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Abstract
In this paper, the optimizations problems to sesdust solutions under uncertainty
are considered. The light robust approach is onth@fstrong and new methods to
achieve robust solutions under conditions of u@oaty. In this paper, we tried to
improve the quality of the solutions obtained frahe Light Robust method by
introducing a revised approach. Considering thélpro concerned, an algorithm was
also developed to properly choose the weight paeania the proposed approach
presented as much as possible. In addition, tha dhtained from the proposed
approach were investigated using the regressiotysagaThe results indicate that
increased ratio of the number of constraints to thieber of variables is directly
correlated with increased likelihood of improvinget quality of the solution. In
conditions where the proposed approach has provaemblution better than the
solution presented by the simple Light Robust apgho the mean value of the
improvement accounts for about 9%.
Keywords: Robust Optimization, Light Robust, Uncertainty

1-Introduction

The basic premise of classical mathematical raragiing is to develop a model, which input data
are certain values (Bertsimas and Sim, 2004). Heweliis assumption is often violated in real-world
problems. This problem can be either attributetheofact that the parameters used in the model are
only the estimates of the real parameters or iroeergeneral state due to the effect of uncertainty
some parameters.

The optimization issues affected by non-deteisticy or uncertain parameters have been in the
focus of attention from a long time ago. Two impottfactors in problems involving uncertainty are
guality and feasibility of the solution. The optization models occurring in uncertainty conditions
may produce solutions so far from the optimal solubr even infeasible. Therefore, it seems natural
to look for designing of solution methods capalfleexuring the planning models against uncertainty,
or in other words, the solutions that are "rob(Bgrtsimas and Sim, 2004).
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In this paper, we focus mainly on the linear prograng problem in the following form:

minZijj (1)
jON

Zaﬁxj >h i OM @)

jON

x;20 jON (3)

Some values of the coefficients matrié& can vary in the rang[eaij —a;,8; ta; ] The
a, anda:.j are the relevant nominal values and the input ndéte, respectively. The actual values of

the coefficients are also independent of each ofiece the uncertainty in vectobsand C can be
eliminated directly, they are considered in the alodin this model, we assumed that

n =|N |andm =|M | are respectively the number of variables and tmelrer of constraints.

The purpose of this paper is to display and imprthes solution's robustness. In fact, we tried to
improve the quality of the solutions obtained frtme Light Robust method by introducing a revised
approach. Considering the problem concerned, asritigh was also developed to properly choose
the weight parameter in the proposed approach miex@s much as possible. The related literature is
presented in Section 2. In Section 3, the propdsghdt Robust approach will be described. An
innovative algorithm is presented in Section 4. Tdwmmputational results on random data are
presented in Section 5 and finally, Section 6 draeasie conclusions and suggestions for future
studies.

2- Literature Review
The sengitivity analysis approaches andtochastic programming were previously used in the
classical methods to consider the uncertainty ohrpaters (Birge and Louveaux (2011)). In the first
method, the effect of uncertainty on data was dhitiignored, and subsequently, the sensitivity
analysis was used to confirm the solutions obtaiktmvever, the sensitivity analysis is only a tool
for analyzing the solution's goodness and cannaidesl to generate robust solutions. In addition,
performing sensitivity analysis on the parametemsubaneously in models with a lot of unreliable
data appears to be impossible.
The stochastic programming considers and uses scenario with different prditiali to scale the
parameters (See Ruszczynski and Shapiro (2003jtetath et al (2006) and Birge and Louveaux
(2011)). However, there are three main problentkéncase of this approach:
» Identifying the distribution of data, and thus, remating the scenarios using these
distributions.
* The chance constraints eliminate the convexity attaristic of the main problem and
significantly adds to its complexity
 The dimensions of the optimization model obtaineill w&stronomically increase with
increasing scenarios, which raises many computticmallenges.

Another approach to consider the uncertaintylmist optimization (Bertsimas et al. (2011); Ben-
Tal and Nemirovski (1999); Gabrel et al, (2014))rdbust solution is a solution that can remain
feasible even when some of the input parametensgehdn other words, it is desirable to provide a
solution that is not necessarily optimal for a neahiproblem but its feasibility and the cost getexta
by would not be grossly overwhelming by changing tbefficients (Mulvey, 1995). The first step in
this direction was taken by Soyster (1973). He psegl a linear optimization model for generating a
solution that will be feasible for all the data & convex set. The provided model was highly
conservative; meaning that, in order to ensureféasibility, a relatively large proportion of the
solution optimality of the nominal problem will best. In fact, the Soyster proposed approach was
very strict and for the worst case. Ben-Tal and Mevski (2002) developed other robust approach
with less conservatism compared to Soyster (19h3jheir proposed model, the uncertainty was
considered ellipsoidal. The problem with their negths the fact that it turns a linear programming
problem into the form of quadratic or conical prgming. Goerigk and Schébel (2016) argue that
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the algorithm engineering methodology fits very Melthe field of robust optimization and yields a
rewarding new perspective on both the current sttesearch and open research directions.

Bertsimas and Sim (2004) considered a diffevewpoint of robustness (See Section 2-1). Their
approach is based on the fact that, in real cardifiit is unrealistic to assume that all coeffitse
take their worst-case value at the same time. dfyisoach preserved the linearity of the model.idn h
proposed approach, a new Norm called D-Norm has beed instead of the Euclidean Noffhe
classical robust counterpart of a problem requites solution to be feasible for all uncertain
parameter values in a so-called uncertainty setoffieds no guarantees for parameter values outside
this uncertainty set. The globalized robust coyadr(GRC) extends this idea by allowing controlled
constraint violations in a larger uncertainty &r{-Tal, et al. 2017).

In addition to the mentioned approaches in tlogleting of the uncertainty of input data, there is
also another approach knownlaght Robust that is presented by Fischetti and Monaci (200@) ia
described in Section 2-2 of this paper. In geneha,Light Robust approach has been developed to
create balance between the optimality and featsilfithe solution. Ide and Schdbel (2016) extended
the concepts of highly, and lightly robust effiaigrand collected different types of min-max robust
efficiency.

2-1- Bertsimas and Sim approach’s
The Bertsimas and Sim approach is based on thetHattin real-world problems, all uncertain
parameters rarely happen to get their worst casie asame time. Then, it seems logical to preaent

model in which the optimal solutions will still ream robust for any variation from the maximiim
parameters in th&'irow. Here, the parametEy is an input parameter that is determined basealion

expectation from the robustness of the solutiont@@®aas and Sim (2004)). Therefore, in the robust
counterpart model for the problem, the followingnstraint will replace the constraint associatedhwit
each row:

2.ax; +B(x,I)<h (4)
jON
Where,

,B(x T )is the protective level that is defined proportidioethe uncertainty of each row, as follows.

B(x,T;)=_max Za” )

SDNlSkF
Therefore,B(x T )|s the maximum amount of increase on the left sidthe constraint, while the

maximuml’; parameters in the rawgets their worst values.

As stated,I'; provides the possibility to control the level ofcentainty: I', =0means that we have

failed to consider the uncertainty and chosen thinal constraints, whilg; = n means that all the

uncertain parameters at tlerow can get the worst amount, which is the sameson considered
by Soyster (1973). Thus, the robust model of tteblem is formulated as follows (to find the detail
description about the model and constrain pleas@eesimas and Sim (2004)):

min%:cjxj ©6)
Zaijxj +1,Z, +Zpii <b i0M 7
jON jON

—éﬁxj+zi+p”.20 iOM jON 8)
z, 20 iOM ©)
p, 20 iOM jON (10
x; 20 jON @y
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A remarkable point in the BS approach is that & tincertain parameters under the assumptions
change, the solutions will definitely be feasibtéowever, even if the number of coefficients that

change in the™ row would be more thdr , the solution provided by this approach will remai
feasible with a high probability.

2-2- Light robust approach

As noted in the previous sections, the Light ttapproach provides a compromise between the
robustness of the solution of one hand and thatguadlthe solution on the other hand (Fischetu an
Monaci (2009)). In other words, in this approack, ave looking for the best robust solution thatsdoe
not have a very large distance from the optimaltswh of the nominal problem. To explain this issue
considering the robust optimization model (BS) jsgd by Bertsimas and Sim (2004), which
mentioned in the previous section, the Light Roloasinterpart will be as follows:

min.ZWiyi )
iOM
%:aixi +B(x,T,)-y <b i0OM 0
2 gx;<b iOM s
jON
Zcixi <(1+0)z’ .
jON
x, 20 jON 0
y,20 i 0OM an

The auxiliary variables ¢f act as the second stage source variables and edetaisavoid the

possible infeasibility and their linear weight camdiion is minimized in the target function. Eadh o
these variables specifies the robustness levelhef sblution in connection with the constraint
associated with this auxiliary variable (constrdi@). More precisely, each of these variables gets
very positive amount, if and only if, the relevasdnstraint is violated. The constraint (15) also
ensures that the worst valued obtained would nde$®than a multiple of the optimal value of the
nominal problem. The role of paramefeis to create equilibrium between the robustnessthad

quality of the solution provided. The weightused in the target function actually creates a kihd

penalty on different values of the auxiliary vatesh

It should be noted that the Light Robust apphnagignificantly depends on the robustness defimitio
of the BS. Therefore, this approach can only bed usdy when the existing uncertainty can be
formulated and described linearly. However, varifmrsns of Light Robust approach can be used for
a single problem. There is also another approatcheof.R, which is not dependent on the BS, but is
directly related to the auxiliary variables asstmdawith the nominal problem constraint. The basic
idea used here is that the robustness degree aiittos, in some way, is expressed by the value of

auxiliary variables with uncertainty. Assume thatis the optimal solution of the nominal problem.
Then, we suppose:

L= (@ +4)6 b as)

jON
The maximum amount of violation dfconstraint related to the optimal solution is eqoal” . We
also show the set of all the constraints, for whiehabove is positive, as follows:

U={iOM:L >0} (19)
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In other wordsU is the set of the constraints experiencing the Iprolof uncertainty that must be
resolved. Without diminishing the totality, we cassume thz#.ﬂ |21, since otherwise, the optimal

solution of thex “ nominal problem will be always feasible. We firsh& the following LP problem:

max o ©0)
D ax; +s =b i OM (21)
jON
s .
< 0u
o 5 i (@2
J%N:cjxj <(1+9)z’ 23
x; 20 jON 4
s, 20 i0OM @9

That maximizes the minimum of the auxiliary variehlassigned to all the constraints with
uncertainty. Also, innovatively, thes, auxiliary variables are normalized by dividing Wy

Considering the nature and form of the problem,clwhs of Max-Min type, the objective (target)
function only considers the constraint that haslélast amount of the normalized auxiliary variable,
and therefore, it has no incentive to give largedlary variables to the rest of the constrajnthile
this is important for the robustness improvemeher&fore, another LP will be solved to resolve this

imbalance. If we assume that the optimal solutibthe above LP problem is €a>ss Noi ) , we can
define the following parameters:

Z'EU SI* L* *
—_ : i — - Si . _ * 26

We solve the secondary LP problem as follows:

quxj +s =b i 0OM (28)
JON

%ijj <(1+9)z (29)
S .

Dot 28, Ou (30)
x; 20 jON (31)
LI* —Smin I DU (32)
s =0t =0 i0U (33)
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In this model, we define & variable for each constraint belonging to the sefThe t; will take a

positive value, if and only if, the auxiliary vabie associated with that variable is smaller than
Saq - 1 e objective function of this LP minimizes thersaf these variables to create a balance.

3- Heuristic Weighted Light Robust approach (HWLR)

As mentioned above, the LR approach has bempoped to create a balance between the quality
and robustness of the solution. Several attempts baen made to introduce new versions of this
approach, some of which were mentioned in prevsagions. In this section, by providing a model,
we are to improve the quality of the solution preed by the light robust approach. In the proposed
approach, providing a solution with a better gyalbuld have a higher time cost. The general form
of the proposed model is as follows:

max » s, i OU @9

Yax; +s =b, Oi ON 39

(s, +...+s,)sw xz’ (36)
CX <0xZ

261X, @7

S.x;20 i (K13))

The approach presented by Fischetti and Mor299) (equations (27-33)), is based on solving
two linear mathematical programming problems. lis thaper, by providing a model, we tried to
solve the problem of imbalance introduced in pdpeFischetti and Monaci (2009). Here, using the
appropriate weight composition as the target famctwe attempted to resolve the problem. The
constraint (36) is to make a special linear contimnaof alternating variables bounded with a factor
of the optimal value of the nominal problem. To qbate this model, we need to obtain

thed, coefficients, which are the cost of each additispahit. We will also determine thg , which

is the maximum amount that the problem qualitylisweed to be reduced. We increase #hes as
much as the feasibility of the problem will be otvgel in the worst case as much as possible. For thi

reason, the model objective function will be maxiation.
We first notice that if the, is increased a single unit, the value of the objedunction of the model

will increase a§i . On the other hand, with increasing $has one unit, the total uncertainty would

decrease. This coefficient is the same portiorhefit constraint in the total uncertainty. We define

the total uncertainty of the modeIEl *i . If this value is zero, the nominal model alwapsains the
iy

*

optimal solution. Therefore, the uncertainty shafr@acls, will be equal tﬁ, which is the
i i
samed .
The relationZ:WiSi shows the reduced quality of the solution. In otlwerds, its maximum can be as
i

much as a percentage »f. Thus,V =0z  is defined. The value dis determined by DM. To
specify thes coefficients, we do as this: If the vec(e{,sz,... 'Sh ) changes, what a change will occur

in the matrixA ? To do this, we must first define the change ewéctorS .
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&, -y, Sl b1
o X+ :
anl ann Sn bn

39

Since the purpose of this calculation is to find what change will occur in the following relatiby
changing the vectds,,s,.,...,s, ), we will have:

Xl
z =(C,,C,,...C,)| : 40)
Xn
A7AX +A'S=A" b X +A"S=Ab _CX +CA"S=CA™ b 1)
Z +CA7'S=CA™ @2

It is clear from the above equation that if shexcreases by one unit, thewill decrease as much as

the f" component of vect@A ™, i.e., the vectolC in the " column of vectoA™. Therefore, the
factor of variables, multiplied by the defined constraint will be coreiedd equals to the same value;

Le.w; = (CA_l)i . Therefore, the mentioned constraint will be d®¥es:

Z:(CA_l)i s, <0z @3)

If A™ does not exist, this approach is useless. To gbigseproblem, the following calculations are
useful. In fact,z is the trace of the following matrix:

Zl 0 Cl 0 Xl 0
S N P P I ) @)
0 z, 0 c,)L O X,
c, 0)7(z, 0) (x, 0
: N = IR @5
0 C, 0 z, 0 X,
a, oAy, (X, e 0
The sum of the elements of tHerow of | © . : .. i lis equal to the" element

anl ann o -.. Xn
a11 am

off : "-. i |X .Then, on the two sides of the above equationptteix A is multiplied:

By Ay
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all a’ln Cl 0 Z1 0 1
S (R I IS VN I 46)
anl ann 0o .- Cn o ... Zn 0 .. Z_n
Cn
a, =L - a,n
‘o ' (47)
4L g 4
a’"lcl anncn

If we show the sum of the elements of thedw of the above matrix witll, , with one unit increase

in thes, , theK, must be reduced by one unit. Thus, if we hZ\A& =1, one can conclude that the
i

reduction in the sum of the elements of the abowrimis equal to one. The sum of the above
elements is equal to:

Z.
TE = Z(qu C—J] @8)
i j i
Now, assume that in th& row, the largest values eaflare related to indek and the least values

j
are related to inde}q . In this case, we will have:

el )eafp ()

J

YAy, <2y A @9)
i j i

aijk
C

, we will havdlE <Mz . Similarly, if we pum=zal, we  will
ik i i

If we putM =)

havelE 2mz . On one handJE is equal toZ:Si . Therefore, the constrairmz SZsi <Mzis
i i
always established.

Now, we consider that S < Mz is always feasible anEISi <mz is always infeasible. Hence, we
i i

will look for a "w " that optimizes the constraiEt:Si swz of the model solution meanwhile

becoming feasible as much as possible. To thiswedlevelop the following innovative algorithm:

4- Proposed innovative algorithm
Step 0:We putw, =M andw, =m. We solve the problem by the assumptiow gfw . If it is

infeasible, we will go to step 1. If it becomesdisde, the algorithm will end and the solution dlhéal
will not get better.
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w_ +w
Step 1: We solve the problem by the assumptich#sTf. If it is infeasible, we will go to

step 2. If it becomes feasible, we will go to ssep

Step 2:We putw, =w and go to step 1.

Step 3:If the quality of the problem is sufficient, thigarithm ends. To improve the quality of the
problem solution, we pw, =w and go to step 1.

5- Computational results

In this part of the paper, the computationaultssof the proposed HWLR approach are presented.
The input parameters of the problem were develesprdomly for a minimizing linear programming
problem. A comparison between the optimal valuaioled from the simple LR approach (Fischetti
and Monaci (2009)), the proposed HWLR approach et ag the solution resulted from the GAMS
software for the nominal problem is provided. TH&ER approach described in Section 3 is seeking
to improve the quality of the solution obtainednfrehe LR method. To evaluate the performance of
the new approach, the likelihood of improving theality of the solution compared to simple LR
approach was selected as the measurement critdii@nsolution obtained from HWLR approach
was compared with the solution obtained from thapg LR approach as the probability of
improvement (column 4, Table 1). To estimate thabpbility, 40 test problems in large sizes ahd
j (i.e, Numbers of variables and constrains) wersiciered. Then for each test problem, 100 times
the parameters were randomly generated. Finayntimber of improvement events was used as an
estimate of the likelihood of improvement. For exdenfor i = 447 and j = 245, out of 100 random
generated problems, the new approach providediritddietter solution than the simple LR approach
in 41 cases and in other 59 solutions providedstrae results are obtained by simple LR approach.
In fact, the proposed approach never provided atieal worse than the simple LR and the probability
of improvement as a simulated measure shows teéhdod of providing better results. The results
of these calculations are in accordance with Tdblélso, to generate all data of the problem
completely randomized as much as possible, therlewe upper bounds of the range for producing
random numbers were generated randomly as well.

¢, = uniform[uniform| 10,30] uniform 50,15 50)
b = uniform[uniform[ 500,150 uniform| 2500, 350(] 61)
a; = uniform[uniform[ 0, 5] ,uniform[ 1015]] 62

The calculations show that the improvement of thiality of the solution varies from 0 to 12% of the
variable compared to the simple Light Robust apghidar cases where improvements are made, and
on average, is slightly more than 9%. As can ba& sedable 1, in the case where the ratio of the
number of constraints to the number of variablesmall, the proposed approach shows no significant
improvement compared to the simple Light Robustreggh. However, as this ratio increases, the
improvement of the proposed approach is significampared to the simple Light Robust approach.
For example, in a case that the number of constraind the number of variables are 328 and 35,
respectively, in 100 different implementations witndom data, the proposed approach provides a
significantly better solution in 88 cases compat@dhe simple Light Robust approach, which is a
remarkable result.
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Table 1.Computational results of proposed approach

Number of  Number of Probability of Number of ~ Number of Probability
Number . : . Number . . of
constraints  variables improvement constraints variables .
improvement

1 72 455 6 21 328 35 88
2 144 313 16 22 62 211 13
3 389 10 92 23 405 281 30
4 92 173 29 24 372 311 26
5 458 149 52 25 262 279 25
6 168 395 13 26 158 416 16
7 447 245 41 27 420 466 17
8 157 206 28 28 15 199 0
9 359 47 78 29 388 174 50
10 342 378 27 30 136 373 12
11 107 498 7 31 196 285 26
12 273 497 11 32 498 424 30
13 102 39 76 33 282 343 24
14 251 279 35 34 97 104 36
15 276 329 26 35 216 302 22
16 110 403 8 36 129 66 54
17 404 472 19 37 69 187 11
18 285 190 37 38 184 13 95
19 92 43 68 39 342 268 42
20 117 498 2 40 95 393 8

To further examine the effect of the number ohgtraints and the number of variables on the
likelihood of improvement, we will go forward atlé further. To do so, using the data presented in
Table 1, we conducted a statistical survey usindfiphel regressions with the help BViews 9

software. From available models, using the m&fdenchmark, Durbin-Watson criterion and the
Schwarz criterion, we extracted the best modehaws below:

PROB = 91.6 - 23.31L0G (VAR) + 12.2EOG (CONS) (k)

As predicted, with considering the number of caxats constant, increased number of variables
reduces the chance of the solution improvemento,Alfsthe number of variables is considered
constant, increased number of constraints willaase the improvement probability of the problem
solution quality.

6- Conclusion, limitation and future research

The real-world problems, when expressed as d@dtion models, mostly confess to uncertainty.
The uncertainty in optimization problems and theamtance of achieving a robust solution have been
the focus of attention in the recent literaturethiis regard, several approaches have been propmsed
solve this problem, some of which were mentionetthénsection 2 of this paper. The feasibility af th
solution and the quality of solution are two im@mittfactors in all of these approaches. In thispap
as noted in the previous sections, the authorsh nm@ius was on the quality of the solution.
Accordingly, a new constraint was introduced andaklgorithm was also developed, which tries to
generate the best possible value to estimate tlaengder of this constraint. To review and implement
the proposed approach, an indicator was introdfmethe likelihood of improving the quality of the
solution and its computational results were regbriehe computational results obtained from the
implementation of this approach indicate that wivenave use this approach in case of problems
where the number of constraints is more the nurobefriables, the likelihood of improving the
quality of the solution obtained significantly ieases compared to the classic Light Robust approach
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and will well cover the time cost of running thgaiithm. Also, when this improvement occurs, the
average solution's improvement rate would be of @¥ich is considerable. It should be noted that
this improvement rate is only the average of valaed in some cases, this improvement rate is much
better as well. A multiple regression model wadqgrened to investigate the results more accurately
and test the hypothesis obtained from the obsenstEvaluation of the obtained model suggests that
the probability of improving the solution quality the proposed approach has an increasing trend in
cases where the number of constraints of the pmoldanore the number of variables. The purpose of
this paper was to provide an approach that canawepthe quality of the solution of optimization
problems while the obtained solution will remairagible at the same time. To achieve this goal,
many efforts have been made and this process avilirtue. As seen, a fairly intelligent additionaof
constraint significantly improved the quality okthesulting solution in some cases.

Despite the above contributions, our research ismithout limitations. The proposed model can set
the stage for the incorporation of real paramegsrd constraints. As future research, to find the
parameter used in this constraint, the meta-héuasgorithms as well as other intelligent methods
can be used. In the same vein, designing a propedigned DSS will have a significant impact on
improving the quality of the solution and improvitige timing of the problem solving simultaneously.
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