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Abstract 
In this paper, a model is presented to locate ambulances, considering backup 
facility (to increase reliability) and the restriction of ambulance capacity. This 
model is designed for emergencies. In this model the covered demand for each 
demand point depends on the number of coverage times and the amount of 
demand. The demand amount and ambulance coverage radius are considered fuzzy 
in various periods, with respect to the conditions and application of the model. 
Ambulances have the ability to be relocated in different periods. In this model we 
have considered two types of ambulances to locate: ground and air ambulance. Air 
ambulances are considered as backup facilities. It is assumed that ground 
ambulances are major facilities, taking into account capacity limitations. To solve 
this model, making chromosomes (initial solution) is presented in such a way that 
location chromosome for both ground and air ambulances are appears as a general 
chromosome. Since this is a complicated model, a population-based simulated 
annealing algorithm (Multiple Simulated Annealing) with a chromosome 
combinatorial approach is used to solve it. Finally, the results of the algorithm 
presented to solve the model are compared with the simulated annealing (SA) 
algorithm. The results showed that the quality of the presented algorithm (MSA) is 
better than the SA algorithm. 

                    Keywords: Backup covering location, fuzzy dynamic location, Ambulance 
location, Reliability,    Capacity constraints, Multiple simulated annealing 

  
1-Introduction 
      Along with the development of science and facilities, war and natural disasters are growing, and the 
demand for ambulance services is increasing to protect people's lives and property. This is one of the 
main concerns of people in urban and rural areas. The importance of this issue has made optimization 
scientists  pay more attention to this issue recently (ReVelle and Eiselt 2005). Many models have been 
presented in this field. Most of the models presented in this field are going to minimize uncovered 
demands and service costs.  
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   For a more detailed explanation, an appropriate location should be located for stations so that the 
distance between stations and demand sites decreases and service performance time increases, or the 
number of stations which have common coverage points is minimized and the third is to choose the more 
reasonable number of stations maintaining the balance between the unsatisfied demand cost and the costs 
of establishing new stations. One of the most famous locating models that have been used since the 
beginning of locating science is covering the location problem (CLP). This model is looking for solutions 
to cover a set of demand points with respect to how many targets are considered (Berman and Krass 
2002).  
   Coverage problems fall into two general categories: maximal covering location problem (MCLP), and 
set covering location problem (SCLP). Regardless of the type of problem, the population is considered 
covered when it is located in one or more facilities in a predetermined period of time or distance. The aim 
of SCLP is to cover all demand points by the least possible facilities, while MCLP tries to cover the 
maximum demand points by a predetermined number of facilities. Since then, numerous theoretical 
applications and developments have been presented on classic MCLP model (Shavandi and Mahlooji 
2006). 
    In the models presented on backup that cover the location there are many crisp and probability model, 
but there are no models presented for the dynamic backup that covers the location, while in reality amount 
of demands and the coverage radius are changing during different periods considering road traffic. The 
first advantage of the suggested model is the demand dependency that covers the amount in the number of 
covering times per facility and demand amount. The second advantage of the model presented over other 
presented models in backup coverage subject is that the model is fuzzy dynamic (the parameters of model 
in periods are fuzzy). The amount of demand and the coverage radius is considered fuzzy dynamic in 
different periods to be coherent with reality. The third advantage is to consider air ambulance backup that 
covers the ground ones. Ground ambulances are considered limited, but the capacity of air ambulances 
(backup) is considered unlimited to cover an area in the case that a ground facility is already involved. 
Considering changeable demand amount and coverage radius in different periods to maximize the 
demand that covers the amount during the whole period, ground and air ambulances can exchange in this 
model. 
    The rest of this paper is as follows: In section 2 we review the works related to ambulance services. In 
section 3 we present suggested model and an exhaustive explanation about it. In section 4 there is an 
explanation about the algorithm presented, and in section 5 we mentioned some suggestions to regulate 
the algorithm parameters. In section 6 numerical examples have been presented, and in section 7 we have 
a conclusion. 

2 - The related works 
    Facility locating has the main role in supply chain, especially in production and service facilities, so it 
has been focused by professionals and scholars. We can mention some valuable references such as ReVelle 
and Eiselt, (2005) as a comprehensive introduction to the location models. Furthermore (Revelle et al., 
2008b) a comprehensive source of location problem  consisting of p-median, p-center and covering location 
problem.  During the last decade, many articles have been presented on the maximal covering location 
problem and its solution, which we will mention next. Aytug and Saydam, (2002) have conducted a 
comparison study on the performance of the genetic algorithm and other heuristic solutions on the 
maximum covering problems expected in large scales. Espejo et al., (2003a) have studied hierarchy 
maximal covering location in multi level and have presented a Lagrange release method to solve the 
problem. In a valuable study conducted by Galvão et al., (2000a),  a comparison has been made between 
initiative method based on Lagrange release and replacement. Galvão et al., (2000a), by applying 331 
experimental problems in the literature with 900-55 nodes, they discovered that there is no substantial 
difference between these two meta-heuristic methods. (Barbas and Marı́n, 2004) designed a network of 
combinatorial communication codes in communication systems and solved it through a Lagrange release 
solution. Canbolat and von Massow, (2009), studied the maximum covering location in order to cover the 
maximum demand in oval form. This problem was formulated as an integrated non-linear programming 
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problem and simulated annealing algorithm was used to solve the problem. Xia et al., (2009), had presented 
meta-heuristic methods to solve MCLP have presented and compared that concluded simulated annealing is 
the most effective method. They concluded that simulated annealing is the most effective method compared 
to other methods. In addition, there are many articles on the traditional development model of the 
maximum coverage location. Berman and Krass, (2002) have considered partial customer covering in the 
general model of the maximum coverage location. Younies and Wesolowsky  (2004,) have introduced an 
integrated zero-one planning complex model for MCLP in locations where demand points are covered by 
skew trapezoids on the plate. Shavandi and Mahlooji  (2006), presented a location-allocation problem in 
fuzzy method for density of systems, and they called it maximum coverage location-allocation with fuzzy 
queue. They solved the model with genetic algorithm. The maximal covering location was presented by 
Araz et al., (2007) had Multiple objectives that  considered the uncertainty in multi-objective goal 
programming to cover model for emergency facility location. The first objective was to maximize demand; 
another objective was to minimize the total distance between larger distances with a predetermined 
standard distance. Another interesting article in the literature was Erdemir et al., (2008) that had considered 
the maximum coverage location in a situation that the demand could develop in nodes and routes. They 
showed a real example for station cellular location in New York City. Berman and Huang, (2008) have 
studied the location of facilities in the net to minimize the total demand for coverage. This problem is used 
in undesirable facility location. They compared the Tabu search method with the Lagrange release method 
to solve this problem and concluded that Tabu search is a better alternative for large-scale cases. Another 
conclusion that was reached about the problem of  maximal covering location was considering negative 
weight of the demand nodes by Berman et al., (2009). They presented problems two types of models 
consist of linear and non-linear models that have been solved by CPLEX and other initiative methods. The 
results of another study showed that the simple model of maximum covering location was developed by 
applying the ability of geographic information system (GIS) and the idea of maximal covering to illustrate 
the demand coverage. O’Hanley and Church, (2011) improved a prevention locating model to maximize 
initial covering form through facilities developed by, and minimum covering level that occurs while losing 
essential facilities. They applied analysis algorithm to solve this problem. In addition, there are case studies 
about the maximal covering location in the literature. Moore and ReVelle, (1982) implemented a model for 
the case study of the therapeutic facility system in Pakistan using hierarchy location method. Curtin et al., 
(2010) interrupt Police patrols in Dallas and Texas maximal covering location problem was considered. To 
solve the maximal covering location problem, Murawski and Church, (2009) presented a model that 
assumed facility locations were stable and access to demand point should be improved which was named 
maximal covering improvement. Their model was called maximal covering improvement in the network 
and was carried out in Gina. The  problem of uncertain maximal covering location has attracted a lot of 
attention in the literature. De Assis Corrêa et al., (2009) evaluated a case study of probable maximum 
covering with one service provider for each center and for solving used column producing and the covering 
graph solutions. Batanović et al., (2009) had presented maximal covering location problem on the network 
with a state of uncertainty. They studied model with the demand and the same importance, and with semi-
definite weights of demand nods.  Furthermore, they presented an adequate algorithm to solve these 
models. Berman and Wang, (2011) issued another paper that considers the uncertainty in maximum 
covering location. They studied a case in which weight of the demands related to the nodes in the network 
of random variables is in an uncertain probable distribution. The aim of the study is to locate a place where 
the unrelated covering is minimized.  
   ReVelle et al., (2008a) have presented a model solution that emphasizes on solving maximum covering 
location with 900 nodes. This article is a development of the last one with a change to become a multi-
period dynamic model. In such models, the solvers are willing to locate p facilities in m time periods. 
Obviously, the scope of the solution may consist of a large number of feasible solutions and, at the same 
time with volume increase, this problem becomes strongly complex. This model is not unusual in practice 
and has different applications in many cases. For instance, it can be used in Police patrol location and fire 
stations emplacement traffic, vacations, disasters and etc, ambulance locating, or the location of the first air 
facility to help victims of natural disasters . Curtin et al., (2010)  take locating an emergency service center 
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in a crowded area to illustrate the problem. In order to offer an adequate service to people when traffic 
accidents occur, the number of facilities that must be established fluctuates during different  periods of time 
related to traffic, vacations, weather conditions, and many other factors. Considering that the number of 
established facilities required is related to a limited budget, the problem of the maximum covering location 
problem is developed in form of multiple periods and dynamics. Dynamic location models can help 
managers to make daily or hourly decisions to respond to predictable fluctuations demands in emergency 
occasions over time and space (Rajagopalan et al., 2008). In these models a facility that is established first 
in the period, can be closed in the next period. The concept of dynamic covering location is not a new 
subject in the literature. Schilling,(1980) presented a multi-objective dynamic model to emergency service 
facilities such as ambulances. Gunawardane, (1982) presented various problems of location of dynamic 
public facilities. 
   Repede and Bernardo, (1994) have made another effort to model the dynamic maximal covering location 
that was modeled and improved the decision support system, and was used in Lousevill model. 
(Rajagopalan et al., 2008) has studied the periodic total covering model and to solve the simulation was 
used, Tabu search, and queue theory models. Their work was the development of Marianov and Revelle, 
(1994) study combined with the probabilities involved. Another article on the  dynamic location model was 
submitted by Gendreau et al., (2001) in order to maximize the backup coverage and minimize costs of 
relocating. One of the published papers on dynamic maximal covering location is Başar et al., (2011) article 
that has developed multi-period location problem for the emergency centers so that they can make strategic 
plan for different periods. A useful Tabu search algorithm was developed to solve the problem and was 
implemented in Istanbul. This comprehensive literature review indicates that there are many considerations 
regarding the problem of maximal covering location in various situations, but dynamic fuzzy cases with 
fuzzy and dynamic parameters like radius, the number of facilities and demand have not been considered 
until now. In addition, a small number of articles have been submitted about maximal covering location in 
large scales. This study tries to decrease the gap by presenting a dynamic fuzzy model in emergency 
situations, and particle swarm optimization algorithm to solve models in large scale. Table1 analyzes the 
most significant models in the field. While most of them do not take account of the fuzzy and dynamic in 
their model, they are connected to the model of this paper from at least one perspective. In Table1 the last 
row shows contribution of this study compared to the literature. 
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Table1. Related papers in the literature (classified based on model and solution method). (Farahani et al., 2014) 
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(Başar et al., 2011) Multi period backup double 
covering     Tabu search algorithm    

(Gunawardane, 1982) Dynamic public facility      preliminary computational 
experiences    

(Gendreau et al. 2001) Dynamic Maximizing backup 
covering      Parallel tabu search    

(Fazel zarandi and et al.2013) Large scale dynamic maximal      Simulated annealing     
(Rajagopalan et al., 2008) Dynamic relocation/replacemen       Reactive tabu search    
(Galvão, Gonzalo Acosta 
Espejo et al. 2000) MCLP       Lagrangean and surrogate relaxation             

 
  

(Marianov and Serra 2001) 
Hierarchical queuing maximal 
covering  
location problem (HQMCLP) 

 
    GRASP  improvement by vertex 

substitution and Tabu search       

(Aytug and Saydam 2002) Covering location 
problem(MECLP) 

    Genetic algorithm     

(Berman, Krass et al. 2007) 
Generalized Maximal covering 
location  
problem (G-MCLP) 

 
   Greedy Heuristic    

(Galvão, Acosta Espejo et al. 
2002) 

Hierarchical model for perinata  
facility    

    Lagrangean  Heuristics    

(Espejo, Galvão et al. 2003) HCLP     Lagrangean and surrogate relaxation 
Sub-gradient Heuristic     

(Karasakal and Karasakal 
2004) MCLP  with partial covering     Lagrangean and relaxation      

(Snyder and Daskin 2005)  Reliability in facility location      present an optimal lagrangian 
relaxation algorithm    

(Shavandi and Mahlooji 
2006) 

Fuzzy queuing maximal coverin   
location problem   

    Genetic algorithm    

(ReVelle, Scholssberg et al. 
2008) MCLP     Heuristic concentration      

(Şahin and Süral 2007) Hierarchical  facility location     Review of hierarchical facility 
location models    

(Shavandi and Mahlooji 
2007) 

Fuzzy Hierarchical  location–
allocation   
maximal covering  problem   

 
   Probabilistic and fuzzy    

(Batanović, Petrović et al. 
2009) MCLP     Heuristics algorithm     

(Canbolat and von Massow 
2009) 

Maximal covering  with ellipse  
on the plane 

    Simulated annealing     
(de Assis Corrêa, Lorena et 
al. 2009) 

Probabilistic maximal covering  
location-allocation problem  

    Heuristics algorithm (decomposition 
approach )    

(Qu and Weng 2009) Multiple allocation hub maxima  
covering  

    Path relinking procedure    

 (Ratick, Osleeb et al. 2009) Hierarchical maximal covering 
problem  

       Optimal solution    

(Lee and Lee 2010) Generalized Hierarchical coveri   
location (G-(HCLP) 

    Tabu based  Heuristic    

(Shen, Zhan et al. 2011)  Reliable facility location     Approximation algorithm: SSA-
greedy adding    

 (Li, Zeng et al. 2013) 

Reliable P-Median problem and 
Reliable  
uncapacitated fixed-charge 
location problem   

 
   Lagrangean relaxation based 

algorithm    

(Farahani, Hassani et al. 
2014) Reliable Hierarchical MCLP     Hybrid artificial bee colony     
(Colombo, Cordone et al. 
2016) 

Multimode covering location 
problem  

    Combining two greedy algorithms    
This research  Dynamic covering location-

allocation problem     Multiple Simulated Annalinng      
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3- The proposed Model 
In the proposed model, two types of facilities were considered to cover demand points, including 

ground ambulances and air ambulances. Ground ambulances are considered as the main facilities and are 
limited in number which means they can’t cover demand points which their demands are more than the 
capacity and such demand points need to be covered by more than one facility. If it is covered by a single 
facility and the demand amount is more than the capacity of facility, they would cover just a part 
(fraction) of the demand of that point. Air ambulances are considered as backup facilities. Backup facility 
is used to cover the area which is in the domain of a specific ground facility but it is involved. In this 
model, the number of demands and covering radius in different periods regarding situations during the 
time has been considered dynamic. The objective of this model is to maximize covered demand amount 
by ground and air ambulances. The amount of ground and air facilities (backup) is constant and 
predetermined in different periods. Potential points to create ground and air facilities are in discrete form 
and different from each other. Ground and air ambulances are able to carry victims in different periods. 
Proposed model is an integrated and zero-one model which all of its variables are in zero-one form. 
Proposed model have applications in emergency occasions.  The schematic figure of the presented model 
is as figure1. 

 

 
Fig 1. Schematic figure of presented model 
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3-1- Components of the model 
   This section presents the components of the mathematical model divided into indices, parameters and 
decision variables. 
 

Indexes: 

𝒊𝒊: The index and set of demand point (node) 

𝒋𝒋: The index and set of potential points to establish ground ambulances 

𝒇𝒇: The index and set of potential point to establish air ambulances (backup)  

𝒕𝒕: The number of considered periods  

𝒌𝒌�: The fuzzy number of facilities which covers each point of demand 𝒊𝒊 

𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 : A binary parameter if in period 𝒕𝒕 located ground ambulance in point 𝒋𝒋 covers demand point 𝒊𝒊 is 
one, otherwise zero 

𝒓𝒓𝒊𝒊𝒊𝒊𝒊𝒊: A binary parameter if air ambulance (backup) located in point 𝒇𝒇 in period 𝒕𝒕 covers 𝒊𝒊 demand 
point, is one, otherwise zero. 

𝒑𝒑�𝒕𝒕𝑨𝑨:  Fuzzy number of ground ambulances in each period to be sited.  

𝒑𝒑�𝒕𝒕𝑩𝑩:  Fuzzy number of air ambulances (backup) which need to be located in each period.   

𝑫𝑫�𝒊𝒊𝒊𝒊:  Fuzzy amount of demand point of 𝒊𝒊 in period 𝒕𝒕.  

𝑪𝑪�𝒊𝒊𝒊𝒊𝒊𝒊: Fuzzy fraction of demand point 𝒊𝒊 which is covered by 𝒌𝒌 ground facility in period 𝒕𝒕, and depend 
on demand amount 𝑫𝑫�𝒊𝒊𝒊𝒊 

3.2. Decision variables  

  𝒙𝒙𝒋𝒋𝒋𝒋𝑨𝑨 : is an integer variable which represents number of ground ambulances in period 𝒕𝒕 which is located 
in potential point𝒋𝒋. 

 𝒙𝒙𝒋𝒋𝒋𝒋𝑩𝑩 : is an integer represents air ambulances (backup) which is located in period 𝒕𝒕 in potential point f.  

𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨 : A binary variable which states if in period t the demand point 𝒊𝒊 is covered with 𝒌𝒌 ground 
ambulance, is one, otherwise zero.  

𝒚𝒚𝒊𝒊𝒊𝒊𝑩𝑩 : A binary variable which shows if demand point 𝒊𝒊 in period 𝒕𝒕 is covered by at least one air 
ambulance (backup), is one, otherwise zero. 

𝒙𝒙𝑨𝑨𝑨𝑨: A binary variable that means a demand point is just covered by one ground ambulance. 

𝒙𝒙𝑩𝑩𝑩𝑩: A binary variable which represents a demand point is covered by both ground and air 
ambulances. 

3-3- The mathematical model 
The proposed model is as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑥𝑥𝐴𝐴𝑖𝑖��𝐷𝐷�𝑖𝑖𝑖𝑖𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + �𝑥𝑥𝐵𝐵𝐵𝐵�𝐷𝐷�𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵

∀ 𝑡𝑡∀ 𝑖𝑖∀ 𝑘𝑘∀ 𝑡𝑡∀ 𝑖𝑖

                  
(1) 

𝑆𝑆𝑆𝑆: 
𝑘𝑘�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤�  �𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴

𝑗𝑗

                                                                                ∀ 𝑖𝑖, 𝑡𝑡, 𝑘𝑘  

     

 
(2) 
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�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 1                                            
∀𝑘𝑘

                                         ∀ 𝑖𝑖, 𝑡𝑡 (3) 

𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵 ≤�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 

∀ 𝑘𝑘

                                                                                   ∀ 𝑖𝑖, 𝑡𝑡  (4) 

𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵  ≤�𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵

∀ 𝑓𝑓

                                                                             ∀ 𝑖𝑖, 𝑡𝑡       (5) 

�𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴 ≈
∀ 𝑗𝑗

𝑝𝑝�𝑡𝑡𝐴𝐴                                                                                      ∀ 𝑡𝑡        (6) 

�𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵

∀ 𝑓𝑓

≈ 𝑝𝑝�𝑡𝑡𝐵𝐵                                                                                     ∀ 𝑡𝑡       (7) 

𝑥𝑥𝐴𝐴𝐴𝐴 + 𝑥𝑥𝐵𝐵𝐵𝐵 ≤ 1                                                                                 ∀ 𝑡𝑡                     
 

(8) 

𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵  , 𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴  ≥ 0   𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼                                                                ∀ 𝑖𝑖 , 𝑡𝑡     
 

(9) 

yitB   , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  , 𝑥𝑥𝐴𝐴𝐴𝐴  , 𝑥𝑥𝐵𝐵𝐵𝐵 ∈ {0  1}                                                      ∀ 𝑖𝑖 , 𝑡𝑡 𝑘𝑘 (10) 
 

 The objective function, equation (1) maximizes the sum of covered demands by ground and air 
ambulances. Equation (2) states that one demand point is covered 𝒌𝒌 times when located in coverage 
radius 𝒌𝒌 ambulances. Equation (3) represents that one demand point is covered or not by exactly one 
definite facility. Equation (4) shows that a demand point is covered by an air ambulance only in the 
case that the point is located in minimum coverage radius of a ground ambulance. Equation (5) 
guarantees that demand point is covered when it is in coverage radius of an air ambulance. Equations 
(6) and (7) represent the number of ground and air ambulances which are located in each period.  

3-4- Linearization of the model 
   We replace 𝐱𝐱𝐀𝐀,𝐢𝐢 ∗ 𝐲𝐲𝐢𝐢,𝐭𝐭,𝐤𝐤 = 𝐙𝐙𝐢𝐢,𝐭𝐭,𝐤𝐤𝐀𝐀   by 𝐱𝐱𝐁𝐁,𝐢𝐢 ∗ 𝐲𝐲𝐢𝐢,𝐭𝐭 = 𝐙𝐙𝐢𝐢,𝐭𝐭𝐁𝐁  in objective function. Objective function changes 
to linear statement in relation (11). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ���𝐷𝐷�𝑖𝑖𝑖𝑖 × 𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + ��𝐷𝐷�𝑖𝑖𝑖𝑖 × 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵

∀ 𝑡𝑡∀ 𝑖𝑖∀ 𝑘𝑘∀ 𝑡𝑡∀ 𝑖𝑖

                                                                            (11) 

Instead of writing non-linear constraint 𝐱𝐱𝐀𝐀,𝐢𝐢 ∗ 𝐲𝐲𝐢𝐢,𝐭𝐭,𝐤𝐤 = 𝐙𝐙𝐢𝐢,𝐭𝐭,𝐤𝐤𝐀𝐀  and  𝐱𝐱𝐁𝐁,𝐢𝐢 ∗ 𝐲𝐲𝐢𝐢,𝐭𝐭 = 𝐙𝐙𝐢𝐢,𝐭𝐭𝐁𝐁  in the model, we insert 
following linear constraint in the model which equals constraint (12) 

�𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵 ≤ 1                                                                                                                                                 (12)
∀ 𝑘𝑘

 

Constraints which are added to the model include equation (13), (14), (15) and (16) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴                                                                                                                                             (13) 

𝒁𝒁𝒊𝒊𝒊𝒊𝑩𝑩 ≤ 𝒚𝒚𝒊𝒊𝒊𝒊𝑩𝑩                                                                                                                                                 (14) 

∑ 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵 ≤ 1                                                                                                                                                ∀ 𝑘𝑘 (15) 

𝒁𝒁𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨   ,𝒁𝒁𝒊𝒊𝒊𝒊𝑩𝑩 ∈ {𝟎𝟎  𝟏𝟏}                                                                                                                                                  (𝟏𝟏𝟏𝟏) 

3-5- The fuzzy tactical multi-period maximal covering location-allocation problem 
   In this part, we explain a method to change the FDMCLAP model in the form of an equivalent 
supplementary crisp DMCLAP model for strategic FLP under demand and number of ambiguities of the 
facilities. It is crucial to take the methods of fuzzy mathematical programming into account that 
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necessarily consider the fuzzy coefficients of the objective function and fuzzy constraint: technological 
and right–hand side coefficients. In this context, several studies are available in the literature. In addition, 
the authors present a review of fuzzy mathematical programming models in accordance with fuzzy 
parameters: the fuzzy model with fuzzy aim(s), the fuzzy model with fuzzy objective coefficients and 
fuzzy right-hand side rates of the restrictions, etc. The readers propose a categorization of fifteen types of 
the fuzzy mathematical models taking into account all possible mixtures of the fuzzy parameters 
mentioned above. At the end, they review the exiting solution procedures suggested in the literature to 
resolve fuzzy mathematical programs (Peidro et al., 2009). 
Since the FDMCLAP model considers inadequate or inaccurate information in data (connected to: 
demand, number of facility, covering radius) and fuzziness connected to adjustable constraints 
(1),(2),(6,7), a fuzzy escalation  approach which simultaneously considers the possible deficiency of 
knowledge in data and current fuzziness  is needed. Therefore, in this study we choose to follow the 
approach by Cadenas and Verdegay. A regular model for fuzzy linear programming that looks at fuzzy 
technological, fuzzy cost coefficients and fuzzy right-hand side terms in restrictions is suggested by the 
authors. Furthermore, in the inequalities that explain the restrictions, fuzziness is considered. This 
common fuzzy linear programming model is like (17). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  𝑍𝑍 =  �𝑐̃𝑐𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 �𝑎𝑎�𝑟𝑟𝑟𝑟𝑥𝑥𝑘𝑘 ≤� 𝑏𝑏�𝑟𝑟                                                                                                                                          
𝑛𝑛

𝑘𝑘=1

(17) 

𝑥𝑥𝑘𝑘 ≥ 0 , 𝑟𝑟 ∈ 𝐷𝐷,    𝐾𝐾 ∈ 𝑍𝑍 

Where the fuzzy parameters are given by: 

• For each cost ∃ 𝜇𝜇𝑗𝑗 ∈ 𝐹𝐹(𝑆𝑆) 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜇𝜇𝑗𝑗 ∶ 𝑆𝑆 → [0 , 1], 𝐾𝐾 ∈ 𝑍𝑍 , which explains the fuzzy costs. 
• For each row ∃  𝜇𝜇𝑟𝑟 ∈ 𝐹𝐹(𝑆𝑆) 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎  𝜇𝜇𝑟𝑟 ∶ 𝑆𝑆 → [0 , 1], 𝑟𝑟 ∈ 𝐷𝐷 , which shows the fuzzy number in the 

right side of constraints. 
•  For each 𝑟𝑟 ∈ 𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾 ∈ 𝑍𝑍 ∃ 𝜇𝜇𝑟𝑟𝑟𝑟 ∈ 𝐹𝐹(𝑆𝑆) 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎  𝜇𝜇𝑟𝑟𝑟𝑟 ∶ 𝑆𝑆 → [0 , 1], which shows the fuzzy number in 

the technological matrix. 
• For each row ∃  𝜇𝜇𝑟𝑟  ∈ 𝐹𝐹[𝐹𝐹(𝑆𝑆)] 𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑎𝑎𝑎𝑎  𝜇𝜇𝑟𝑟 ∶ 𝐹𝐹(𝑆𝑆) → [0 , 1], 𝑟𝑟 ∈ 𝐷𝐷 , which supplies the 

accomplishment degree of the fuzzy number of each 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 
𝑎𝑎�𝑟𝑟1𝑥𝑥1 + 𝑎𝑎�𝑟𝑟2𝑥𝑥2 + ⋯+ 𝑎𝑎�𝑟𝑟𝑟𝑟 𝑥𝑥𝑛𝑛 , 𝑟𝑟 ∈ 𝐷𝐷 

Cadenas and Verdegay (2000), described a resolution method that consists of replacing  the problem 
(17) by a convex fuzzy set by means of classification operation as a contrasting method of fuzzy numbers. 

Let 𝐻𝐻,𝑉𝑉 ∈ 𝐹𝐹(𝑆𝑆); a simple approach to classify fuzzy number formed by the determination of a classifying 
function that places each fuzzy number into the real line, 𝑤𝑤:𝐹𝐹(𝑆𝑆) → 𝑆𝑆. If this role of 𝑤𝑤 (0) is obvious, 
then  

𝑤𝑤(𝐻𝐻) < 𝑤𝑤(𝑉𝑉) ⟺𝐻𝐻 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑉𝑉 

𝑤𝑤(𝐻𝐻) > 𝑤𝑤(𝑉𝑉) ⟺𝐻𝐻 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑉𝑉 

𝑤𝑤(𝐴𝐴) = 𝑤𝑤(𝐵𝐵) ⟺𝐻𝐻 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑉𝑉 

Usually, 𝑤𝑤 is called a linear ranking function if  

∀ 𝐻𝐻 ,𝑉𝑉 ∈ 𝐹𝐹(𝑆𝑆),       𝑤𝑤(𝐻𝐻 + 𝑉𝑉) = 𝑤𝑤(𝐻𝐻) + 𝑤𝑤(𝑉𝑉)  
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∀ 𝑑𝑑 ∈ 𝑆𝑆, 𝑑𝑑 > 0,       𝑤𝑤(𝑟𝑟𝑟𝑟) = 𝑑𝑑𝑑𝑑(𝐻𝐻)   ∀ 𝐻𝐻 ∈ 𝐹𝐹(𝑆𝑆) 

To resolve the problem (12), define: let 𝑤𝑤 be a fuzzy number linear ranking function and given the 
function, 𝛹𝛹: 𝐹𝐹(𝑆𝑆) ×  𝐹𝐹(𝑆𝑆) → 𝐹𝐹(𝑆𝑆) 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 

𝛹𝛹�𝑎𝑎�𝑟𝑟𝑥𝑥, 𝑏𝑏�𝑟𝑟� = �
𝑡̃𝑡𝑟𝑟                          ,                            𝑎𝑎�𝑟𝑟𝑥𝑥 ≤𝑤𝑤 𝑏𝑏�𝑟𝑟

𝑡𝑡𝑟𝑟(−)𝑎𝑎�𝑟𝑟𝑥𝑥(+)𝑏𝑏�𝑟𝑟     , 𝑏𝑏�𝑟𝑟 ≤𝑤𝑤 𝑎𝑎�𝑟𝑟𝑥𝑥 ≤𝑤𝑤 𝑏𝑏�𝑟𝑟(+)𝑡̃𝑡𝑟𝑟
0      ,                                   𝑎𝑎�𝑟𝑟𝑥𝑥 ≤𝑤𝑤 𝑏𝑏�𝑟𝑟(+)𝑡̃𝑡𝑟𝑟

 

Where 𝑡̃𝑡𝑟𝑟 ∈ 𝐹𝐹(𝑆𝑆) is a fuzzy number so that its support consists of 𝑅𝑅+, and ≤𝑤𝑤 is a relationship that 
evaluates that H≤𝑤𝑤 𝑉𝑉,∀𝐻𝐻,𝑉𝑉 ∈ 𝐹𝐹(𝑆𝑆) and (-) and (+) are the common operation among fuzzy numbers.  

As stated by  Cadenas and Verdegay, the membership function connected to the fuzzy 
constraint 𝑎𝑎�𝑟𝑟𝑥𝑥 ≤� 𝑏𝑏�𝑟𝑟, with 𝑡̃𝑡𝑟𝑟 a fuzzy number giving the maximum defilement of the 𝑟𝑟th constraint is 
relation (18) 

µ𝑟𝑟:𝐹𝐹(𝑆𝑆) → [0,1]/µ𝑟𝑟�𝑎𝑎�𝑟𝑟𝑥𝑥, 𝑏𝑏�𝑘𝑘� =
𝛹𝛹�𝑎𝑎�𝑟𝑟𝑥𝑥, 𝑏𝑏�𝑘𝑘�
𝑔𝑔(𝑡̃𝑡𝑟𝑟)                                                                                                     (18) 

Where 𝑤𝑤 is a linear classifying function. 

Taking the problem (17) into account, ≤�  with the membership function (18) and using the decomposition 
theorem for fuzzy arrangements, the following is acquired: 

µ𝑟𝑟�𝑎𝑎�𝑟𝑟𝑥𝑥, 𝑏𝑏�𝑘𝑘� ≥ 𝛼𝛼 ⟺
𝑤𝑤�𝛹𝛹�𝑎𝑎�𝑟𝑟𝑥𝑥, 𝑏𝑏�𝑘𝑘��

𝑔𝑔(𝑡̃𝑡𝑟𝑟) ≥ 𝛼𝛼 ⟺
𝑔𝑔�𝑡̃𝑡𝑟𝑟(−)𝑎𝑎�𝑟𝑟𝑥𝑥(+)𝑏𝑏��

𝑔𝑔(𝑡̃𝑡𝑟𝑟) ≥ 𝛼𝛼 

⟺𝑤𝑤(𝑡̃𝑡𝑟𝑟) − 𝑤𝑤(𝑎𝑎�𝑟𝑟𝑥𝑥) + 𝑤𝑤(𝑏𝑏�𝑟𝑟) ≥ 𝑤𝑤(𝑡̃𝑡𝑟𝑟)𝛼𝛼 ⟺ 𝑤𝑤(𝑎𝑎�𝑟𝑟𝑥𝑥) ≤ 𝑤𝑤(𝑏𝑏�𝑟𝑟(+)𝑡̃𝑡𝑟𝑟(1 − 𝛼𝛼)) 

⟺𝑎𝑎�𝑟𝑟𝑥𝑥 ≤𝑤𝑤 𝑏𝑏�𝑟𝑟 + 𝑡̃𝑡𝑟𝑟(1 − 𝛼𝛼) 

Where  ≤𝑤𝑤 is the relationship corresponding to 𝑤𝑤 

Therefore, an equivalent model to resolve (17) is as below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀     𝑍𝑍 = �𝑐̃𝑐𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡�𝑎𝑎𝑟𝑟𝑟𝑟𝑥𝑥𝑘𝑘 ≤𝑤𝑤 𝑏𝑏�𝑘𝑘 +
𝑛𝑛

𝑘𝑘=1

𝑡̃𝑡𝑟𝑟(1 − 𝛼𝛼)                                                                                                           (19) 

𝑥𝑥𝑘𝑘  , 𝑟𝑟 ∈ 𝐷𝐷, 𝑘𝑘 ∈ 𝑍𝑍,𝛼𝛼 ∈ [0,1] 

    Resolving the problem (19), we can use the divergent fuzzy numbers ranking ways in both the 
constraints and the objective function, or to use ranking methods in the constraints and 𝛼𝛼 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in the 
objective, which will guide us to acquire different conventional models, that allow us to obtain a fuzzy 
solution. Specifically in this paper and for illustration effects of the method, we apply a linear ranking 
function, the first index of yager.  Although the approach could be easily adapted to the use of any other 
index. Thus applying the first index of yager and by considering triangular fuzzy numbers, the DMCLAP 
problem defined in equation (19) is transformed into the crisp equivalent linear programming problem 
defined in the equation (20). 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   𝑧𝑧 = ��𝑐𝑐𝑘𝑘 +
𝑑𝑑𝑐𝑐𝑘𝑘 − 𝑑𝑑𝑐𝑐𝑘𝑘

′

3
�𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇��𝑎𝑎𝑟𝑟𝑟𝑟 +
𝑑𝑑𝑎𝑎𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑎𝑎𝑟𝑟𝑟𝑟

′

3
�𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

            

≤ �𝑏𝑏𝑘𝑘 +
𝑑𝑑𝑏𝑏𝑟𝑟 − 𝑑𝑑𝑏𝑏𝑟𝑟

′

3
� + �𝑡𝑡𝑟𝑟 +

𝑑𝑑𝑡𝑡𝑟𝑟 − 𝑑𝑑𝑡𝑡𝑟𝑟
′

3
� (1 −  𝛼𝛼)                                                               (20) 

𝑥𝑥𝑘𝑘 ≥ 0 , 𝑟𝑟 ∈ 𝐷𝐷 , 𝑘𝑘 ∈ 𝑍𝑍,𝛼𝛼 ∈ [0,1] 

Where, for instance,  dck and  dck
′  are the lateral margins (right and left, respectively) of the triangular 

fuzzy number central point ck( see Fig. 2) 

jR
jCjr

1

icu

j j jd R C= −'
jd C rj j= −

 

Fig 2. Triangular fuzzy number 

Consequently, when applying this approach to the previously defined FDMCLAP model, In this section are 
presented component of mathematic model and we would obtain an auxiliary crisp DMCLAP model in the 
following way: 

𝑫𝑫𝒊𝒊𝒊𝒊: The central point of the triangular fuzzy number 𝑫𝑫�𝒊𝒊𝒊𝒊 

𝒅𝒅𝑫𝑫𝒊𝒊𝒊𝒊: The lateral right margins of the triangular fuzzy number of central point𝑫𝑫�𝒊𝒊𝒊𝒊  

𝒅𝒅𝑫𝑫𝒊𝒊𝒊𝒊
′ : The lateral left margins of the triangular fuzzy number of central point 𝑫𝑫�𝒊𝒊𝒊𝒊 

𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊: The central point of the triangular fuzzy number 𝐂𝐂�𝐢𝐢𝐢𝐢𝐢𝐢 

𝒅𝒅𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊: The lateral right margins of the triangular fuzzy number of central point 𝐂𝐂�𝐢𝐢𝐢𝐢𝐢𝐢 

𝒅𝒅𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊
′ : The lateral left margins of the triangular fuzzy number of central point 𝐂𝐂�𝐢𝐢𝐢𝐢𝐢𝐢 

𝒌𝒌: The central point of the triangular fuzzy number 𝒌𝒌� 

𝒅𝒅𝒌𝒌: The lateral right margins of the triangular fuzzy number of central point 𝒌𝒌� 

𝒅𝒅𝒌𝒌′ : The lateral left margins of the triangular fuzzy number of central point 𝒌𝒌� 
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𝒑𝒑𝒕𝒕𝑨𝑨: The central point of the triangular fuzzy number 𝒑𝒑�𝒕𝒕𝑨𝑨 

𝒅𝒅𝒑𝒑𝒕𝒕𝑨𝑨: The lateral right margins of the triangular fuzzy number of central point 𝒑𝒑�𝒕𝒕𝑨𝑨 

𝒅𝒅𝒑𝒑𝒕𝒕𝑨𝑨
′ : The lateral left margins of the triangular fuzzy number of central point 𝒑𝒑�𝒕𝒕𝑨𝑨 

𝒑𝒑𝒕𝒕𝑩𝑩: The central point of the triangular fuzzy number 𝒑𝒑�𝒕𝒕𝑩𝑩 

𝒅𝒅𝒑𝒑𝒕𝒕𝑩𝑩: The lateral right margins of the triangular fuzzy number of central point 𝒑𝒑�𝒕𝒕𝑩𝑩 

𝒅𝒅𝒑𝒑𝒕𝒕𝑩𝑩
′ : The lateral right margins of the triangular fuzzy number of central point 𝒑𝒑�𝒕𝒕𝑩𝑩 

𝒕𝒕𝒓𝒓 : The fuzzy number giving the maximum defilement of the 𝐫𝐫𝐫𝐫𝐫𝐫 constraint in relations 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ����𝐷𝐷𝑖𝑖𝑖𝑖 +
�𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖−𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖

′ �
3

� × �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 +
�𝑑𝑑𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

′ �
3

� 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴

∀ 𝑘𝑘∀ 𝑡𝑡∀ 𝑖𝑖

+ ���𝐷𝐷𝑖𝑖𝑖𝑖 +
�𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖−𝑑𝑑𝐷𝐷𝑖𝑖𝑖𝑖

′ �
3

� × 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵

∀ 𝑡𝑡∀ 𝑖𝑖

 

(21) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇  

𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴 ≥��𝑘𝑘 +
(𝑑𝑑𝑘𝑘−𝑑𝑑𝑘𝑘′ )

3
� × 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴

∀ 𝑗𝑗

                                       ∀ 𝑖𝑖, 𝑡𝑡, 𝑘𝑘  
(22) 

�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 1                                            
∀𝑘𝑘

                                         ∀ 𝑖𝑖, 𝑡𝑡 (23) 

𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵 ≤�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 

∀ 𝑘𝑘

                                                                                   ∀ 𝑖𝑖, 𝑡𝑡 (24) 

𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵  ≤�𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵

∀ 𝑓𝑓

                                                                             ∀ 𝑖𝑖, 𝑡𝑡   (25) 

�𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴 ≥
∀ 𝑗𝑗

�𝑝𝑝𝑡𝑡𝐴𝐴 +
�𝑑𝑑𝑝𝑝𝑡𝑡𝐴𝐴−𝑑𝑑𝑝𝑝𝑡𝑡𝐴𝐴

′ �

3
�− �𝑡𝑡4 +

�𝑑𝑑𝑡𝑡4−𝑑𝑑𝑡𝑡4
′ �

3
� × (1 − 𝛼𝛼)             ∀ 𝑡𝑡        

(26) 

�𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴 ≤
∀ 𝑗𝑗

�𝑝𝑝𝑡𝑡𝐴𝐴 +
�𝑑𝑑𝑝𝑝𝑡𝑡𝐴𝐴−𝑑𝑑𝑝𝑝𝑡𝑡𝐴𝐴

′ �

3
� + �𝑡𝑡5 +

�𝑑𝑑𝑡𝑡5−𝑑𝑑𝑡𝑡5
′ �

3
� × (1 − 𝛼𝛼)             ∀ 𝑡𝑡                  

(27) 

�𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵 ≥
∀ 𝑗𝑗

�𝑝𝑝𝑡𝑡𝐵𝐵 +
�𝑑𝑑𝑝𝑝𝑡𝑡𝐵𝐵−𝑑𝑑𝑝𝑝𝑡𝑡𝐵𝐵

′ �

3
� − �𝑡𝑡6 +

�𝑑𝑑𝑡𝑡4−𝑑𝑑𝑡𝑡4
′ �

3
� × (1 − 𝛼𝛼)             ∀ 𝑡𝑡        

(28) 

�𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵 ≤
∀ 𝑗𝑗

�𝑝𝑝𝑡𝑡𝐴𝐴 +
�𝑑𝑑𝑝𝑝𝑡𝑡𝐵𝐵−𝑑𝑑𝑝𝑝𝑡𝑡𝐵𝐵

′ �

3
� + �𝑡𝑡7 +

�𝑑𝑑𝑡𝑡5−𝑑𝑑𝑡𝑡5
′ �

3
� × (1 − 𝛼𝛼)             ∀ 𝑡𝑡                  

(29) 

𝑥𝑥𝐴𝐴𝐴𝐴 + 𝑥𝑥𝐵𝐵𝐵𝐵 ≤ 1                                                                                         ∀ 𝑡𝑡 (30) 
�𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵 ≤ 1        
∀ 𝑘𝑘

 (31) 

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  (32) 
𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖𝐵𝐵  (33) 

yitB   , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  , 𝑥𝑥𝐴𝐴𝐴𝐴  , 𝑥𝑥𝐵𝐵𝐵𝐵  ,𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴   , 𝑍𝑍𝑖𝑖𝑖𝑖𝐵𝐵 ∈ {0  1}                                                      ∀ 𝑖𝑖 , 𝑡𝑡 𝑘𝑘 (34) 
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𝑥𝑥𝑗𝑗𝑗𝑗𝐴𝐴  , 𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵 ≥ 0     𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  (35) 
 

   The non fuzzy constraints (3)-(5), (8) are also included in the model in a similar way. 
To solve the problem and according to Eq. (20), 𝜶𝜶 is settled parametrically (𝜶𝜶 ∈ [𝟎𝟎 ,𝟏𝟏]) to obtain the value 
of the objective function for the different levels (𝛂𝛂 − 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜) of the fuzzy parameters considered in the 
model. The result is a fuzzy set and the FLP planner has to decide which pair (𝜶𝜶, 𝒛𝒛) is most suitable to 
obtain a crisp solution. 

4- The general-optimizer algorithms 
4-1- Simulated annealing (SA) algorithm 
   The SA algorithm was presented by 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 in 1953 (Metropolis et al., 1953). This algorithm is a 
random meta-heuristic algorithm to solve combinatorial optimization problems. The main idea of such an 
algorithm is to select one solution from current solution neighborhood in each step. If the selected neighbor 
solution improves the objective function, it will be replaced with current solution. Otherwise, a solution 
between zero and one is replaced by chance. Simulated annealing algorithm is probability of selecting a 
worse solution for objective function with conformity to the amount of difference between solutions of two 
previous objective functions. Solutions which have less difference in objective function with current 
amount of objective function are selected with higher probability, and solutions with larger difference are 
seldom selected. Therefore, by increasing the number of iterations of this algorithm, the possibility of 
abandoning local optimum solution increases, on the other hand, along with decreasing probability of 
solutions with worse objective functions during the time, the algorithm converges in a good local optimum 
solution due to decreasing the degree of temperature T. 

4-1-1- Parameters of SA algorithm 
   Annealing program has a great effect on the converging of the gradual annealing algorithm. Annealing 
program identifies the way of controlling algorithm temperature. In an annealing program, some factors 
need to be identified such as initial temperature, length of Markov chain, rule of temperature decrease, rule 
of stop. These factors must be adjusted according to investigated problem conditions, and it is due to lack 
of theoretical results about designing mentioned parameters. In this adjustment, quality of results and 
algorithm calculation time is considered. Suitable design of mentioned parameters has a substantial impact 
on the algorithm. In the other word, this is a deficiency in this algorithm comparing other meta-heuristic 
algorithms. To investigate it, there is an analysis about mentioned factors. 
   The use of a high initial temperature makes the algorithm have a manner like random search and using 
lower temperature causes algorithm to be changed to a local search algorithm. In gradual annealing 
algorithm, while identifying initial temperature, it must be identified in a way that a balance between two 
mentioned cases occurs. Length of Markov chain to achieve sustained position in any temperature, and 
enough number of transports (movements) need to be considered. Theoretical studies suggest that the 
number of iterations need to be based on an exponential function of the problem. Applying this strategy is 
hard in practice. Generally, the number of iterations must be identified according to the size of the problem 
and neighborhood. The rule of temperature decrease: Generally, there is a relationship between result 
quality and annealing speed. The degree temperature has always been positive and when the number of 
iterations goes up to zero, temperature degree goes toward zero, too. By observing such principals, there 
are several rules for temperature decrease such as linear rule, Geometric rule, logarithmic rule, slow linear 
decrease rule, non-uniform rule, dynamic rule, temperature-related geometric rule. 

4-1-2 -Steps of simulated annealing algorithm 

1. Creating a random initial response and evaluating it.  

2. Considering later response as the best answer. 

3. Adjusting initial temperature T=T0. Conducting steps 5-8 in determined times. 

4. Producing random response in the neighborhood of current response and evaluating it. 
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5. Accepting new response if it is better (If ∆𝐟𝐟(𝐱𝐱) ≥ 𝟎𝟎 then 𝐗𝐗𝐧𝐧𝐧𝐧𝐧𝐧 is replaced by X with probability 𝐩𝐩 = 𝐞𝐞
∆𝐟𝐟
𝐓𝐓  

6. Updating the best found solution. 

7. Temperature decrease and return to step 4 if needed, otherwise end of procedure. 

4-2- Multiple simulated annealing (MSA) algorithm  
Steps of simulated annealing algorithm based on population are as following and its figure is as figure3. 

1. Producing initial population and its evaluation. 

2. Identifying the best found solution. 

3. Adjusting initial temperature T=T0.  

4. Conducting steps 5-8 in determined times.  

5. For each of population members, a specific number of neighbors is created and evaluated. 

6. Arranging the members of neighbors population, and selecting the best one to add to the quantity of the 
main winners. 

7. Each of the current members (main members) is compared with one of the neighbor members according 
to SA. 

8. Updating the best found solution.  

9. If the end conditions aren’t met, we decrease temperature and begin from 4th step. 

10. End. 

 
Fig 3. Method of arranging based on SA 

 
4-2-1- Initialize solution for multiple simulated annealing  
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   The number of potential points to establish facilities of type A is equal to j in each period and also the 
number of potential points to establish facilities of type B is equal to f. The number of type A facilities to 
locate is PA in each period and the number of type B facilities in each period is equal to PB. To locate 
facilities of 𝐀𝐀 type, intervals between zero and one are divided into j equal parts. The numbers that are 
located in the intervals are allocated to potential corresponding points. For location of type B, we will do 
the same. 
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4-2-2- The method of neighborhood development 
   In this method, each particle selects two random numbers from chromosome and reverses all the numbers 
between these two numbers and creates the neighborhood solution. The reason for creating neighborhood is 
that all neighborhoods (possible solutions) are easily accessible. The way to create neighborhood is as 
follow: 

1 … … , 𝑖𝑖1 − 1, 𝑖𝑖1, 𝑖𝑖1 + 1, … … … 𝑖𝑖2 − 1,  𝑖𝑖2 , 𝑖𝑖2 + 1 , … … .𝑛𝑛 

1 … … , 𝑖𝑖1 − 1���������
1: 𝑖𝑖1−1

 , 𝑖𝑖2, 𝑖𝑖2 − 1, … … … 𝑖𝑖1 + 1,  𝑖𝑖1�����������������
 𝑖𝑖2: 𝑖𝑖1

, 𝑖𝑖2 + 1 , … … .𝑛𝑛���������
𝑖𝑖2+1:𝑛𝑛

 

4-2-3- Parameter setting for multiple simulated annealing  
   In this section MSA algorithm parameters and operators are identified. Regarding large number of 
existing parameters in simulated annealing algorithm based on population, the process of finding suitable 
combination for parameters which improves has great utility. Due to large number of parameters using 
complete factorial, it is inefficient. To remove this fault, the Taguchi method is usually used. In Taguchi 
method, we use orthogonal arrays to study a lot of decision variables using small number of experiments. In 
this section to adjust parameters, a problem in large scale is selected and by applying the main effects 
diagram, six parameters of MSA algorithm are adjusted for it. 
   Regarding the diagram in figure3, the parameters of iteration number in third level, subset iteration in the 
first level, alpha in the first level, initial temperature in the second level, the number of population members 
in second level, the number of neighborhood in first level have the best optimum value. 
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Fig 3. Diagram of great effects for large scale problems 
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Table 2. Optimum levels for parameters of MSA algorithm 
Optimum level Level Parameters 

10 {10,20,30} Subset Iteration Number 
70 {50,60,70} Iteration Number 

0.85 {0.85,0.90,0.95} Alpha 
40 {30,40,50} Initial Temperature 
5 {4,5,6} Number of Population 

Members  
5 {5,6,7} Number of Neighborhood 

 

6-Numerical example  
   In this section we study the numerical example in different scales. At first, to correct fuzzy dynamic 
modeling procedure, the presented dynamic procedure is solved in crisp situations by means of GAMS 
software and is compared. Different examples are solved based on assumed data for more investigations. In 
this section there will be some comparisons between solution of presented models in fuzzy dynamic and 
decisive by means of both GAMS and meta-heuristic algorithms to confirm the accuracy of coding by 
using such algorithms. It should be noted that due to model complexity and large number of constraints and 
variables, it can’t be solved by using GAMS definite method, so it is necessary to apply meta-heuristic 
methods to solve the problem. The model Presented with the proposed algorithm is being coded by 
MATLAB10a software. They are also solved by GAMS in a corei3 CPU computer. 3.1 GHz. and 4GB 
RAM. 
   In table number 3, the location model for ambulance services is solved in both states, fuzzy dynamic state 
by GAMS software and by simulated annealing algorithm SA. Results represent in fuzzy dynamic model 
case quality of answers increases in a high rate along with increase in period numbers, and also duration of 
solving the model increases along with increase of time periods. In table 4, ambulance location model has 
been solved in both definite case and fuzzy dynamic case by means of GAMS and popular based simulated 
annealing algorithm (MSA). Results show in fuzzy dynamic state quality of answers increases along with 
number of periods of solving. In table5 the fuzzy dynamic model is solved by two algorithms, simulated 
annealing SA and popular based simulated algorithm (MSA). Results show MSA is better than SA 
regarding answer qualities. But regarding time, the SA has preference compare to MSA. 
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Table 3. Results of the model in deterministic, dynamic and fuzzy multi period state  

α-cut 

and Models 

Number of 
period 

Number of 
(A) facility 

Number of 
(B) facility 

Objective 
Function 
(GAMS) 

CPU 
Time(GAMS) 

Objective 
Function 

(SA) 

CPU 
Time(SA) 

Objective 
Function 

(MSA) 

CPU 
Time(MSA) 

Deterministic Model - 20 5 57 210.78 54 25.11 56 28.13 
Dynamic Model 1 20 5 57 210.78 54 25.11 56 28.13 

Dynamic Fuzzy 
Model 

α=0 

1 20 5 

76 309.76 71 40.98 76 46.13 

α=0.1 74 300.37 71 39.22 75 45.21 

α=0.2 71 291.23 70 35.23 70 42.98 

α=0.3 69 288.02 66 33.65 67 40.69 

α=0.4 69 287.33 65 32.31 67 39.34 

α=0.5 67 279.37 62 30.45 65 37.23 

α=0.6 65 276.32 64 28.92 65 35.87 

α=0.7 64 240.21 60 27.36 64 33.98 

α=0.8 63 235.11 60 26.21 61 30.34 

α=0.9 56 211.96 52 25.36 55 32.25 

α=1 55 210.78 51 25.11 55 30.45 

Dynamic Model 2 20 5 72 365.13 69 35.09 71 45.21 

Dynamic Fuzzy 
Model 

 

α=0 

2 20 5 

96 445.32 94 62.32 94 74.45 

α=0.1 91 435.21 90 62.01 90 75.21 

α=0.2 89 421.34 85 59.11 88 65.09 

α=0.3 88 418.56 84 55.04 87 64.12 

α=0.4 86 410.65 84 50.11 86 61.65 

α=0.5 82 408.32 80 50.58 80 58.23 

α=0.6 78 397.54 74 45.22 76 56.98 

α=0.7 75 390.03 71 40.98 74 56.01 

α=0.8 74 379.98 70 38.36 74 48.23 

α=0.9 73 370.00 69 36.96 72 45.65 

α=1 73 365.13 68 35.09 72 40.75 
Dynamic Model 3 20 5 85 443.76 82 58.32 83 67.23 

Dynamic Fuzzy 
Model 

 

α=0 

3 20 5 

112 565.11 110 85.13 110 93.22 

α=0.1 107 542.08 101 79.09 106 90.23 

α=0.2 101 521.10 98 79.23 100 84.32 

α=0.3 99 512.32 94 71.56 97 80.45 

α=0.4 99 501.03 93 70.10 96 78.98 

α=0.5 96 485.36 90 66.78 94 74.32 

α=0.6 94 496.30 89 65.98 93 71.45 

α=0.7 92 476.85 85 64.98 90 66.21 

α=0.8 89 465.32 85 61.23 88 67.76 

α=0.9 87 450.58 82 60.12 86 65.12 

α=1 85 443.76 81 58.32 84 61.09 
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7-Conclusions and future studies 
   In the model presented, ground and air (backup) ambulances for maximum coverage in different periods 
can be replaced and relocated (facility replacement). Air ambulances are considered as backup ambulances 
for ground ambulances. In presented model, extent of coverage of one demand point is related to demand 
amount and the number of facilities which this point has under its coverage. It is also considered that the 
radius coverage and the demand amount are as fuzzy dynamic states to conform with reality and the 
allocation of service machines to the stations in different periods. The number of service machines in each 
period in each station could be variable. The proposed model is preferably applied to locate urgency and 
fire fighting service stations in emergency occasions (crisis management). Proposed algorithm MSA 
presented a better solution comparing SA in terms of quality. 
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