assume that 1U ≥ , since otherwise, the optimal 

solution of the *x nominal problem will be always feasible. We first solve the following LP problem: 

)20(  max σ  

)21(  ij j i i
j N

a x s b i M
∈

+ = ∈∑  

)22(  *
i

i

s

L
i Uσ ≤ ∈  

)23(  
*(1 )j j

j N

c x zδ
∈

≤ +∑  

)24(  0jx j N≥ ∈  

)25(  0is i M≥ ∈  

 

That maximizes the minimum of the auxiliary variables assigned to all the constraints with 
uncertainty. Also, innovatively, the, is auxiliary variables are normalized by dividing by*iL . 

Considering the nature and form of the problem, which is of Max-Min type, the objective (target) 
function only considers the constraint that has the least amount of the normalized auxiliary variable, 
and therefore, it has no incentive to give larger auxiliary variables to the rest of the constraints; while 
this is important for the robustness improvement. Therefore, another LP will be solved to resolve this 

imbalance. If we assume that the optimal solution of the above LP problem is as( )* * *, ,x s σ , we can 

define the following parameters: 

(26)  ( )
*

* *
*

*                :  

i
i U

i i
avg min

i

s
L ss s min i U

LU
σ

∈  = = ∈ = 
 

∑
  

 

We solve the secondary LP problem as follows: 

(27)  min i
i U

t
∈
∑  

(28)  ij j i i
j N

a x s b i M
∈

+ = ∈∑  

(29)  
*(1 )j j

j N

c x zδ
∈

≤ +∑  

(30)  *
i

i avg
i

s
Ut s i

L
+ ≥ ∈  

(31)  0jx j N≥ ∈  

(32)  min*
i

i

s
s U

L
i≥ ∈  

(33)  0 0i is t i U≥ ≥ ∈  
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In this model, we define a it variable for each constraint belonging to the set U. The it will take a 

positive value, if and only if, the auxiliary variable associated with that variable is smaller than 

avgs .The objective function of this LP minimizes the sum of these variables to create a balance. 

3- Heuristic Weighted Light Robust approach (HWLR) 
    As mentioned above, the LR approach has been proposed to create a balance between the quality 
and robustness of the solution. Several attempts have been made to introduce new versions of this 
approach, some of which were mentioned in previous sections. In this section, by providing a model, 
we are to improve the quality of the solution presented by the light robust approach. In the proposed 
approach, providing a solution with a better quality would have a higher time cost. The general form 
of the proposed model is as follows: 

)34(  max           i i
i

s i Uϑ ∈∑  

)35(                ij j i ia x s b i N∑ + = ∀ ∈  

)36(  ( ) *
1 ns w zs +…+ ≤ ×  

)37(  
*

j j
j

c x zδ≤ ×∑  

)38(  , 0        ,i jS x i j≥ ∀  

 

   The approach presented by Fischetti and Monaci (2009) (equations (27-33)), is based on solving 
two linear mathematical programming problems. In this paper, by providing a model, we tried to 
solve the problem of imbalance introduced in paper by Fischetti and Monaci (2009). Here, using the 
appropriate weight composition as the target function, we attempted to resolve the problem. The 
constraint (36) is to make a special linear combination of alternating variables bounded with a factor 
of the optimal value of the nominal problem. To complete this model, we need to obtain 
the iϑ coefficients, which are the cost of each additionalis unit. We will also determine theiV , which 

is the maximum amount that the problem quality is allowed to be reduced. We increase the is s as 

much as the feasibility of the problem will be observed in the worst case as much as possible. For this 
reason, the model objective function will be maximization. 

We first notice that if theis is increased a single unit, the value of the objective function of the model 

will increase as iϑ . On the other hand, with increasing theis as one unit, the total uncertainty would 

decrease. This coefficient is the same portion of the ith constraint in the total uncertainty. We define 

the total uncertainty of the model as *
i

i U

l
∈
∑ . If this value is zero, the nominal model always obtains the 

optimal solution. Therefore, the uncertainty share of each is will be equal to
*

*
i

ii U

l

l
∈∑

, which is the 

same iϑ . 

The relation i i
i

w s∑ shows the reduced quality of the solution. In other words, its maximum can be as 

much as a percentage of*z . Thus, * V zδ=  is defined. The value ofδ is determined by DM. To 

specify thes coefficients, we do as this: If the vector( )1 2, , , nss s… changes, what a change will occur 

in the matrixA ? To do this, we must first define the change in the vector.S . 
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11 1 1 1

1

n

n nn n n

a a S b

X

a a S b

     
     + =     
     
     

L

M O M M M

L

 )39( 

 

Since the purpose of this calculation is to find out what change will occur in the following relation by 
changing the vector( )1 2, , , nss s… , we will have: 

( )
1

1 2, , , n

n

x

Z C C C

x

 
 = …  
 
 

M )40( 

1 1 1 1 1 1 1     A AX A S A b X A S A b CX CA S CA b− − − − − − −+ = → + = → + =  )41( 
1 1  Z CA S CA b− −+ =  )42( 

 

It is clear from the above equation that if theis increases by one unit, thez will decrease as much as 

the ith component of vector 1CA − , i.e., the vector C in the ith column of vector 1A − . Therefore, the 
factor of variable is multiplied by the defined constraint will be considered equals to the same value; 

i.e., ( )1
i i

w CA −= . Therefore, the mentioned constraint will be as follows: 

)43(  ( )1 *
ii

i

CA s zδ− ≤∑  

If 1A − does not exist, this approach is useless. To solve this problem, the following calculations are 
useful. In fact, z is the trace of the following matrix: 

)44(  

1 1 10 0 0

0 0 0n n n

z c x

z c x

    
    =    
    
    

L L L

M O M M O M M O M

L L L

  

)45(  

1

1 1 10 0 0

0 0 0n n n

c z x

c z x

−
     
     =     
     
     

L L L

M O M M O M M O M

L L L

  

The sum of the elements of the ith row of 
11 1 1

1

0

0

n

n nn n

a x

a a x

a  
  
  
  
  

L L

M O M M O M

L L

is equal to the ith element 

of
11 1

1

n

n nn

a a

X

a a

 
 
 
 
 

L

M O M

L

. Then, on the two sides of the above equation, the matrix A is multiplied: 
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n

z

ca a

A

a

z

ca

c

z z

c

−
 
 

            =          
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 
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L
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1
11 1

1

1
1

1

n
n

n

n
n nn

n

z z

c c

z z

c c

a a

a a

 
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 
 =
 
 
 
 

L

M O M

L

  

If we show the sum of the elements of the ith row of the above matrix with iK , with one unit increase 

in the is , the iK must be reduced by one unit. Thus, if we have∆s 1i
i

=∑ , one can conclude that the 

reduction in the sum of the elements of the above matrix is equal to one. The sum of the above 
elements is equal to: 

)48(  
j

ij
i j j

z
TE a

c

 
=   

 
∑ ∑  

Now, assume that in the ith row, the largest values of 
ij

j

a

c
are related to indexkj and the least values 

are related to indexlj . In this case, we will have: 

)49(  max k k

k k

ij ijij ij
j j j

i j i j i j ij j j j

a aa a
TE z z z z

c c c c

    
= ≤ ≤ ≤        

    
∑ ∑ ∑ ∑ ∑ ∑ ∑  

 

If we put k

k

ij

i j

a
M

c
=∑  , we will haveTE Mz≤ . Similarly, if we put l

l

ij

i j

a
m

c
=∑ , we will 

haveTE mz≥ . On one hand, TE is equal to i
i

s∑ . Therefore, the constraint i
i

mz s Mz≤ ≤∑ is 

always established. 

Now, we consider that i
i

s Mz≤∑ is always feasible and i
i

s mz<∑  is always infeasible. Hence, we 

will look for a "w " that optimizes the constraint i
i

s wz≤∑  of the model solution meanwhile 

becoming feasible as much as possible. To this end, we develop the following innovative algorithm: 

4- Proposed innovative algorithm 
Step 0: We put fw M= and sw m= . We solve the problem by the assumption of sw w= . If it is 

infeasible, we will go to step 1. If it becomes feasible, the algorithm will end and the solution obtained 
will not get better. 

)46( 

(47) 
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Step 1: We solve the problem by the assumption of
2

s fw w
w

+= . If it is infeasible, we will go to 

step 2. If it becomes feasible, we will go to step 3. 

Step 2: We put sw w= and go to step 1. 

Step 3: If the quality of the problem is sufficient, the algorithm ends. To improve the quality of the 
problem solution, we put fw w= and go to step 1. 

5- Computational results 
   In this part of the paper, the computational results of the proposed HWLR approach are presented. 
The input parameters of the problem were developed randomly for a minimizing linear programming 
problem. A comparison between the optimal value obtained from the simple LR approach (Fischetti 
and Monaci (2009)), the proposed HWLR approach as well as the solution resulted from the GAMS 
software for the nominal problem is provided. The HWLR approach described in Section 3 is seeking 
to improve the quality of the solution obtained from the LR method. To evaluate the performance of 
the new approach, the likelihood of improving the quality of the solution compared to simple LR 
approach was selected as the measurement criterion. The solution obtained from HWLR approach 
was compared with the solution obtained from the simple LR approach as the probability of 
improvement (column 4, Table 1). To estimate this probability, 40 test problems in large sizes of i and 
j (i.e, Numbers of variables and constrains) were considered. Then for each test problem, 100 times 
the parameters were randomly generated. Finally, the number of improvement events was used as an 
estimate of the likelihood of improvement. For example, for i = 447 and j = 245, out of 100 random 
generated problems, the new approach provided a definite better solution than the simple LR approach 
in 41 cases and in other 59 solutions provided the same results are obtained by simple LR approach. 
In fact, the proposed approach never provided a solution worse than the simple LR and the probability 
of improvement as a simulated measure shows the likelihood of providing better results. The results 
of these calculations are in accordance with Table 1. Also, to generate all data of the problem 
completely randomized as much as possible, the lower and upper bounds of the range for producing 
random numbers were generated randomly as well. 
 

)50(  [ [ ] [0,30 , 50,1501 ]]jc uniform uniform uniform=  

)51(  [ [ ] [500,1500 , ]250 ]0,3500i uniform uniform uniformb =  

)52(  [ [ ] [0,5 , 10, ]15]ija uniform uniform uniform=   

 

The calculations show that the improvement of the quality of the solution varies from 0 to 12% of the 
variable compared to the simple Light Robust approach for cases where improvements are made, and 
on average, is slightly more than 9%. As can be seen in Table 1, in the case where the ratio of the 
number of constraints to the number of variables is small, the proposed approach shows no significant 
improvement compared to the simple Light Robust approach. However, as this ratio increases, the 
improvement of the proposed approach is significant compared to the simple Light Robust approach. 
For example, in a case that the number of constraints and the number of variables are 328 and 35, 
respectively, in 100 different implementations with random data, the proposed approach provides a 
significantly better solution in 88 cases compared to the simple Light Robust approach, which is a 
remarkable result. 
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Table 1. Computational results of proposed approach 

Number 
Number of 
constraints 

Number of 
variables  

Probability of 
improvement 

Number 
Number of 
constraints 

Number of 
variables  

Probability 
of 

improvement 
1 72 455 6 21 328 35 88 

2 144 313 16 22 62 211 13 

3 389 10 92 23 405 281 30 

4 92 173 29 24 372 311 26 

5 458 149 52 25 262 279 25 

6 168 395 13 26 158 416 16 

7 447 245 41 27 420 466 17 

8 157 206 28 28 15 199 0 

9 359 47 78 29 388 174 50 

10 342 378 27 30 136 373 12 

11 107 498 7 31 196 285 26 

12 273 497 11 32 498 424 30 

13 102 39 76 33 282 343 24 

14 251 279 35 34 97 104 36 

15 276 329 26 35 216 302 22 

16 110 403 8 36 129 66 54 

17 404 472 19 37 69 187 11 

18 285 190 37 38 184 13 95 

19 92 43 68 39 342 268 42 

20 117 498 2 40 95 393 8 

 

   To further examine the effect of the number of constraints and the number of variables on the 
likelihood of improvement, we will go forward a little further. To do so, using the data presented in 
Table 1, we conducted a statistical survey using multiple regressions with the help of  9EV iews  

software. From available models, using the model2R benchmark, Durbin-Watson criterion and the 
Schwarz criterion, we extracted the best model as shown below: 

)53(  ( ) ( )  91.6  23.3*   12.2*PROB LOG V AR LOG CONS= − +  

 

As predicted, with considering the number of constraints constant, increased number of variables 
reduces the chance of the solution improvement. Also, if the number of variables is considered 
constant, increased number of constraints will increase the improvement probability of the problem 
solution quality. 

6- Conclusion, limitation and future research 
   The real-world problems, when expressed as optimization models, mostly confess to uncertainty. 
The uncertainty in optimization problems and the importance of achieving a robust solution have been 
the focus of attention in the recent literature. In this regard, several approaches have been proposed to 
solve this problem, some of which were mentioned in the section 2 of this paper. The feasibility of the 
solution and the quality of solution are two important factors in all of these approaches. In this paper, 
as noted in the previous sections, the authors' main focus was on the quality of the solution. 
Accordingly, a new constraint was introduced and an algorithm was also developed, which tries to 
generate the best possible value to estimate the parameter of this constraint. To review and implement 
the proposed approach, an indicator was introduced for the likelihood of improving the quality of the 
solution and its computational results were reported. The computational results obtained from the 
implementation of this approach indicate that whenever we use this approach in case of problems 
where the number of constraints is more the number of variables, the likelihood of improving the 
quality of the solution obtained significantly increases compared to the classic Light Robust approach, 
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and will well cover the time cost of running the algorithm. Also, when this improvement occurs, the 
average solution's improvement rate would be of 9%, which is considerable. It should be noted that 
this improvement rate is only the average of values, and in some cases, this improvement rate is much 
better as well. A multiple regression model was performed to investigate the results more accurately 
and test the hypothesis obtained from the observations. Evaluation of the obtained model suggests that 
the probability of improving the solution quality of the proposed approach has an increasing trend in 
cases where the number of constraints of the problem is more the number of variables. The purpose of 
this paper was to provide an approach that can improve the quality of the solution of optimization 
problems while the obtained solution will remain feasible at the same time. To achieve this goal, 
many efforts have been made and this process will continue. As seen, a fairly intelligent addition of a 
constraint significantly improved the quality of the resulting solution in some cases.  
Despite the above contributions, our research is not without limitations. The proposed model can set 
the stage for the incorporation of real parameters and constraints. As future research, to find the 
parameter used in this constraint, the meta-heuristic algorithms as well as other intelligent methods 
can be used. In the same vein, designing a properly designed DSS will have a significant impact on 
improving the quality of the solution and improving the timing of the problem solving simultaneously. 
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