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ABSTRACT 

 
The objective of this paper is to study an integrated two-supplier supply chain whose suppliers 
are unreliable. An unreliable supplier is alternative between available (ON) and unavailable 
(OFF) states which are considered to be independent exponential variables. The suppliers apply 
a continuous review policy and the retailer uses an adapted continuous review base on an(R,Q) 
policy. Transportation times are constant and lead times are non-zero random variables. The 
retailer faces independent Poisson demands. Using the idea of the one-for-one ordering policy, 
we implicitly incorporate the distribution function of the random delay for obtaining the value 
of the expected costs of system. Finally, resorting to a dozen of sample problems, we show that 
the average cost reduction in our inventory system is at least 3.69% and at most 36.95% 
comparing to the one with only one supplier. 

 
Keywords:Supply Chain Management, Unreliable Supply, Continuous Review Policy, Poisson 

Demand, Non-Zero Lead-time. 

 
1. INTRODUCTION 
 
One assumption that is frequently used in the inventory literature is the reliable supplier. This 
assumption indicates that each supplier be continuously available at any time an order is placed. 
Gurler and Parlar (1997) stated that this assumption is one of the unstated assumptions in almost 
every inventory model.  An integrated two-supplier supply chain with unreliable suppliers is studied 
in this paper. Balcıog ̃lu and Gürler (2011) described an unreliable supplier as the one that is 
alternative between available (ON) and unavailable (OFF) states. These two durations are 
considered to be independent exponential variables, like some other studies in the supply 
interruption literature. The non-zero random lead time is the sum of a constant transportation time 
and a random delay occurs due to the availability of stock at the supplier. As far as we know, for the 
first time in the literature, this paper aims at deriving the cost function for an integrated two-
supplier supply chain with uncertainty in the supply.  
 
There are several reasons for considering uncertainty of the supply process, as are mentioned in the 

                                                       
*Corresponding Author 
 
ISSN: 1735-8272, Copyright © 2011JISE . All rights reserved. 



An Integrated Model for a Two-supplier Supply …  155 

literature; machine breakdowns, material shortages, labor strikes, capacity constraints, and political 
crises to name but a few. Each of these factors can result in changing the status of suppliers from 
available (ON) to unavailable (OFF) state and hence to supply interruption (Mohebbi, 2004). As 
some practical examples, OPEC oil embargoes and Canada’s automobile industry supply 
interruption problems have been mentioned in the supply interruption literature (for more details see 
Parlar and Perry (1996), Mohebbi (2004), and Tajbakhshet al. (2007)).  
 
Some early studies in inventory models with an unreliable supplier use Economic Order Quantity 
(EOQ) assumptions. These studies analyze problems under various characterization probability 
distributions describing the ON/OFF periods (Mohebbi, 2004). Examples of works belonging to 
EOQ category are Parlar and Berkin (1991), Weiss and Rosenthal (1992), Parlar and Perry (1995), 
Parlar and Perry (1996), Gurler and Parlar (1997), and Parlar (2000). In these studies demands are 
deterministic, replenishments are instantaneous, and the lead time is zero. Although the EOQ 
assumptions do not correctly present the real world conditions, these studies provided a base for 
later studies. 
 
In the late 1990s and after that, some researchers tried to relax EOQ assumptions. A number of 
studies including Parlar et al. (1995), Arreola-Risa and DeCroix (1998), and Ozekici and Parlar 
(1999) considered the problem in the context of an inventory system with random demands, zero 
lead times and an unreliable supply process. In 2006, Mohebbi and Hao (2006) indicated that 
analytical treatment of inventory systems with random supply interruption and non-zero lead time 
remains largely unexplored and there are just a few existing models in the inventory control 
literature in this area. 
 
Parlar (1997) considered an unreliable supplier and used a continuous review inventory system with 
stochastic demands, random lead times and backorders. He extended Hadly and Within’s (1963) 
approximation for his problem with the assumption that at any time at most one order can be 
outstanding. Gupta (1996) presented an exact cost minimization model for a continuous review 
inventory system with unit-sized Poisson demands, constant lead times and lost sales, in which the 
supplier’s ON and OFF periods, are exponentially distributed and at any time, only one single order 
is outstanding. 
 
Mohebbi (2003) developed an exact cost-minimization model for a lost sale, continuous review 
inventory system with compound Poisson demands and Erlang lead times under an (s,Q)-type 
control policy with at most one outstanding order at any time. Later, Mohebbi (2004) presented the 
exact treatment of a related problem, assuming that the supplier’s ON and OFF periods constitute 
an alternating renewal process and lead times follow a Hyper-exponential distribution. Mohebbi and 
Hao (2006) studied the former problem which is a dyadic supply chain with random demands, 
random lead times and lost sales, assuming that lead times follow an Erlang distribution.  
 
A review of the literature on the supply interruption reveals some gaps. First of all, as mentioned, 
purchasing managers are afraid of dependency on a single source because of high risk and 
uncertainty. As a result, one approach which is used frequently in the literature to overcome 
uncertainty in the supply is the diversification or the multiple sourcing. However, much of the 
existing literature on the supply uncertainty studies the dyadic supply chain. Although there are 
some researches considering a multiple sourcing problem, like Parlar and Perry (1996) and Gurler 
and Parlar (1997), most of them have used EOQ assumptions. Parlar and Perry (1996) investigated 
an approximation for a multi-suppliers model under EOQ assumptions and assumed that both ON 
and OFF periods are independent exponential distributions. Gurler and Parlar (1997) studied an 
inventory model with two randomly available suppliers modeling the availability of suppliers as a 
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semi-Markov process. In their study, the ON periods have an Erlang distribution and the OFF 
periods have a general distribution for each supplier. In addition, their study includes EOQ 
assumptions, i.e. deterministic demand rate, zero lead times and no planned shortages. In case of the 
multi-supplier models with uncertainty in the supply, as far as we know, there are no studies 
considering stochastic demands and non-zero lead times. 
 
As mentioned above, although inventory models with supply interruption and non-zero lead times 
present the most of real world conditions, the existing literature on them is scarce (Mohebbi and 
Hao, 2006). This fact illustrates the second gap in the supply interruption literature. Finally, the 
literature on the supply interruption problems reveals another gap. In the modern global competitive 
market, the supplier and the retailer should be treated as strategic partners in the supply chain with a 
long-term cooperative relationship in order to be beneficial for both of them. Nevertheless, to the 
best of our knowledge, there is no integrated model considering supply interruption in the literature. 
Previous studies only aimed at determining the optimum solutions that minimized the cost from the 
retailer’s side, so the literature on the integrated uncertain supplier remains largely unexplored. 
Although there are some studies that investigate the integrated supplier systems like Sajadifar et al. 
(2008), and Haji and Sajadifar (2008), they have assumed that the supplier is available whenever an 
order is placed. 
 
This paper deals with an integrated solution for a two-supplier supply chain with supply 
interruption, i.e. each supplier has available (ON) or unavailable (OFF) state and it is assumed that 
the ON and  OFF durations are independent exponential random variables. This paper also 
considers an unreliable inventory system with Poisson demand, non-zero random lead time and 
backorder. The non-zero random lead time is the sum of a constant transportation time and a 
random delay occurs due to availability of stock at the supplier. The suppliers apply a continuous 
review policy and the retailer uses an adapted continuous review based on an (R,Q) policy. To the 
best of our knowledge, for the first time in the literature, this paper aims at deriving the cost 
function for an integrated two-supplier supply chain with uncertainty in the supply. This paper 
develops previous studies in the supply interruption literature, based on introduced gaps, by 
considering both the integrity and the uncertainty in a two-supplier supply chain with stochastic 
demands and non-zero lead times.  
 
To aim the cost function of an integrated two-supplier supply chain with uncertainty in the supply, 
with mentioned assumptions, firstly, the simple integrated two-supplier model should be developed 
under continuous review policy for both suppliers and the retailer. Secondly, the integrated two-
supplier supply chain with uncertainty in the supply is presented. The rest of the paper is organized 
as follows. In section 2, the notations and assumptions, which are used in the problem formulation, 
are introduced. Section 3 presents the mathematical model that is investigated in this study. 
Numerical examples and simulation studies are presented in section 4. Finally, section 5 
summarizes the paper and presents future researches.  
 
2. PROBLEM NOTATIONS AND ASSUMTIONS 
 
 The following notations are used in this paper: 

ܵ௥ The inventory position for the retailer in the one-for-one ordering policy 

ܵ௦ The inventory position for each supplier in the one-for-one ordering policy 

௥ܮ
௜  The transportation time from the supplier to the retailer where the ith supplier is in the 
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ON state, i = 1, 2 

௥ܮܧ
௜  The effective transportation time from the ith supplier to the retailer, that is the lead time 

from the supplier to the retailer plus the expected value of the interruption incurs when 
the supplier is in the OFF state, i = 1, 2 

ܺ௥
௜  Lead time which the retailer experiences when she receives a batch from ith supplier, 

i = 1, 2 

௥ݓ
௜ random delay occurs due to the availability of stock at the ith supplier, i = 1, 2 

 ௞ The arrival time of kth customer after time zero at the retailerݐ

௦ܮ
௜  Transportation time from the outside source to the ith supplier, i = 1, 2 

 ௥ Demand intensity at the retailerߣ

ܴ௥ The retailer’s reorder point 

ܳ௥ The retailer’s order quantity 

݄௥ The holding cost per unit per unit time at the retailer 

ܴ௦ The suppliers’ reorder point (in units of the retailer batches) 

ܳ௦ The suppliers’ batch size (in units of the retailer batches) 

݄௦
௜  The holding cost per unit per unit time at the ith supplier, i = 1, 2 

 The shortage cost per unit per unit time at the retailer ߚ

 The expected total holding and shortage costs for understudy inventory system when the ܥ
suppliers are available 

 ᇱ The expected total holding and shortage costs for understudy inventory system, when atܥ
least one of the suppliers is unavailable, i = 1, 2 

 ௜ The ith supplier’s exponential distribution parameter for the ON duration, i = 1, 2ߞ

߰௜ The ith supplier’s exponential distribution parameter for the OFF duration, i = 1, 2 

 The expected total holding and shortage costs for a unit demand in the inventory system ܭ

 

ଵܲଶ
௝ ሺܮܧ௥

ଵ , ௥ܮܧ
ଶሻ The probability that path 1 is shorter than path 2, when suppliers send 

jth sub-batch to the retailer, and ܮܧ௥
ଵ and EL୰

ଶ are the suppliers effective 
transportation time; j= 1, 2, …, ܳ௦ ; i = 1, 2 

ଶܲଵ
௝ ሺܮܧ௥

ଵ , ௥ܮܧ
ଶሻ The probability that path 2 is shorter than path 1, when suppliers send 

j sub-batch to the retailer, and ܮܧ௥
ଵ and ܮܧ௥

ଶ  are the suppliers effective 
transportation time; j= 1, 2, …, ܳ௦; i = 1, 2 

ܿ௜ሺܵ௦, ܵ௥ሻ The expected total holding and shortage costs for a unit demand in an 
inventory system with a one-for-one ordering policy when ith supplier 
supply the retailer, and the ith supplier is in the ON state, i = 1, 2 

 
ܿ௜

ᇱሺܵ௦, ܵ௥|ܮܧ௥
ଵ , ௥ܮܧ

ଶሻ 
 

The expected total holding and shortage costs for a unit demand in an 
inventory system with a one-for-one ordering policy when ith supplier 
supply the retailer, and at least one of the suppliers is unavailable, 
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i = 1, 2 

 .௧௢௧௔௟ The total expected cost in the inventory systemܥܶ

 
To find ܿሺܵ௦, ܵ௥ሻ and ܿ௜

ᇱሺܵ௦, ܵ௥|ܮܧ௥
ଵ , ௥ܮܧ

ଶሻ we express them as a weighted mean of costs for the one-
for-one ordering policies. As one shall see, with this approach we do not need to consider the 
parameters ܮ௥

௜ , ௦ܮ
௜ , ݄௥, ݄௦

௜ ,  ௥ explicitly, but these parameters will, of course, affect the costsߣ and ߚ
implicitly through the one-for-one ordering policy costs. To derive the one-for-one carrying and 
shortage costs, the recursive method in Axsäter (1990) is suggested. A summary of Axsäter (1990), 
which is adapted for our inventory system, is presented in Appendix A. In 1993, using the 
procedure introduced by Axsäter (1990), Axsäter (1993) expressed exact cost function for a unit 
demand in a dyadic supply chain, when both the supplier and the retailer use the continuous review 
policy, according to (1). It is worth mentioning, Axsäter (1990) and Axsäter (1993) assume that the 
supplier is always available. 
 

ܭܭ ൌ
1

ܳ௦. ܳ௥
෍ ෍ ܿሺ݆ܳ௥, ݇ሻ

ோೝାொೝ

௞ୀோೝାଵ

ோೞାொೞ

௝ୀோೞା ଵ

 (1)

 
KK is the expected value of the exact cost function for a unit demand in a dyadic supply chain with 
an available supplier. In our model, the inventory control policy at the retailer is an adapted 
continuous review policy, based on (R,Q) policy  in the case that each supplier independently 
alternates between ON and OFF intervals. The inventory policy is to order ܳ௥ units from two 
suppliers when the inventory position drops to the reorder point of R୰ units. The order placed by the 
retailer splits equivalently between two suppliers. It means that each supplier receives an order with 
size ܳ௥/2 units from the retailer. Also, the suppliers use continuous review (ܴ௦,ܳ௦) policy. In 
addition the following assumptions are considered here: 
 

1- ܳ௥/2is an integer value, so the retailer’s batch size, ܳ௥, is assumed to be even.  
2- We assume that the orders do not cross each other. 
3- Each customer demands only one unit of the product. 
4- Delayed retailer orders are satisfied on a first-come, first-served base. 

 
3. MATHEMATICAL MODEL 
 
This section aims at deriving the cost function for the described system. To achieve this purpose, 
firstly, the exact cost function for a two-supplier system (without the supply interruption), in which 
the suppliers use continuous review (ܴ௦,ܳ௦) policy and the retailer uses continuous review (ܴ௥,ܳ௥) 
policy, is derived in subsection 3.1. Secondly, in subsection 3.2 the results of subsection 3.1 are 
used to present the proposed cost function for an integrated two-supplier supply chain with supply 
interruption. 

3.1. Two-supplier model without interruption 
 
This subsection derives the exact cost function for two-supplier supply chain without uncertainty in 
the supply. We will use the results of this subsection to derive the proposed expected cost function 
for the two-supplier supply chain with supply interruption. 
 
In the case of an integrated two-supplier without supply interruption, the inventory control policy is 
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as it follows. The retailer uses (ܴ௥,ܳ௥) policy, so when the retailer’s inventory position reaches  ܴ௥, 
the retailer places an order with batch size ܳ௥ 2⁄  to each supplier. Also, both suppliers use (ܴ௦,ܳ௦) 
control policy. As mentioned, the suppliers’ batch size is in the units of the retailer’s batch size, 
therefore, based on introduced control policy, each supplier’s batch size is multiple of ܳ௥ 2⁄ . 
 
We use the idea of tracking one unit demand’s cost and weighted mean of cost for one-for-one 
ordering policy to derive the exact cost function for two-supplier supply chain model under 
continuous review policy for the retailer and both suppliers. One should note that, in each multi 
echelon inventory system with stochastic demands, the retailer’s lead time consists of a constant 
transportation time and a random delay occurs due to availability of stock at the supplier. The 
method, which we use to derive the total expected cost function, is similar to the method that 
Sajadifar et al. (2008) used. In addition, it’s worth mentioning that in this subsection, because we 
assume there are not any supply interruption, the ܮܧ௥

ଵ  is equal to ܮ௥
ଵ  , and ܮܧ௥

ଶ  is equal to ܮ௥
ଶ . 

 
Let us consider the time that inventory position of suppliers reachesܴ௦. We designate this time as 
time zero. At this time, each supplier immediately places an order consisting of ܳ௦ sub-batches with 
size ܳ௥ 2⁄  to the outside sources. We denote these batches by ܳ௦

଴. At this time, the retailer’s 
inventory position is exactlyܴ௥ ൅  ܳ௥ and suppliers’ inventory positions will just reach ܴ௦ ൅  ܳ௦. 
Since it is assumed that the orders do not cross, the ሺܴ௦ ൅  ܳ௦ሻܳ௥

௧௛ order at the retailer will release 
the orders ܳ௦

଴ at the suppliers. It can be easily seen that the ሺܴ௦ ൅  ܳ௦ሻܳ௥
௧௛ customer at the retailer 

will be caused an order placement at the retailer and the one which has been already assigned to this 
order at suppliers are the batches ܳ௦

଴. This means that the batches ܳ௦
଴ at the suppliers, are released 

from the suppliers when ሺܴ௦ ൅  ܳ௦ሻܳ௥
௧௛ system demand has occurred after time zero i.e. at time 

ሺோೞା ொೞሻொೝݐ
. 

 
Now, we consider the case that the batch ܳ௦

଴ at the first supplier will be received earlier than batch 
ܳ௦

଴ at the second supplier. The first sub-batch in the batch ܳ௦
଴ will be received from the first supplier 

earlier than the batch ܳ௦
଴ from the second supplier with the probability ଵܲଶ

ଵ ሺܮ௥
ଵ , ௥ܮ

ଶሻ. Therefore, the 
first unit in the first sub-batch in the batchܳ௦

଴, which will be received from the first supplier, will be 
used in the same way to fill the ሺܴ௥ ൅ 1ሻ௧௛retailer’s demand after the retailer’s order. Then the first 
unit in the first sub-batch in the batch Qୱ

଴, which will be received from first supplier, will have the 
same expected retailer and supplier costs as a unit in a base stock system with ܵ௦ ൌ ሺܴ௦ ൅  1ሻܳ௥ 2⁄  
and ܵ௥ ൌ ܴ௥ ൅ 1. Hence, the corresponding expected holding and shortage costs will be equal 
to ܿଵሺሺܴ௦ ൅  1ሻܳ௥ 2⁄ , ܴ௥ ൅ 1 ሻ. 
 
In the same way, it can be seen that the ith unit in the first sub-batch in the batch ܳ௦

଴, which will be 
received from the first supplier with probability ଵܲଶ

ଵ ሺܮ௥
ଵ , ௥ܮ

ଶሻ, will be used to fill the (ܴ௥ ൅ ݅)th 
retailer demand after the retailer’s order. Then the ith unit in the first sub-batch in the batch ܳ௦

଴ will 
have the same expected retailer and supplier costs as a unit in a base stock system withܵ௦ ൌ
ሺܴ௦ ൅  1ሻܳ௥ 2⁄  andܵ௥ ൌ ܴ௥ ൅ ݅ Therefore, the expected holding and shortage costs for the ith unit in 
the first sub-batch in the batch ܳ௦

଴ will be equal to ܿଵሺሺܴ௦ ൅  1ሻܳ௥ 2⁄ , ܴ௥ ൅ ݅ ሻ. Similarly, ith unit in 
the jth sub-batch in the batch ܳ௦

଴, which will be received from the first supplier with probability 

ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ, will have expected holding and shortage costs as equal to ܿଵሺሺܴ௦ ൅  ݆ሻܳ௥ 2⁄ , ܴ௥ ൅ ݅ ሻ. 

 
On the other hand, one can easily see that the ith unit in the jth sub-batch in the batch ܳ௦

଴, which will 

be received from the second supplier with probability ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ, will be used to fill theሺܴ௥ ൅

ܳ௥ 2 ൅ ݅ሻ⁄ retailer’s demand after the retailer’s order. Then this unit will have the same expected 
retailer and warehouse costs like a unit in a base stock system withܵ௦ ൌ ሺܴ௦ ൅  ݆ሻܳ௥ 2⁄  andܵ௥ ൌ
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ܴ௥ ൅ ܳ௥ 2 ൅ ݅⁄  and the expected holding and shortage costs for this unit will be equal to 
ܿଶሺሺܴ௦ ൅  ݆ሻܳ௥ 2⁄ , ܴ௥ ൅ ܳ௥ 2⁄  ൅ ݅ ሻ, i=1,…,ܳ௥ 2⁄ ,j=1,2,…,ܳ௦ . 
 
It should be noted that each customer demands only one unit of a batch. In addition, considering the 
fact that inventory positions at the retailer and the suppliers are uniformly distributed (Hadley and 
Whitin, 1963), the average cost per time unit is determined by averaging over  ܳ௥ ൈ ܳ௦ individual 
unites as follows. 
 

ܭ ൌ
1

ܳ௦. ܳ௥

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

෍ ෍ ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଵ ቆ

ሺܴ௦ ൅ ݆ሻܳ௥

2
, ݇ቇ

ோೝାሺொೝ ଶ⁄ ሻ

௞ୀோೝାଵ

ொೞ

௝ୀ ଵ

൅

෍ ෍ ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଶ ቆ

ሺܴ௦ ൅  ݆ሻܳ௥

2
, ݇ቇ

ோೝାொೝ

  ௞ୀோೝାሺொೝ ଶ⁄ ሻାଵ

ொೞ

௝ୀ ଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൅  
1

ܳ௦. ܳ௥

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

෍ ෍ ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଵ ቆ

ሺܴ௦ ൅  ݆ሻܳ௥

2
, ݇ቇ

ோೝାொೝ

௞ୀோೝାሺொೝ ଶ⁄ ሻାଵ

ொೞ

௝ୀ ଵ  

൅ ෍ ෍ ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଶ ቆ

ሺܴ௦ ൅ ݆ሻܳ௥

2
, ݇ቇ

ோೝାሺொೝ ଶ⁄ ሻ

௞ୀோೝାଵ

ொೞ

௝ୀ ଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(2)

 
Since the average demand per unit of time is equal toߣ௥, the expected total cost of the system per 
time unit can then be written as (3).  
 

ܥ ൌ
௥ߣ

ܳ௦. ܳ௥

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

෍ ෍ ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଵ ቆ

ሺܴ௦ ൅ ݆ሻܳ௥

2
, ݇ቇ

ோೝାሺொೝ ଶ⁄ ሻ

௞ୀோೝାଵ

ொೞ

௝ୀ ଵ

൅

෍ ෍ ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଶ ቆ

ሺܴ௦ ൅  ݆ሻܳ௥

2
, ݇ቇ

ோೝାொೝ

  ௞ୀோೝାሺொೝ ଶ⁄ ሻାଵ

ொೞ

௝ୀ ଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൅  
௥ߣ

ܳ௦. ܳ௥

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

෍ ෍ ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଵ ቆ

ሺܴ௦ ൅  ݆ሻܳ௥

2
, ݇ቇ

ோೝାொೝ

௞ୀோೝାሺொೝ ଶ⁄ ሻାଵ

ொೞ

௝ୀ ଵ  

൅ ෍ ෍ ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ. ܿଶ ቆ

ሺܴ௦ ൅ ݆ሻܳ௥

2
, ݇ቇ

ோೝାሺொೝ ଶ⁄ ሻ

௞ୀோೝାଵ

ொೞ

௝ୀ ଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

(3)

 

Lemma 1: The probabilities ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ and ଶܲଵ

௝ ሺܮ௥
ଵ , ௥ܮ

ଶሻ, that ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൅ ଶܲଵ

௝ ሺܮ௥
ଵ , ௥ܮ

ଶሻ ൌ 1 and 
j=1,2,…, Qs, are computed as follows: 

1. If ܮ௥
ଵ ൐ ௥ܮ

ଶ  and ܮ௦
ଵ ൐ ௦ܮ

ଶ  then ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ 0 and ଶܲଵ

௝ ሺܮ௥
ଵ , ௥ܮ

ଶሻ ൌ 1. 

2. If ܮ௥
ଵ ൐ ௥ܮ

ଶ ௦ܮ ,
ଵ ൏ ௦ܮ

ଶ , and ܮ௥
ଵ ൅ ௦ܮ
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An Integrated Model for a Two-supplier Supply …  161 

4. If ܮ௥
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6. If ܮ௥
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ଶ , and ܮ௥
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ଵ ൏ ௥ܮ
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ଶሻ ൌ 1  and ଶܲଵ

௝ ሺܮ௥
ଵ , ௥ܮ

ଶሻ ൌ 0. 

 
Proof: See Appendix B. 
 
3.2. Two-supplier model with supply interruption 
 
This subsection considers a generalization of the previous two-supplier model, which has been 
presented in subsection 3.1, and assumes that the decision maker deals with two-supplier which 
may randomly be ON or OFF. As mentioned, the duration of ON and OFF periods are two 
independent exponential distributions with parameters ζ୧and ψ୧, i=1,2, respectively. The inventory 
policy is to split the orders equivalently between suppliers, i.e. order ܳ௥ 2⁄  units from each of the 
two suppliers. In this model, the states are according to Table 1. These four states are important 
because the states of each supplier can affect the expected total cost. Therefore, we will partition the 
expected total cost, based on these four states, into four partitions. 
 

Table 1 States of the system 

supplier 
state 

1 2 

0 ON ON 
1 ON OFF 
2 OFF ON 
3 OFF OFF 

 
Lemma 2: The long run probabilities ௝ܲ ൌ ݈݅݉௡՜ஶ ௜ܲ௝ሺݐሻ are as follows: 
 

ሾ ଴ܲ, ଵܲ, ଶܲ, ଷܲሿ ൌ  
1

ሺζଵ ൅ ψଵሻሺζଶ ൅ ψଶሻ
ሾψଵψଶ, ζଶψଵ, ζଵψଶ, ζଵζଶሿ. (4)

 
Proof: See Appendix C. 
 
Using the idea of conditional probability, this section derives the cost function for an integrated 
two-supplier supply chain with supply interruption. To achieve this purpose, one needs to calculate 
the cost function related to each mentioned state. Therefore, lemma 3 to 5 present the cost functions 
relates to states 0, 1, 2, and 3, and lemma 6 presents the expected total cost function for an 
integrated two-supplier supply chain with supply interruption. 
 
Lemma 3: The cost function related to state 0, denoted by ܥ଴, is calculated as follows; 
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(5)

 
Proof: See section 3.1 which presents the cost function of two-supplier supply chain without 
interruption. Because in state 0 both suppliers are available, this state is equivalent to the case where 
there is no interruption and equation 3 exactly presents the cost function related to this state. 

 
Lemma 4: Denoted by ܥଵand ܥଶ, the cost functions related to state 1 and 2  are calculated 
according to (6) and (7), respectively; 
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(6)
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Proof: In state 1, according to the Table 1, the first supplier is in the ON state and the second 
supplier is in the OFF state. So, when the retailer supplied from the first supplier, the transportation 
time is ܮ௥

ଵ , and when the retailer supplied from the second supplier, that was in the OFF state, the 
effective transportation time is ܮ௥

ଶ ൅ ሺ1 ߰ଶ⁄ ሻ. The ܮ௥
ଶ  is a deterministic transportation time, and the 

1 ߰ଶ⁄  is the expected value of a delay which occurs due to second supplier’s OFF state. So, where 
the effective transportation times are ܮ௥

ଵ and ܮ௥
ଶ ൅ ሺ1 ߰ଶ⁄ ሻ, for the first and the second supplier 

respectively, the related cost function, ܥଵ, is calculated, similar to (3), according to (6). 
  

In state 2, the first supplier is not available and the second one is available. In this case, similar to 
the ܥଵ, the ܥଶ is calculated, where the effective transportation times are ܮ௥

ଵ ൅ ሺ1 ψଵ⁄ ሻ and ܮ௥
ଶ , for the 

first and the second suppliers respectively. 
 

Lemma 5: The relation (8) calculates the cost function related to state 3, denoted by Cଷ, as follows; 

ଷܥ ൌ
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where, 
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(9)
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Proof: In state 3 when the retailer’s inventory position reaches ܴ௥, both suppliers are unavailable. 
To derive the related cost function, firstly, suppose that the first supplier becomes available before 
the second supplier. In this case, the effective transportation time for the first supplier isܮ௥

ଵ ൅
ሺ1 ߰ଵ⁄ ሻ. The expected time when the second supplier is unavailable after the first supplier became 
available is 1 ߰ଶ⁄ . It is because of the exponential ON/OFF periods and the fact that the exponential 
distribution is memory less. Therefore, the second supplier’s effective transportation time is 
௥ܮ

ଶ ൅ ሺ1 ߰ଵ⁄ ሻ ൅ ሺ1 ߰ଶ⁄ ሻ. Subsequently, the ܥԢଷexpresses the conditional expected cost where the 
first supplier becomes available before the second supplier. 

 
Now, suppose that the second supplier becomes available first. Similarly, the effective 
transportation times are L୰

ଵ ൅ ሺ1 ψଵ⁄ ሻ ൅ ሺ1 ψଶ⁄ ሻ and L୰
ଶ ൅ ሺ1 ψଶ⁄ ሻ, for the first and the second 

supplier respectively. Therefore, the CԢԢଷexpresses the conditional expected cost where the second 
supplier becomes available before the first supplier. It is worth mentioning that the probability of 
the simultaneity of both suppliers become available is zero. 

 
Now using the conditional probability, the expected cost related to the state 3, which is denoted by 
Cଷ, can be expressed as (11). 
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ଵ ܽ݊݀ ௥ܮܧ
ଶ ݁ݎܽ

௥ܮ
ଵ ൅ ሺ1 ߰ଵ⁄ ሻ ൅ ሺ1 ߰ଶ⁄ ሻ ܽ݊݀ ௥ܮ

ଶ ൅ ሺ1 ߰ଵ⁄ ሻ,   ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ
൨ 

(11) 
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As we know from Poisson Process, the probability that initially the supplier 1 changes its state to 
ON is ߰ଵ ሺ߰ଵ ൅ ߰ଶሻ⁄ , and similarly this probability for the supplier 2 is ߰ଶ ሺ߰ଵ ൅ ߰ଶሻ⁄ . So we can 
rewrite ܥଷ by substituting (9) and (10) in (11). 

 
Lemma 6:The total cost function for an integrated two-supplier supply chain with supply 
interruption is as follows; 
 

௧௢௧௔௟ܥܶ ൌ  ଴ܲ ൈ ଴ܥ ൅ ଵܲ ൈ ଵܥ ൅ ଶܲ ൈ ଶܥ ൅ ଷܲ ൈ ଷ (12)ܥ
 

Where C଴, ܥଵ, ܥଶ, and ܥଷ are calculated according to lemmas 3 to 5. 
 

Proof: Using the idea of conditional probability, one can divide the two-supplier supply chain with 
supply interruption to four states. Lemmas 3 to 5 present cost function related to each state. Denoted 
by ܶܥ௧௢௧௔௟, the total cost function for an integrated two-supplier supply chain with supply 
interruption is calculated as follows ; 

 

௧௢௧௔௟ܥܶ ൌ  ܲሾ0 ݁ݐܽݐݏሿ ൈ ܧ ൤
ݐݏ݋ܿ ݊݋݅ݐܿ݊ݑ݂ ݁ݎ݄݁ݓ

݄ݐ݋ܾ ݏݎ݈݁݅݌݌ݑݏ ݁ݎܽ ܱܰ ൨ ൅ ܲሾ݁ݐܽݐݏ 1ሿ

ൈ ܧ ቎
 ݁ݎ݄݁ݓ ݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ܿ

݀݊ܽ ܱܰ ݏ݅ ݎ݈݁݅݌݌ݑݏ ݐݏݎ݂݅ ݄݁ݐ
 ܨܨܱ ݏ݅ ݎ݈݁݅݌݌ݑݏ ݀݊݋ܿ݁ݏ ݄݁ݐ

቏ ൅ ܲሾ2 ݁ݐܽݐݏሿ

ൈ ܧ ቎
 ݁ݎ݄݁ݓ ݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ܿ

݀݊ܽ ܨܨܱ ݏ݅ ݎ݈݁݅݌݌ݑݏ ݐݏݎ݂݅ ݄݁ݐ
 ܱܰ ݏ݅ ݎ݈݁݅݌݌ݑݏ ݀݊݋ܿ݁ݏ ݄݁ݐ

቏ ൅ ܲሾ3 ݁ݐܽݐݏሿ

ൈ ܧ ൤
݊݋݅ݐܿ݊ݑ݂ ݐݏ݋ܿ ݁ݎ݄݁ݓ

ݏݎ݈݁݅݌݌ݑݏ ݄ݐ݋ܾ ݁ݎܽ ܨܨܱ ൨ 

(13)

 
By substituting the (4) to (8) in (13) the approximated total cost function of an integrated two-
supplier supply chain with supply interruption is obtained according to (12). 

 
4. NUMERICAL EXAMPLES 
 
In this section, first, in the subsection 4.1 the effectiveness of proposed cost function is investigated. 
Subsequently, in subsection 4.2 the question “is it necessary to consider interruption through 
modeling the problem?” will be answered.  Finally, in subsection 4.3, some numerical examples are 
resorted, and the effect of diversification strategy in cost reduction is analyzed. 
 
 
4.1. Efficiency of the proposed cost function 
 
In this subsection, numerical examples are presented to evaluate the effectiveness of the proposed 
approximation cost function. The problems are constructed by taking into account all possible 
combinations of following parameters; 

 
Lୱ ;10 ,5 = ߚ ;௥ = 1, 3ߣ

ଶ = 1; 
ܳ௥ = 2, 6, 12; ܳ௦ = 1, 3; ζଵ = 0.05, 0.2, 0.4; 
݄௥ = 1; ݄௦

ଵ = 0.1; ζଶ = 0.05, 0.2, 0.4; 
௥ܮ

ଵ  = 0.5, 2, 4; ݄௦
ଶ = 0.1; ψଵ = 0.5; 

௥ܮ
ଶ ௦ܮ ;1 = 

ଵ = 1; ψଶ = 0.5. 
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It is worth mentioning that to present the suppliers’ availability, one can use ψ୧ ൫ζ୧ ൅ ψ୧൯ൗ  as a ratio 
that presents the long-run fraction of time in which the ith supplier is in the ON state. These 
problems reflect three levels of availability for each supplier that is 91%, 71%, and 56%. These 
three levels are similar to those availability levels that Mohebbi and Hao (2006) have considered. 
The combination of these three levels for both suppliers provides nine availability levels for sample 
problems. These nine levels cover most of the real world situations.  
 
To verify the efficiency of the proposed cost function, 40 problems are randomly selected among 
648 sample problems and the Table D1 is constructed (see Appendix D). For each problem the 
proposed cost function and the optimum values of R୰ and Rୱ are calculated and presented in Table 
D1. One can use recursive process suggested by Axsäter (1990) for calculating cost function and the 
optimum values of ܴ௥and ܴ௦. Subsequently, one can easily compute the following statistical 
hypothesis test, where ܶܥ௦௜௠ and ܶܥ௧௢௧௔௟ are the simulation and the proposed total cost, 
respectively: 
 

 H0: µTC౩౟ౣ
ൌ µTC౪౥౪౗ౢ

 

H1: µTC౩౟ౣ
് µTC౪౥౪౗ౢ

 

 
The result indicates a failure to reject the null hypothesis at the 5% significance level. Therefore, it 
is inferred that there is no significant difference between the proposed and the simulated cost 
functions. In addition, one can define the absolute error as |ܶܥ௦௜௠ െ |௧௢௧௔௟ܥܶ ⁄௦௜௠ܥܶ ; and observe 
that the mean of absolute error is 0.0295. This, also, means that our proposed cost function works 
with insignificant errors.  

 
4.2. The effect of considering interruption 
 
Obviously, considering the supply interruption complicates the calculations. In this subsection, the 
following question is answered: “is it necessary to consider interruption through modeling the 
problem?”  It can be concluded from Table 2 that in most of the situations it is necessary to consider 
the effect of interruption. 
 
To achieve the answer of the mentioned question, 16 sample problems, randomly selected among 
the 648 problems, are selected. For each sample problem the reorder points and total cost functions 
are calculated for two cases, namely with or without considering supply interruption. For each 
studied problem, our findings are expressed as % deviation between total cost function with or 
without supply interruption, denoted by ܶܥ୲୭୲ୟ୪ | ୵୧୲୦୭୳୲ ୧୬୲ୣ୰୰୳୮୲୧୭୬ and ܶܥ୲୭୲ୟ୪ | ୵୧୲୦ ୧୬୲ୣ୰୰୳୮୲୧୭୬  
respectively, in which:    
 

% deviation = 100 ൈ
൫்஼౪౥౪౗ౢ | ౭౟౪౞ ౟౤౪౛౨౨౫౦౪౟౥౤ ି ்஼౪౥౪౗ౢ | ౭౟౪౞౥౫౪ ౟౤౪౛౨౨౫౦౪౟౥౤൯

்஼౪౥౪౗ౢ | ౭౟౪౞ ౟౤౪౛౨౨౫౦౪౟౥౤ 
. 

 
The results are depicted in Table 2. The minimum and the maximum of % deviation which are 
reported in Table 2 are 4.192 and 52.4779, respectively. Also, in these 16 sample problems, the 
mean of % deviation is 25.66. So when there is supply interruption, it is worth using the proposed 
method even though this method increases the complexity of calculations.  
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Table 2 The effect of ignoring supply interruption in the reorder points and total cost function* 

No. ૃܚ ࢘ࡸ
૚ ࣀ ࢙ࡽ ࢼ ࢘ࡽ૚ ࣀ૛ 

 With interruption  Without interruption  
% deviation 

࢙ࡾ ࢒ࢇ࢚࢕࢚࡯ࢀ 
࢘ࡾ כ

כ ࢙ࡾ ࢒ࢇ࢚࢕࢚࡯ࢀ 
࢘ࡾ כ

כ   

1 3 2 2 5 3 0.2 0.4   7.9074 2 10  4.2285 4 5   46.5249 

2 1 4 12 10 1 0.05 0.05   5.2729 -1 1  4.9856 -1 1   5.4486 

3 1 4 6 5 1 0.2 0.4   4.0461 0 2  3.0314 0 1   25.0799 

4 1 0.5 2 5 3 0.4 0.2   3.0945 0 2  1.6870 1 0   45.4835 

5 3 2 2 5 3 0.4 0.4   8.6727 1 12  4.2285 4 5   51.2434 

6 3 2 6 10 3 0.2 0.05   8.5128 0 8  5.0051 1 4   41.2053 

7 1 2 6 5 1 0.05 0.2   3.1884 0 0  2.8115 0 0   11.8230 

8 1 2 6 5 3 0.05 0.05   3.2385 0 0  3.1028 0 0   4.1920 

9 1 2 12 10 1 0.4 0.4   6.2131 -1 2  5.7989 -1 1   6.6658 

10 3 0.5 12 10 1 0.05 0.2   7.2358 0 2  5.6549 0 0   21.8487 

11 1 4 6 10 1 0.4 0.4   5.3529 0 4  3.7416 0 1   30.1005 

12 1 4 12 10 1 0.2 0.05   5.3573 -1 1  4.9856 -1 1   6.9391 

13 3 0.5 2 5 3 0.4 0.05   6.0685 2 6  2.8778 4 2   52.5779 

14 3 0.5 12 10 1 0.05 0.05   6.4042 0 1  5.6549 0 0   11.6999 

15 3 2 2 10 3 0.2 0.05   9.0468 3 10  5.2060 3 7   42.4548 

16 1 4 2 5 1 0.05 0.4   3.6648 1 4  3.3961 1 3   7.3324 

*Other parameters are constant and are as follow: ݄௥=1, ܮ௥
ଶ=1, ݄௦

ଵ=݄௦
ଶ=0.1, ܮ௦

ଵ=ܮ௦
ଶ=1, and ߰ଵ=߰ଶ= 0.5 

 
4.3. Two-supplier supply chain versus dyadic supply chain 
 
As pointed earlier, one approach which has been frequently used in the literature to overcome 
uncertainty in the supply is diversification. Sajadifar and Pourghannad (2010) study an integrated 
dyadic supply chain with uncertainty in the supply, but their study, like most of the other studies in 
the supply interruption literature, focuses on a dyadic supply chain. In this subsection, we 
investigate the effect of diversification on integrated supply chain with uncertainty in the supply. To 
inquire the effect of diversification 16 sample problems, which are presented in Table 3, are 
randomly constructed. The optimal values of the suppliers’ reorder point, the retailer’s reorder 
point, and the total cost function are calculated for both dyadic and two-supplier supply chain. In 
the case of two-supplier supply chain all parameters for both suppliers are the same and equal to the 
case of the dyadic supply chain, i.e. ψ ൌ ψଵ ൌ ψଶ, ζ ൌ ζଵ ൌ ζଶ,ܮ௥ ൌ ௥ܮ

ଵ ൌ ௥ܮ
ଶ ௦ܮ , ൌ ௦ܮ

ଵ ൌ ௦ܮ
ଶ, and 

݄௦=݄௦
ଵ=݄௦

ଶ. The optimization process for integrated dyadic supply chain with uncertainty in the 
supply is similar to the process that used in this paper and is available at Sajadifar and Pourghannad 
(2012). For each problem, to compare the results, %cost reduction is proposed, in which: 
 

% cost reduction = 100 ൈ
்஼౪౥౪౗ౢ | ౚ౯౗ౚ౟ౙ – ்஼౪౥౪౗ౢ | ౪౭౥ష౩౫౦౦ౢ౟౛౨

்஼౪౥౪౗ౢ | ౚ౯౗ౚ౟ౙ 
 

 
Where theܶܥ୲୭୲ୟ୪ | ୢ୷ୟୢ୧ୡ is the total cost in the dyadic supply chain, and the ܶܥ୲୭୲ୟ୪ | ୲୵୭ିୱ୳୮୮୪୧ୣ୰ is 
the total cost in the tow-supplier supply chain. As Table 3 shows, using diversification strategy 
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results in cost reduction between %3.69 and %36.95. Our findings support former studies indicating 
that using multi-supplier can decrease the total inventory cost (for more details see Hill (1996) and 
Minner(2003)).  
 

Table 3 The comparison between dyadic and two-supplier supply chain when there is supply interruption* 

No. ૃࣀ ࢙ࡽ ࢼ ࢘ࡽ ࢘ࡸ ܚ 
 Dyadic SC 

 
Two-supplier SC  % Cost 

Reduction ࢙ࡾ ࢒ࢇ࢚࢕࢚࡯ࢀ
࢘ࡾ כ

כ ࢙ࡾ ࢒ࢇ࢚࢕࢚࡯ࢀ 
࢘ࡾ כ

כ  

1 3 2 12 10 1 0.2  10.3430 -1 15  9.1957 0 8  11.09 

2 1 4 6 10 3 0.2  6.4630 -1 7  5.5408 -1 5  14.27 

3 3 4 6 5 3 0.2  8.7395 -1 19  8.2295 0 15  5.84 

4 3 4 12 10 1 0.05  10.7678 -1 22  9.3297 0 13  13.36 

5 1 0.5 6 5 3 0.4  4.3864 -1 1  3.6108 0 0  17.68 

6 1 0.5 12 5 1 0.05  5.8341 -1 1  5.1705 -1 -1  11.37 

7 1 0.5 2 5 3 0.05  3.1220 -1 3  1.9684 1 0  36.95 

8 1 0.5 2 5 3 0.2  3.1576 0 2  2.7718 1 1  12.22 

9 3 4 12 5 1 0.4  9.6035 -1 18  8.9650 0 14  6.65 

10 3 0.5 12 10 1 0.05  8.8626 -1 10  6.6973 0 0  24.43 

11 3 4 12 10 3 0.2  12.3538 -1 19  10.8661 0 14  12.04 

12 3 2 6 5 3 0.05  7.1854 0 12  5.8227 0 6  18.96 

13 1 4 2 10 3 0.05  5.2031 0 8  4.4829 0 6  13.84 

14 3 4 12 5 3 0.2  10.4525 -1 17  8.9794 -1 14  14.09 

15 1 2 12 5 3 0.4  7.2074 -1 1  5.8793 -1 0  18.43 

16 1 2 2 10 1 0.2  4.3605 0 5  4.1994 1 4  3.69 

*Other parameters are constant and are as follow: ݄௥ = 1, ݄௦= 0.1, ܮ௦ = 1, and ߰ = 0.5 

 

5. CONCLUSION AND FUTURE RESEARCHES 
 
In this paper, an integrated two-supplier supply chain with supply interruption has been studied. As 
mentioned, although the diversification strategy is used to overcome uncertainty in the supply, there 
are a few studies on it. In addition, the integration is another important factor that has been taken 
into account. The results show that our proposed expected cost function works well. Also, as it has 
been anticipated, the numerical examples demonstrate that using two suppliers can cause reduction 
in the expected total cost. 
 
There are some directions one can use to extend this study, like derivation of exact or 
approximation cost function for an integrated multi-supplier supply chain, and sensitivity analyzing 
of the proposed cost function when each parameters change. Furthermore, some numerical 
examination, which is going to appear in future works, is required to understand the effect of 
interruption. 
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APPENDIX A. EVALUATION OF ONE-FOR-ONE ORDERING POLICIES 

This appendix is a summary of Axsäter (1990), adapted for our inventory system. The following 
notations are defined: 

gS౩ሺݐሻ = Density function of the Erlang (ߣ, ܵ௦)  

and 

GS౩ሺݐሻ = The cumulative distribution function ofgS౩ሺݐሻ. 

Thus,  

݃ௌೞሺݐሻ ൌ  
ௌೞିଵݐௌೞߣ

ሺܵ௦ െ 1ሻ!
݁ିఒ௧ (A.1)

And,  

ሻݐௌೞሺܩ ൌ ෍
ሺݐߣሻ௞

݇!

ஶ

௞ୀௌೞ

݁ିఒ௧ (A.2)

The average warehouse holding costs per unit is:  

γሺSୱሻ ൌ
୦౩S౩

஛
ቀ1 െ GS౩ାଵ൫Lୱ

୧ ൯ቁ െ hୱLୱ
୧ ቀ1 െ GS౩൫Lୱ

୧ ൯ቁ, Sୱ ൐ 0 (A.3)

 

And for ܵ௦ ൌ 0 

γሺ0ሻ ൌ 0 (A.4)

Given that the value of the random delay at the warehouse is equal to t , the conditional expected 
costs per unit at the retailer is:  

πS౨ሺtሻ ൌ eି஛൫L౨
౟ ା୲൯ h ൅ β

λ
෍

ሺS୰ െ kሻ

k!
൫L୰

୧ ൅ t൯
୩

λ୩

S౨ିଵ

୩ୀ଴

൅ β ൬L୰
୧ ൅ t െ

S୰

λ
൰ (A.5)

(0! = 1 by definition),  

The expected retailer’s inventory carrying and shortage cost to fill a unit of demand is:  

πS౨ሺtሻ ൌ eି஛൫L౨
౟ ା୲൯ h ൅ β

λ
෍

ሺS୰ െ kሻ

k!
൫L୰

୧ ൅ t൯
୩

λ୩

S౨ିଵ

୩ୀ଴

൅ β ൬L୰
୧ ൅ t െ

S୰

λ
൰ (A.6)

And, 

ΠS౨ሺSୱሻ ൌ ׬ gS౩൫Lୱ
୧ െ t൯

L౩
౟

଴ πS౨ሺtሻdt ൅ ቀ1 െ GS౩൫Lୱ
୧ ൯ቁ πS౨ሺ0ሻ. (A.7)



170 Sajadifar and Pourghannad 

Furthermore, for large value of Sୱ, we have  

ΠS౨ሺSୱሻ ൎ πS౨൫Lୱ
୧ ൯. (A.8)

The procedure starts by determining S଴തതത such as  

GSబതതത൫Lୱ
୧ ൯ ൏ (A.9) ,ߝ

where ε is a small positive number.  

The recursive computational procedure is:  

ΠS౨ሺSୱ െ 1ሻ ൌ  ΠS౨ିଵሺSୱሻ ൅  ቀ1 െ GS౩൫Lୱ
୧ ൯ቁ ൈ ቀπS౨ሺ0ሻ െ πS౨ିଵሺ0ሻቁ (A.10)

Π଴ሺSୱሻ = GS౩൫Lୱ
୧ ൯βLୱ

୧ െ  GS౩ାଵ൫Lୱ
୧ ൯β

S౩

஛
൅ βL୰

୧  (A.11)

And finally the expected total holding and shortage cost for a unit demand in an inventory system 
with a one-for-one ordering policy is:  

cሺSୱ, S୰ሻ ൌ ΠS౨ሺSୱሻ ൅  γሺSୱሻ. (A.12)
 
 
APPENDIX B. PROOF OF LEMMA 1 
 
In this appendix, the proof of lemma 1 will be presented. First, the proof for part 2 of lemma 1 is 
developed. It is known that ܺ௥

௜ ൌ ௥ܮ
௜ ൅ ௥ݓ

௜, and ݓ௥
௜ ൌ max൛0, ௦ܮ

௜ െ ܳ௥ሺܴ௦ ൅  ݇ሻൟ; i =1,2. In addition, 
consider the ݐሺோೞା ௝ሻொೝ

 as the time when the ሺܴ௦ ൅  ݆ሻܳ௥th demand occurred after time zero; j = 1, 2, 

Qs. In part 2 of lemma 1 it was assumed that ܮ௦
ଵ ൏ ௦ܮ

ଶ. Now, the ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻcan be expressed, using 

the conditional probability, as follows; 

ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ ܲሺܺ௥

ଵ ൏ ܺ௥
ଶሻ 

ൌ ܲ൫ݐሺோೞା ௝ሻொೝ
൏ ௦ܮ

ଵ ൏ ௦ܮ
ଶ൯ ൈ ܲ൫ܺ௥

ଵ ൏ ܺ௥
ଶ | ሺோೞା ௝ሻொೝݐ

൏ ௦ܮ
ଵ ൏ ௦ܮ

ଶ൯ 

൅ ܲ൫ܮ௦
ଵ ൏ ሺோೞା ௝ሻொೝݐ

൏ ௦ܮ
ଶ൯ ൈ ܲ൫ܺ௥

ଵ ൏ ܺ௥
ଶ ௦ܮ|

ଵ ൏ ሺோೞାݐ ௝ሻொೝ
൏ ௦ܮ

ଶ൯ 

൅ܲ൫ܮ௦
ଵ ൏ ௦ܮ

ଶ ൏ ሺோೞାݐ ௝ሻொೝ
൯ ൈ ܲ൫ܺ௥

ଵ ൏ ܺ௥
ଶ ௦ܮ|

ଵ ൏ ௦ܮ
ଶ ൏ ሺோೞାݐ ௝ሻொೝ

൯. 

ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ ܲሺܺ௥

ଵ ൏ ܺ௥
ଶሻ 

ൌ ܲ൫ݐሺோೞା ௝ሻொೝ
൏ ௦ܮ

ଵ ൏ ௦ܮ
ଶ൯ ൈ 

 ܲ൫ܮ௥
ଵ ൅ ௦ܮ

ଵ െ ሺோೞା ௝ሻொೝݐ
൏ ௥ܮ

ଶ ൅ ௦ܮ
ଶ െ ሺோೞା ௝ሻொೝݐ

ሺோೞା ௝ሻொೝݐ | 
൏ ௦ܮ

ଵ ൏ ௦ܮ
ଶ൯ ൅

 ܲ൫ܮ௦
ଵ ൏ ሺோೞା ௝ሻொೝݐ

൏ ௦ܮ
ଶ൯ ൈ ܲ൫ܮ௥

ଵ ൏ ௥ܮ
ଶ ൅ ௦ܮ

ଶ െ ሺோೞାݐ ௝ሻொೝ
௦ܮ|

ଵ ൏ ሺோೞା ௝ሻொೝݐ
൏

௦ܮ
ଶ൯ ൅  ܲ൫ܮ௦

ଵ ൏ ௦ܮ
ଶ ൏ ሺோೞାݐ ௝ሻொೝ

൯ ൈ ܲ൫ܮ௥
ଵ ൏ ௥ܮ

ଶ ௦ܮ|
ଵ ൏ ௦ܮ

ଶ ൏ ሺோೞା ௝ሻொೝݐ
൯. 

ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ ܲሺܺ௥

ଵ ൏ ܺ௥
ଶሻ ൌ ொೝሺோೢାܩ ௝ሻሺܮ௦

ଵሻ +ܩொೝሺோೢା ௝ሻሺܮ௥
ଶ ൅ ௦ܮ

ଶ െ ௥ܮ
ଵ ሻ - ܩொೝሺோೢା ௝ሻሺܮ௦

ଵሻ + 0 

ଵܲଶ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ ௥ܮொೝሺோೢା ௝ሻሺܩ

ଶ ൅ ௦ܮ
ଶ െ ௥ܮ

ଵ ሻ 

ଶܲଵ
௝ ሺܮ௥

ଵ , ௥ܮ
ଶሻ ൌ 1 െ  ଵܲଶ

௝ ሺܮ௥
ଵ , ௥ܮ

ଶሻ ൌ 1 െ ொೝሺோೢାܩ ௝ሻሺܮ௥
ଶ ൅ ௦ܮ

ଶ െ ௥ܮ
ଵ ሻ 

 
All of the other parts of lemma 1 can be proved, easily, in the same way. 
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APPENDIX C. PROOF OF LEMMA 2 
 
Based on table 1, the states of suppliers are the continuous time Markov chain; and this continuous 
time Markov chain has a unique steady-state probability. It is given by the solution of the following 
equations; 
 

P଴ζଵ ൅ P଴ζଶ െ Pଵψଶ െ Pଶψଵ ൌ 0 (C.1) 
Pଵζଵ ൅  Pଵψଶ െ  P଴ζଶ െ Pଷψଵ ൌ 0 (C.2) 
Pଶζଶ ൅ Pଶψଵ െ P଴ζଵ െ Pଷψଶ ൌ 0 (C.3) 
Pଷψଶ ൅ Pଷψଵ െ Pଵζଵ െ Pଶζଶ ൌ 0 (C.4) 
P଴ ൅ Pଵ ൅ Pଶ ൅ Pଷ ൌ 1 (C.5) 

 
The equations C.1 to C.4 are called balanced equations, and the equation C.5 is called normalized 
equation. By solving C.1 to C.5, the steady state probabilities can be obtained as follows; 
 

଴ܲ ൌ  
ψଵψଶ

ሺζଵ ൅ ψଵሻሺζଶ ൅ ψଶሻ
 (C.6) 

ଵܲ ൌ  
ζଶψଵ

ሺζଵ ൅ ψଵሻሺζଶ ൅ ψଶሻ
 (C.7) 

ଶܲ ൌ  
ζଵψଶ

ሺζଵ ൅ ψଵሻሺζଶ ൅ ψଶሻ
 (C.8) 

ଷܲ ൌ  
ζଵζଶ

ሺζଵ ൅ ψଵሻሺζଶ ൅ ψଶሻ
 (C.9) 

 

APPENDIX D. TABLE D  

Table D Sample problems with associated ܶܥ௧௢௧௔௟, ܶܥ௦௜௠ and absoluteerrors 

No. ૃ࢘ࡸ ܚ
૚ ࣀ ࢙ࡽ ࢼ ࢘ࡽ૚ ࣀ૛  ࢙ࡾ

࢘ࡾ כ
כ  |error|  ࢓࢏࢙࡯ࢀ  ࢒ࢇ࢚࢕࢚࡯ࢀ  

1 3 0.5 6 10 3 0.4 0.2  0 7  9.21071  9.81297  0.06137 

2 1 4 12 10 3 0.4 0.2  -1 1  6.36758  6.45955  0.01424 

3 3 0.5 12 5 1 0.05 0.05  0 0  5.37090  5.39581  0.00462 

4 3 4 2 5 1 0.4 0.4  3 16  10.89594  11.65602  0.06521 

5 3 0.5 6 10 1 0.05 0.2  0 5  7.49743  7.19284  0.04235 

6 3 2 6 5 3 0.05 0.2  0 5  5.92968  5.81754  0.01928 

7 3 4 12 5 1 0.05 0.05  0 5  7.17112  7.23899  0.00938 

8 1 0.5 12 5 3 0.2 0.05  -1 -1  5.44354  5.52043  0.01393 

9 1 2 6 5 3 0.2 0.2  -1 1  3.66058  3.77355  0.02994 

10 3 0.5 12 10 1 0.2 0.05  0 2  7.10212  7.31937  0.02968 

11 1 2 12 10 1 0.2 0.2  -1 1  5.99141  6.22019  0.03678 

12 1 2 2 10 1 0.2 0.05  1 3  3.76641  3.90521  0.03554 
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Table D Sample problems with associated ܶܥ௧௢௧௔௟, ܶܥ௦௜௠ and absoluteerrors (Cont.) 

No. ૃ࢘ࡸ ܚ
૚ ࣀ ࢙ࡽ ࢼ ࢘ࡽ૚ ࣀ૛  ࢙ࡾ

࢘ࡾ כ
כ  |error|  ࢓࢏࢙࡯ࢀ  ࢒ࢇ࢚࢕࢚࡯ࢀ  

13 3 2 6 10 3 0.2 0.05  0 8  8.51284  8.54867  0.00419 

14 1 4 2 10 3 0.4 0.05  0 5  5.50425  5.65550  0.02674 

15 1 2 12 5 3 0.4 0.4  -1 0  5.62588  5.77219  0.02535 

16 1 4 2 10 1 0.4 0.05  1 5  5.44998  5.24617  0.03885 

17 1 0.5 2 10 3 0.2 0.05  1 1  3.19247  3.06099   0.04295 

18 3 2 6 10 1 0.05 0.2  1 7  7.40563  7.32142  0.01150 

19 1 0.5 2 5 1 0.4 0.4  1 2  3.28651  3.20450  0.02559 

20 1 2 6 10 1 0.05 0.4  0 1  4.05997  4.17547  0.02766 

21 1 4 2 5 3 0.4 0.05  0 4  4.38476  4.44185  0.01285 

22 3 4 6 5 1 0.05 0.2  0 10  7.83154  8.02224  0.02377 

23 1 4 12 5 1 0.2 0.05  -1 0  4.46051  4.58218  0.02655 

24 1 4 12 10 3 0.2 0.05  -1 1  5.78474  5.89050  0.01795 

25 1 2 2 10 1 0.05 0.05  2 2  3.22682  3.18618  0.01276 

26 1 2 2 10 1 0.05 0.4  1 3  3.65160  3.78893  0.03624 

27 3 2 2 5 2 0.2 0.05  3 8  7.01806  6.75052  0.03963 

28 3 4 2 5 1 0.05 0.2  3 13  8.40043  8.73523  0.03833 

29 3 0.5 2 10 1 0.05 0.05  4 5  6.19117  6.12086  0.01149 

30 1 2 2 5 3 0.2 0.2  1 2  3.25704  3.33401  0.02309 

31 1 2 6 10 1 0.2 0.4  0 2  4.45021  4.63957  0.04081 

32 1 4 12 10 1 0.05 0.2  -1 2  5.78933  5.76064  0.00498 

33 3 0.5 12 5 3 0.2 0.4  0 2  7.75414  8.11143  0.04405 

34 3 4 12 5 3 0.05 0.05  0 5  7.75238  7.60421  0.01949 

35 3 2 6 10 3 0.2 0.4  0 10  9.72501  10.43086  0.06767 

36 3 2 2 5 3 0.05 0.2  3 7  6.06486  5.70380  0.06330 

37 1 4 12 10 1 0.05 0.4  -1 2  6.03747  5.82513  0.03645 

38 1 0.5 6 5 3 0.4 0.4  0 0  3.70361  3.83134  0.03334 

39 1 2 6 10 3 0.4 0.2  -1 2  4.70324  4.89066  0.03832 

40 1 4 2 5 1 0.2 0.4  1 4  4.13756  4.24181  0.02458 

The mean absolute error = 0.0295 

*Other parameters are constant and are as follow: ݄௥=1, ܮ௥
ଶ=1, ݄௦

ଵ=݄௦
ଶ= 0.1, ܮ௦

ଵ=ܮ௦
ଶ =1, and ߰ଵ=߰ଶ= 0.5 
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