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Abstract 

 
The solar photovoltaic (PV) energy is one of the most promising sources of energy, 
which has attracted many interests. It is potentially the largest source of energy in the 
world and is capable to mitigate greenhouse gas (GHG) emissions significantly in 
comparison with fossil fuels. Location optimization of solar plants can play a vital role 
to rise the efficiency and performance of the solar PV systems. In this regard, this study 
aims at evaluating different areas for solar plants according to a set of social, 
geographical and technical criteria through a data envelopment analysis (DEA) model. 
The proposed DEA model considers both information of the efficient and anti-efficient 
frontiers in order to rise discrimination power in DEA analysis. The proposed approach 
is evaluated and validated via studying a real case study in Iran. The extracted results 
reveal the usefulness and applicability of the proposed DEA model in choosing 
appropriate locations for solar plants.  
Keywords: Data envelopment analysis, efficient frontier, anti-efficient frontier, 
photovoltaic, solar plant.  

 
 
 
1-Introduction 
   In the last years, the requirement to implement energy sources that are substitute to fossil fuels, whose 
usage is the main reason of air pollution, climate changes and global warming, is becoming very prominent. 
Public and political consciousness, technological progression and environmental degradation are factors 
that, at the dawn of third millennium, open real outlooks for development of the so-called renewable 
energies. Renewable energies derive from limitless sources and consequently all come directly or indirectly 
from the sun, which is the most abundant and the most widely distributed renewable energy in the world. 
Specially, PV technology converts solar energy directly into electrical energy employing the PV effect 
(Desideri et al., 2012). The solar PV energy is taken into account as one of the most promising options for 
future energy. The following are its advantages: (1) large availability of solar energy; (2) no noise and 
substantial emissions realizing during the function phase; (3) little needs for freshwater sources for the goal 
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of mirror washing and cooling; (4) application, where the power supply is not desirable and possible via 
network (5) high ability to mitigate GHG emissions; and (6) easy development of its grid system since fast 
implementation of PV plants. 
   However, solar PV energy has not still attained sufficient maturity and the high costs of PV systems in 
contrast to other electricity generation alternatives have until now hampered its rapid deployment (Bazilian 
et al., 2013; Chen et al., 2014). Therefore, great efforts must be performed for alleviating manufacturing 
costs and rising efficiencyin order to expedite the commercialization of the PV industry(Chen et al., 2014). 
   Large-scale PV installations, as one of the most important applications of solar energy,can play an 
important role in energy supply, especially in shiny and remote regions (Azadeh et al., 2011). One of the 
main needs for successful large-scale PV installations is determining the optimal locations in order to 
achieve higher returns and maximize the performance of solar PV systems. However, different factors are 
responsible in this problem, which make decision making a complex task (Jun et al., 2014; Sabo et al., 
2016).Indeed, locations with higher solar radiation are not necessarily suitable for solar plants when other 
criteria are also considred(Sabo et al., 2016).Accordingly, different methods are utlized in the literatere to 
cope with this problem. In this sense,Kengpol et al. (2013) used Geographical Information System (GIS) 
method to specify the optimum site for a solar power plant. Likewise, they proposed a hybrid method of 
AHP and fuzzy logic for evaluating the selected alternatives. Sánchez-Lozano et al. (2016) applied a two-
stage approach for selecting the best locations of solar PV farms. In the first stage, they utlized a GIS 
method to obtain the suitable locations. Then, a multi-criteria decision modelis exploited for evaluating the 
seleted alternative. Using a GIS method, Sabo et al. (2016) determined optimal sites for large-scale PV 
systems installation in Peninsular Malaysia. In addition, they derived accurate predictions from optimal 
sites for three other important parameters including carbon emission reduction, energy generation potential 
and installation capacity. 
   DEA, as a powerful optimization tool, is a mathematical model in order to assess the performance of 
homogeneous decision-making units (DMUs) according to theavailable data. This method is known as a 
non-parametric approach and it has been broadly exploited for the goal of specifying the locations of 
renewable energy facilities (see e.g., Azadeh et al. (2011),Azadeh et al. (2008)Yokota and Kumano 
(2013),Sueyoshi and Goto (2014),Babazadeh et al. (2015),Wu et al. (2016) and Babazadeh et al. (2016)). 
It is capable to conduct the complex nature of the relations between the multiple inputs and multiple outputs, 
whilst it does not need predetermined weights for the inputs and the output criteria. Furthermore, the 
normalizing of variable dimensions is unnecessary for the method in efficiency computation. Two 
significant early contributions in this issue are the works of Farrell (1957) and Charnes et al. (1978). 
Hitherto, many applications and extensions of DEA models have been proposed based on the model 
presented by Charnes et al. (1978) that takes into account constant return to scale. In the literature, this 
model is known as the CCR model. Thereinafter, Banker (1984) developed this model by considering 
variable returns to scale, which the resulted model is known as the BCC model. Recognizing the production 
frontier, i.e., where DMUs will be regarded as efficient, is primary concept behind these classic DEA 
models. Likewise, through comparing those DMUs, which are not on the frontier, with their peerson 
production frontier, the other scores are also attained. Noteworthy, it is deemed that all the DMUs, which 
are on the frontier, have the same performance level as well as highest score. As mentioned before, one of 
the importantcharacters of the DEA models is that they do not need predetermined weights. Indeed, the 
weights of the criteria are decision variables and their values are specified by maximizing the efficiency 
scores. Nonetheless, this full flexibility may much decline the discrimination power of DEA models. The 
relational behind this is that too many DMUs may existon the frontier, which leads to alleviatethe 
performance ranking of DMUs. Thus, many scholars have tried to propose different methods with the aim 
of enhancing discrimination power of DEA models. These methods can be categorized into four classes as 
follows:  
(1) Applying prior or preferential information from pertaining decision makers (Allen et al., 1997; Paradi 
et al., 2004; Thanassoulis et al., 2004; Zhang et al., 2009) 
(2) Utilizing cross efficiency method and evaluating each DMU through both itself and other peers(Doyle 
and Green, 1994; Sexton et al., 1986) 
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(3) Employing super efficiency method, in which the DMU under evaluation, itself is excluded from the 
reference set and its efficiency is estimated with a linear fit of all other units (Andersen and Petersen, 1993; 
Banker and Chang, 2006; Banker and Gifford, 1988) 
(4) Comparing the DMUs with good and bad references simultaneously(Shen et al., 2016; Sueyoshi and 
Goto, 2011) 
   In this study, we implement the methods of fourth group to evaluate different areas for solar plants 
according to a set of social, geographical and technical criteria. Unlike the methods of other mentioned 
groups, the main merit of these methods is that they are not limited to a specific issue and can be utilized 
in many problems (Shen et al., 2016). Indeed, the proposed DEA model using the information of both 
efficient and anti-efficient frontiers increases the discrimination power in DEA analysis. The application 
and usefulness of the proposed approach are validated and verified in a real case study in Iran. Likewise, 
some interesting managerial implications are extracted based on numerical results.  
   The remainder of this paper is structured as follows. In the next Section, the proposed DEA model for 
assessing the solar plants is explained in details. Section 3 proposes the studied case and addresses the 
considered criteria. Section 4 discusses the computational results and insights and finally concluding 
remarks and possible future research avenues are presented in section 5.    
 
2-The proposed DEA model 
   In this section, we introduce the implemented DEA model, first proposed by Shen et al. (2016), for the 
goal of performance ranking of DMUs. It is worthy to note that each solar plant is considered as a DMU. 
Utilizing the distances to both efficient and the anti-efficient frontiers, the proposed DEA model aims to 
improve distinction power in DEA analysis. Indeed, the proposed approach applies the standard DEA 
model, presented by Charnes et al. (1978), and the inverted DEA model, presented by Yamada et al. (1994), 
to respectively trace the efficient and the anti-efficient frontiers. Afterwards, the obtained information are 
integrated employing an indicator. Graphical illustrations of the efficient and anti-efficient frontiers are 
represented in figure 1. From this figure, the best practice DMUs F, E, D and A are obtained by the standard 
DEA model. As such, the worst practice DMUs D, C, B and A are proposed by the inverted DEA model. 
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Fig 1. Graphical illustrations of the efficient and anti-efficient frontiers 

 

The implemented approach is addressed as follow. To do so, the following indices, parameters and variables 
in problem formulation are first introduced. 
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Indices  
,c l  Index of candidate locations for solar plant (DMUs) , 1,..., ,c l n=  

d  Index of inputs 1,..., ,d g=  
e  Index of outputs 1,..., .e q=  
Parameters  

dcx  Amount of input d for DMU ,c  

ecy  Amount of output e for DMU .c  

Variables  

lθ  The measure of efficiency of DMU l, 

cλ  The dual weight assigned to all inputs and outputs of DMU “c”. 

 
The standard DEA model is given in model (1)-(4). As mentioned previously, this model traces the efficient 
frontier. In other words, the distances to good references are obtained by solving this model.   
 

*
bl lMin h θ=  (1) 

1
, 1,...,

n

dc c l dl
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l
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In addition, the model (5)-(8) represents the inverted DEA model, which offers the distances to bad 
references. 
 

*
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By solving the standard DEA model and the inverted DEA model for the l th DMU, the efficiency scores

* *,bl wlh h  are reached. Therefore, to obtain the efficiency scores for all DMUs, the models should be solved 
n times.  
For the goal of calculating the distances to the good and bad references simultaneously and integrating the 
information of both efficient and anti-efficient frontiers, an indicator is computed as follows:  
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In the event that lDMU  is only on the efficient frontier (e.g., DMUs E and F), *
lhi will be higher than 1

2

and also if it is only on the anti-efficient frontier (e.g., DMUs B and C), * 1wlh = and consequently
*

* 1
2 2
bl

l
hhi = ≤ . Furthermore, if it is on both the efficient and anti-efficient frontiers (e.g., DMUs A and D), 

i.e., * 1blh = and * 1,wlh = then * 1
2lhi =  .According to the presented descriptions, the approach can distinguish 

between the DMUs noting their positions on the frontiers. 

 

3- Case study description  
   The proposed DEA model is utilized to evaluate different places for solar plants in Iran, which is one of 
the world's supplies of fossil energy. There are many motivations to implement the solar PV energy in Iran. 
Excessive use of fossil energy in Iran has created many environmental problems. One of the most prominent 
of these problems is the pollution of big cities in Iran such as Tehran, Esfahan, Tabriz and Mashhad. 
Moreover, Iran is also very talented to the use of the PV systems since the average annual solar radiation is 
very high in Iran and there are vast unused lands, which the systems can be installed in them. Moreover, by 
exploiting new energies, the country can enhance its energy diversity. Iran's government and parliament 
have also passed approvals and laws to encourage investment in renewable energies. 
   We introduce a set of social, geographical and technical criteria in order to assess different locations for 
solar plants. Locations with higher scores are more appropriate for establishing solar plants. It is worth 
noting that the criteria with increasing trend is considered as output critera and those with decreasing trend 
are implemented as input criteria. The considered criteria is explained in details as follows. 

• Distance of power distribution network 
This criterion has a great impact on the amount of electrical pressure drop. In other words, if the 
distance between solar plant and grid is high, the pressure drop increases dramatically. Thus, less 
distance is more favorable and therefore it is as an input criterion. 

• Natural disasters occurrence 
By this viewpoint, security of solar plant is taken into account. In fact, the combination of 
earthquake and torrent, as two important disasters, are defined as an input criterion. 

• Population density 
Higher value of this criterion is more plus because the locations with more population, have a more 
electricity demand. As a result, this criterion has an increasing trend and it is regarded as an output 
indicator.  

• Topography feature 
This matter considers characters and shape of the surface of the Earth. Specially, choosing rough 
and rocky lands for establishing solar plants is unreasonable or even inconceivable. This factor can 
play an important role to select solar plants and has as increasing trend. Hence, it is an output 
criterion.  

• Beam radiation 
This criterion is defined as a proportion of solar radiation that is reached on the earth's surface. 
Assuredly, the locations with more annual radiation can yield more electrical energy. Consequently, 
this criterion is taken into account as an output indicator. 
 

https://en.wikipedia.org/wiki/Surface_(topology)
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3-1- Data gathering 
   Gathering and estimating of parameter values have been done based on available historical data. Different 
locations, which are considered for solar plant centers, are given in table 1. Responsible organizations for 
input criteria of the proposed DEA model encompassing “natural disasters occurrence” and “distance of 
power distribution network” are  repectively Disaster Management Organization (http://www.ndmo.ir) and 
Iran Grid Management Company (http://www.igmc.ir). Table 2 represents the collected data corresponding 
to input criteria for all DMUs. As such, the values of output criteria, i.e., “topography feature”, “population 
density” and “beam radiation” have been provided from Geological Survey of Iran (http://www.gsi.ir), 
National Statistical Center of Iran (http://www.amar.org.ir), and Renewable Energy Organization of Iran 
(http://www.suna.org.ir), respectively. The values of output criteria for DMUs are presented in table 3.  
 

Table 1. Introducing the considered DMUs 

DMU City DMU City 

DMU1 Ahwaz DMU23 Lordegan 

DMU 2 Amol DMU24 Mahabad 

DMU3 Anzali DMU25 Malayer 

DMU4 Arak DMU26 Mashhad 

DMU5 Ardebil DMU27 Masjedsolieman 

DMU6 Astara DMU28 Nahavand 

DMU7 Birjand DMU29 Noshahr 

DMU8 Bndarabass DMU30 Oroomieh 

DMU9 Bojnord DMU31 Qom 

DMU10 Bushehr DMU32 Rasht 

DMU11 Esfahan DMU33 Sabzevar 

DMU12 Ghazvin DMU34 Sanandaj 

DMU13 Gonbad-e Kāvus DMU35 Sari 

DMU14 gorgan DMU36 Semnan 

DMU15 Hamedan DMU37 Share kord 

DMU16 Ilam DMU38 Shiraz 

DMU17 Karaj DMU39 Tabriz 

DMU18 Kashan DMU40 Tehran 

DMU19 Kerman DMU41 Yasuj 

DMU20 Kermanshah DMU42 Yazd 

DMU21 Khoram Abad DMU43 Zahedan 

DMU22 Khoy DMU44 Zanjan 

http://www.ndmo.ir/
http://www.igmc.ir/
http://www.gsi.ir/
http://www.amar.org.ir/
http://www.suna.org.ir/
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Table 2. Values of input criteria for DMUs 

DMU 
Natural 
disasters 

occurrence 

Distance of 
power 

distribution 
network 

DMU 
Natural 
disasters 

occurrence 

Distance of power 
distribution 

network 

DMU1 8.2 15 DMU23 17.2 31 

DMU 2 13.2 28 DMU24 22.2 44 

DMU3 15.3 39 DMU25 16.3 41 

DMU4 5.2 17 DMU26 20.4 10 

DMU5 20.4 39 DMU27 4.8 31 

DMU6 21.2 46 DMU28 18.9 28 

DMU7 12 17 DMU29 16.7 35 

DMU8 14.9 18 DMU30 8.9 17 

DMU9 20.3 51 DMU31 5.6 12 

DMU10 8.7 16 DMU32 19.5 32 

DMU11 8.3 15 DMU33 20.8 28 

DMU12 14 22 DMU34 21.1 41 

DMU13 14.1 15.2 DMU35 21.2 29 

DMU14 19.8 43 DMU36 4.8 31 

DMU15 3 15 DMU37 3.7 27 

DMU16 5 18 DMU38 8.1 25 

DMU17 5.6 10 DMU39 7.8 17 

DMU18 8.3 10 DMU40 5.6 15 

DMU19 12.9 15 DMU41 21.1 43 

DMU20 3.2 15 DMU42 3.6 14 

DMU21 5.1 25 DMU43 7.6 16 

DMU22 8.9 21 DMU44 4.2 21 
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Table 3.The values of output criteria for DMUs 

DMU Topography 
feature 

Population 
density 

Beam 
radiation DMU Topography 

features 
Population 

density Beam radiation 

DMU1 1349 2 1723 DMU23 1460 3 1541 

DMU 2 843 1 1350 DMU24 1700 2 1430 

DMU3 841 1 1300 DMU25 657 1 1420 

DMU4 1237 2 1920 DMU26 1861 5 1692 

DMU5 223 1 1340 DMU27 1359 2.5 1813 

DMU6 241 1.5 1380 DMU28 970 1 1450 

DMU7 1150 2.5 2062 DMU29 1200 2 1600 

DMU8 1359 3 2101 DMU30 2000 2 1977 

DMU9 550 2 1560 DMU31 1325 3 1853 

DMU10 1255 3 1864 DMU32 451 2 1410 

DMU11 1349 5 2064 DMU33 745 2 1550 

DMU12 1200 2 1857 DMU34 1172 2 1893 

DMU13 471 1.5 1560 DMU35 542 1 1400 

DMU14 742 1 1380 DMU36 1236 3 1924 

DMU15 1446 4 1853 DMU37 1030 1 1863 

DMU16 1380 2 1960 DMU38 1105 5 2197 

DMU17 1150 3 1806 DMU39 1317 5 1884 

DMU18 911 3 2008 DMU40 1358 10 1835 

DMU19 1262 3 2103 DMU41 741 1 1500 

DMU20 1479 2.5 1899 DMU42 1596 4 2104 

DMU21 1560 2 1964 DMU43 1757 3 2135 

DMU22 1100 2 1750 DMU44 1358 2 1862 

 
4-Results and discussions 
   The proposed algorithm for the purpose of obtaining corresponding scores, i.e., efficiency and anti-
efficiency scores, is coded in General Algebraic Modeling System ®(GAMS ) software and the CPLEX 
solver is employed to solve the models. The overall procedure of the implemented algorithm is explained 
in figure 2. As it can be seen from figure 2, for all DMUs, the standard and the inverted DEA models are 
solved. Afterward, the proposed indicators are computed and pertaining ranking for each DMU is 
determined. In addition, all the empirical experiments are performed by a Pentium five-core 2.53 GHz 
computer with 4 GB RAM.   
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( ): 1,..., , 1,..., ; : 1,...,ecdc d g c n c nx y= = = Input 

For l=1 to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷{ 
                           Solve the standard DEA model for DMU l; 

;*
blh Obtain the amount of                            

                           Solve the inverted DEA model for DMU l; 
;*

wlh Obtain the amount of                             
*
lhi the indicator Calculate  

} 
Rank DMUs according to the obtained indicators; 

Fig 2. Pseudo code of the implemented algorithm 

   The obtained efficiency scores and ranks of DMUs, acquired by standard DEA model, are illustrated in 
table 4. What is seen from this table is that some of DMUs have a same score and we cannot discriminate 
between them. For example, DMU#15(i.e., Hamedan), DMU#17(i.e., Karaj), DMU#26 (i.e., Mashhad), 
DMU#40 (i.e., Tehran) and DMU#42 (i.e., Yazd) obtain the same score equal to 1, which ranking between 
them is impossible. To increase discrimination power of the standard DEA model, the information of anti-
efficient frontier is also determined. Table 5 represents the anti-efficient scores acquired by the inverted 
DEA model. Now, in order aggregate the information of both efficient and anti-efficient frontiers, the 
indictor proposed in equation 9 is calculated for the all DMUs. The obtained scores and ranks of DMUs are 
reported in table 6. 
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Table 4. Scores and rankings of DMUs obtained through the standard DEA model 

DMU *
blh  Rank DMU *

blh  Rank 

DMU1 0.727 15 DMU23 0.374 29 

DMU 2 0.281 34 DMU24 0.312 30 

DMU3 0.203 39 DMU25 0.211 38 

DMU4 0.728 14 DMU26 1.000 1 

DMU5 0.194 41 DMU27 0.612 24 

DMU6 0.176 44 DMU28 0.288 31 

DMU7 0.641 21 DMU29 0.286 32 

DMU8 0.635 23 DMU30 0.943 8 

DMU9 0.186 43 DMU31 0.939 9 

DMU10 0.670 19 DMU32 0.239 37 

DMU11 0.829 11 DMU33 0.285 33 

DMU12 0.466 28 DMU34 0.262 35 

DMU13 0.511 26 DMU35 0.250 36 

DMU14 0.188 42 DMU36 0.649 20 

DMU15 1.000 1 DMU37 0.815 12 

DMU16 0.715 17 DMU38 0.581 25 

DMU17 1.000 1 DMU39 0.713 18 

DMU18 1.000 1 DMU40 1.000 1 

DMU19 0.745 13 DMU41 0.201 40 

DMU20 0.981 7 DMU42 1.000 1 

DMU21 0.639 22 DMU43 0.894 10 

DMU22 0.499 27 DMU44 0.718 16 
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Table 5. The scores of DMUs obtained through the inverted DEA model 

DMU *
wlh  DMU *

wlh  

DMU1 3.239 DMU23 1.387 

DMU 2 1.487 DMU24 1.000 

DMU3 1.048 DMU25 1.033 

DMU4 3.734 DMU26 1.288 

DMU5 1.000 DMU27 1.949 

DMU6 1.000 DMU28 1.121 

DMU7 2.653 DMU29 1.478 

DMU8 2.189 DMU30 3.409 

DMU9 1.020 DMU31 5.091 

DMU10 3.326 DMU32 1.120 

DMU11 3.861 DMU33 1.153 

DMU12 2.040 DMU34 1.379 

DMU13 1.695 DMU35 1.000 

DMU14 1.000 DMU36 2.069 

DMU15 4.118 DMU37 1.593 

DMU16 3.586 DMU38 2.929 

DMU17 5.007 DMU39 3.694 

DMU18 3.756 DMU40 4.078 

DMU19 2.531 DMU41 1.000 

DMU20 4.220 DMU42 5.010 

DMU21 2.586 DMU43 4.331 

DMU22 2.778 DMU44 2.949 
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Table 6. The scores and rankings of DMUs obtained through the proposed DEA model 

DMU *
lhi  Rank DMU *

lhi  Rank 

DMU1 0.709 14 DMU23 0.327 29 

DMU 2 0.304 31 DMU24 0.156 36 

DMU3 0.124 38 DMU25 0.121 39 

DMU4 0.730 11 DMU26 0.612 21 

DMU5 0.097 42 DMU27 0.549 26 

DMU6 0.088 44 DMU28 0.198 34 

DMU7 0.632 18 DMU29 0.305 30 

DMU8 0.589 23 DMU30 0.825 9 

DMU9 0.103 40 DMU31 0.871 6 

DMU10 0.685 16 DMU32 0.173 35 

DMU11 0.785 10 DMU33 0.209 33 

DMU12 0.488 27 DMU34 0.268 32 

DMU13 0.461 28 DMU35 0.125 37 

DMU14 0.094 43 DMU36 0.583 24 

DMU15 0.879 3 DMU37 0.594 22 

DMU16 0.718 13 DMU38 0.620 20 

DMU17 0.900 2 DMU39 0.721 12 

DMU18 0.867 7 DMU40 0.877 4 

DMU19 0.675 17 DMU41 0.101 41 

DMU20 0.872 5 DMU42 0.900 1 

DMU21 0.626 19 DMU43 0.832 8 

DMU22 0.570 25 DMU44 0.689 15 

 
   To validate and verify the obtained rankings by the proposed DEA model, a nonparametric measure 
namely Spearman’s rank correlation method (Sheskin, 2003) is adopted.This method evaluates the positive 
correlation between the proposed sets of ranks, i.e., reached by the standard DEA model and the proposed 
DEA modelby applying the following measure: 

https://en.wikipedia.org/wiki/Non-parametric_statistics
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1
ii

d

n n
ρ =

−
∑  (10) 

Note that 𝑑𝑑𝑖𝑖 represents difference between ranks of the mentioned procedures for DMU i, and n denotes 
the total number of DMUs. In this regard, we test the null hypothesis H0 in contrast to the alternative 
hypothesis H1 as follows: 
 

H0: Correlation between the ranks obtained by the proposed DEA 
model and the standard DEA model does not exist. 
H1: A positive correlation between the ranks obtained by the 
proposed DEA model and the standard DEA model exists. 

 
   For this experiment, the confidence level (i.e.,1 − 𝛼𝛼) is considered 0.95. The Spearman’s rank correlation 
coefficient and pertaining P-value are respectively obtained0.946 and 0.000. Since P-value is smaller than 
the value of 𝛼𝛼 (i.e., 0.05), then the null hypothesis H0 is rejected and therefore it can be implied that a strong 
relationship between the ranks reached by the standard DEA model and the proposed DEA model exists. 
Overall, it can be concluded that the ranks reached by the proposed DEA model are compatible with the 
ones in the standard DEA model. That is, the obtained results by the proposed DEA model are verified. As 
such, figure 3 compares the scores acquired by the standard DEA model and the scores acquired by the 
proposed DEA model. It is clear that the proposed DEA model increases the difference between DMUs and 
consequently rankings between the DMUs are easily carried out. In other words, this highlights the 
validation of the results obtained by the proposed DEA model.  
 

 
Fig 3. Comparison between the scores reached by the proposed DEA model and the standard DEA model 

 

4-1- Sensitivity analysis 
   In this section, we aim to recognize the influential criteria on efficiency of DMUs using sensitivity 
analysis to help decision makers for the goal proposing appropriate strategies in decision-makings. To do 
this, the implemented algorithm explained in figure 2 is run 2 and 3 times to identify the influences of the 
input and output criteria, respectively. In other words, for studying the impact of each criterion, other criteria 
that are in a same class, i.e., input or output class, with considered criterion are omitted. For input criteria, 
the results obtained from this experiment is summarized in table 7. Additionally, the percentage of change 
in the efficiency scores, which is caused by omitting other criterion are represented in figure 4. The result 
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shows that “natural disasters occurrence” are more effective than “distance of power distribution network”. 
It means that mangers and policymakers by selecting the safe and secure places for solar plants can improve 
efficiency of selected locations significantly. In conjunction of the output criteria, table 8 shows the related 
efficiency to each criterion by omitting other output criteria. Figure 5 also illustrates the importance of 
output criteria. What is evident from these results is that the most important output criterion is “population 
density”. Thus, by choosing location with higher “population density”, most return can be achieved.  
 

Table 7. Technical efficiency of DMUs for each input criterion by omitting other criteria 
  Input criteria Considering all inputs 

simultaneously 
 Distance of power 

distribution 
network 
 

Natural disasters occurrence  
 

Average value 
of efficiencies 

0.547 0.249 0.521 

 
 

 
Fig 4. The importance of each input criterion in this special case study 

 
 
 

Table 8. Technical efficiency of DMUs for each output criterion by omitting other criteria 
 Output criteria Considering all outputs 

simultaneously 
 Beam radiation Population 

density 
Topography 

features 
Average 
value of 

efficiencies 

0.547 0.249 0.507 0.521 

 
 

Distance of 
power 

distribution 
network

33%

Natural disasters 
occurrence 

67%



177 
 

 
Fig 5. The importance of each output criterion in this special case study 

 

5- Conclusion 
   Economic motivations, environmental concerns as well as energy security are major triggers for the 
development of renewable energy resources. Among the renewable energy resources, the solar PV energy 
has attracted many interests because it is potentially largest source of energy in the world and capable to 
mitigate GHG emissions significantly. Since the high costs of PV in contrast to other electricity generation 
alternatives, the solar PV energy has not still attained sufficient maturity. In order to bestead the 
commercialization of solar PV industry, great efforts must be performed for alleviating manufacturing costs 
and rising the efficiency. In this regard, this paper applies a DEA model to assess different sites for solar 
plants according to a set of social, geographical and technical criteria. Places that earn higher efficiency 
scores are more appropriate for establishing solar plants. The proposed DEA model is able to exploit 
simultaneously information of the efficient and anti-efficient frontiers. The matter contributes to rise the 
discrimination power in DEA analysis. 
   The application and usefulness of the proposed approach are studied in a real case study in Iran and some 
interesting insights are extracted. Specially, we showed (1) strong relationship between the ranks reached 
by standard DEA model and the proposed approach in this paper exists; (2) the proposed approach increases 
the difference between DMUs and consequently rankings between them are easily carried out; (3)“natural 
disasters occurrence” and “population density” are the most influential criteria among the input and output 
criteria, respectively.  
   Many extensions on the current paper could be pointed for future research. Proposing a multi-layer 
projection and applying geographic information system principles to specify the most appropriate areas for 
solar plants can be suggested as an interesting direction for future research. Likewise, the proposed DEA 
model can be developed under uncertainty of indicators.    
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