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Abstract

One of the important aspects of distribution opemion problems is simultaneously
controlling the inventory while devising the besthicle routing, which is a famous
problem, called inventory-routing problem (IRP). ®¥vhthe lot-sizing decisions are
jointed with IRP, the problem will get more comlied called production inventory-
routing problem (PIRP). To become closer to thd léa problems that includes
products that have a limited life time like fooitsseems reasonable to narrow down
the PIRP problem to the perishable products, whighperishable-production
inventory-routing problem (P-PIRP). This paper &ddes a P-PIRP in a two echelon
supply chain system where the vendor must decidenvemd how much to produce
and deliver products to the customer’s warehousee Hhe general model of PIRP as
mixed integer programming (MIP)is adopted and theghability constraint are added
in order to solve the P-PIRP problems. Due to thrapiexity of problem, providing
solution for the medium to large instances canrmtehsily achieved by business
applications, and then using the meta-heuristicsnsvoidable. The novelty of this
research is devising an enhanced genetic algor{tBA) using multiple repairing
mechanisms, which because of its computationalipb®rsomeness have absorbed
less attention in the literature. The problem rilmeugh some generated instances and
shows superiority in comparison to the businesdicgin.

Keywords: Production inventory routing problem, IRP, mixateiger-programming,

perishable, genetic algorithm.

1- Introduction

Inventory management is one significant aspétte supply chain management (SCM) which due
to its significant impacts on vendor/supplier costssupply network; it has been in the center of
attentions of supply chain partners including vendeanufacturer, retailers, and distributors. As a
result, many researchers and scholars have inagstighe problem of optimizing inventories for
gaining more profits for all partners and it leadsnany advances in SCM consist of many modern
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systematical tools and techniques. One of thetlated widely used improving techniques is Vendor-
Managed Inventory system (VMI). In the strategieele it provides more collaboration between the
partners of a supply chain, and in operation leivé$, a replenishment tool where the retailertiest
vendor/supplier know its demand and its inventafgimation. In this regard, the vendor/supplier is
assumed to gain responsibility of maintaining irteeies between predetermined levels and
determining order quantities for retailer that d@vafly it makes “better” managing of the retailer’s
inventory. Often, vendor as the central decisiorkanalso manages a fleet of vehicles to do the
deliveries for replenishment in retailer's sitedMvas pioneered as a pilot program in the retalil
industry between Procter & Gamble and Wal-Martha 1980s and resulted in significant benefits,
such as lower inventory levels, fewer stock-ouitsl ecreased sales, and has been adopted by many
other supply chains such as those of Dell, Bardlied Nestle (Saganeril and Erkip 2010).

Having adopted this system, vendor, in additmsolve the problem of the optimizing the quantity
of goods for sending to retailers, should solvetlaginherited sub-problem that is optimizing the
routs in which retailers are serving. As can bensé@e the Figurel., considering inventory
management and transportation planning decisionalineously, is one of the core aspects of the
VMI system. In this case, the vendor must solvéngggrated problem, which is known as inventory-
routing problem (IRP).
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Figurel. The logistics network of a VMI system

Traditionally, these decisions have been maparstely and each one solely was seeking for its
costs improvements while there is an obvious diceatradiction between costs of transportation and
inventory decisions - decreases in one of them nth&eother one increase and vice versa. Some
disadvantages of this disintegration is as foll@fiieywegt, Nori and Savelsbergh 2002).
Commonly, the orders do not arrive uniformly or éav non-uniform arrival pattern over the time,
and this cases the vendor’s resources, for exartrplesportation and storage resources, cannot be
used well overtime. This leads to vendor’s resaismEmetimes be stretched to the limit by arriving a
large number of orders, while during the rest ofkvMame, be relatively idle. Another drawback is
due to not knowing the exact inventory levels at thtailers. This information can help vendor
compare the apparent urgent and the real urgeatahd prioritize all of them so that the realemtg
orders did not be delayed. On the other hand, rikegiation of decisions which is brought by
implementing the VMI, would totally decrease theoléhsupply chain costs (Sindhuchao et al. 2005).
More specifically, some advantages are as followBigaring retailer's inventory level information
makes more accuracy in proactive planning thatscasere uniform utilization of transportation
capacity then more reduction in transportationdstalso decrease the amount of inventory needed
to be kept to achieve a desirable customer selied(Kleywegt et al. 2002).

Running a VMI system would lead to solve aR |Rvhich itself is a variant of well-studied veleicl
routing problem (VRP).For clarifying the core driéamce between these two problems, it is worth
mentioning that in VRP, the vendor should fulfiiet orders that have been generated by some
retailers while trying to minimize the distancevebed by selecting proper routes. However in IRP,
while the whole process is the same as VRP, oraeraot generated by retailers and the vendor
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decides how much to deliver to which retailer(Cagipbnd Savelsbergh 2004).Additionally, because
the VRP is a NP-hard problem then IRP is categdrae NP-hard problems. In VMI, when the

vendor is also a manufacturer and produces itsugtsdin its plants, he also is interested in
integrating his production decisions like lot-siziand production setup cost, with IRP decisionnthe
the problem is called production inventory-routipgpblem (PIRP). PIRP is also well known in

literature as integrated production and distributscheduling problem (IPDSP) and production
routing (PR), too. Additionally, PIRP is more coispted than IRP due to adding the production
decision variables.

Although, solution approach to PIRP can be aersid without regard to specifications and product
features, application of it to short life cycle (igbable or decaying products) like products sugh a
food, medical products and pharmaceuticals, chdsyitdood and floral industry would show its
widespread use to the more realistic situatione@ world. The perishability context here we are
using is the same as Federgruen, Prastacos anih Zi#86) that the term perishable is for referring
to a product that has a fixed lifetime during whicban be used and after which it must be disahrde
Considering perishability in PIRP (P-PIRP) is amaheg issues that researchers have paid less
attention in the literature on it, and is the caitention of this paper.

The motivation for doing this research is ratpepor attention of researchers to the problem of
integrating the production and distribution in gwgply chain of a wide range of products that have
fixed life time and have a plethora of examplesun life, for example dairies and foods. In this
study, we introduce the mixed integer programmuorglie P-PIRP with following specifications. We
assume a limited planning horizon and containindtipia periods. The supplier's production cost
that is mostly related to the setup cost. The lerstidemand is known and there is one product and
only one vehicle, starting from the only vendorrveegy a number of geographically scattered
retailers, which finally should return to the venddue to the complexity of P-PIRP which stem from
embedded VRP and perishability and production ilottg, our solution approach to the problem is
introducing an enhanced repair based genetic atgo@pproach for P-PIRP which using a handful of
heuristic procedures try to find a good solutionairreasonable amount of time compare to the
common commercial software. The novelty of thissegsh is stem from the fact that implementing
the repairing infeasible solutions strategy in rhetaistic like GA is technically cumbersome and
need deliberate procedures that some time will m@gative effect on the performance of it. That is
why very few researchers are eager to follow thiategy but, we shows that if this repairing
mechanism devised carefully, it can offer good sohs in reasonable CPU time.

The remainder of the paper is organized as folldéwvsection 1, we review the most relevant research
conducted from the year 2012. In Section2, we @efinr P-PIRP in more detail and offer the
mathematical formulation as MIP. Then, in sectigro@ solution approach using GA is presented,
too. In Section 4, numerical experiments will beyided. Finally, we end with conclusion's remarks
in Section 5.

2- Literaturereview

Here, in literature review, we focus mainly on tqgproaches that have been taken for solving
PRIP and P-PRIP by the authors yet, and then secent works that deals with closely to our
approach will be reviewed. The introduction of IE&e back to the paper of Bell et al. (1983) in
which only transportation costs are included, deinanstochastic, and customer inventory levels
must be met. From that time a bundle of researele tbeen done on different variants of the
problem. For more details and reviewing relatedlipbbd studies, we refer the interested reader
toAndersson et al. (2010) and to Coelho, CordeaulLaporte (2014), and Adulyasak, Cordeau and
Jans (2015). In the latter survey paper, a clasgifin for IRP literature have been offered acauaydi
to seven criteria, namely, time, demand, topologyting, inventory decisions, fleet compositiondan
fleet size. Referring those extensive surveys we Hern our attention to the more relevant or
uncovered literatures that can be seen in the Thllshows the latest work done on the PIRP from
the year 2012 which were not reviewed in thoseetgv

Federgruen et al. (1986) are the first authors héne studied the IRP for perishable products.
The problem contain only one period and they carsitie products in two categories as old —
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products and fresh products which the old unitdevhé out-of-dated at the end of that period aed th
fresh ones would last for another one period. Tasgd Lagrangian relaxations method as their
solution approach.

Table 1. Classification of the recent papers on the PIRIPRuPIRP

time inventory policy/ fleet
author/ year focus demand . inventor ydecisions/ composition/ perishability solution approach
/structure/routing :
products fleet size
Federgruen et al. PIRP e one—penod/o_ne—to— maximum Igvel/ heterogeneous/ elloseg) Lagrangian relaxations
(1986) many/multiple lost sale/single multiple
Leet al. (2013) PIRP deterministic multi-period/one- order-up-to lIeveI/ homoggneous/ not allowed Path flow formulatlon, Collumn
to-many/ lost sale /single multiple generation-based heuristic
(Coelho and PIRP  deterministic multi-period/one- maximum level/ heterogeneous/ o B @ e
Laporte 2014) to-many/multiple lost sale /single multiple
A SiEl, A multi-period/one- maximum level/ homogeneous/ Modeled as a MIP and solved
Raisi and Aftab PIRP deterministic to—maF:] . lois sl /G [ mu?ti e not allowed using the commercial software
(2014) y/muitip 9 p of GAMS
deterministic approximations of
Soysal et al. PIRP uncertain multi-period/one- maximum level/ homogeneous/ allowed sto::r?ssttrl;:irr]r;c:jdsrlougsrgr?q;?:gce—
(2015) to-many/multiple backlog/single multiple solution by commercial MILP
solver
mixed integer non-linear
Mirzaei and Seifi . ... multi-period/one- maximum level/ homogeneous/ programming modeling, solution
to-many/multiple ost sale /single single y a hybrid o an meta-
2015 PIRP deterministic multiol | e /sinal ingl allowed by 2 hvbrid of SA and TS
heuristics
Rahimi, Baboli . ... multi-period/one- maximum level/ heterogeneous bi-objective mathematical
and Rekik (2016) PIRP deterministic to-many/multiple backlog/multiple /multiple allowed model, fuzzy solution approach
Shaabani and f f "
Kenelelest P-PIRP  deterministic one—penod/qne—to— order-up-to Ie_vel/ homoggneous/ it alllenEs populatlon—lbased simulated
(2016) many/multiple lost sale/multiple multiple annealing (PBSA)
Devapriya, - . . .
: . ... one-period/one-to-  order-up-to level/ homogeneous/ Two heuristics using genetic
Gg;:::'ég‘i@ P-PIRP deterministic many/multiple lost sale/multiple multiple not allowed algorithms
This study P.PIRP  deterministic multi-period/one- maximum level/ homogeneous/on e Enhanced repair based Genetic

& perishable IRP
® perishable production IRP

to-many/ multiple

lost sale /single

e

Algorithm (EGA)

Shaabani and Kamalabadi (20180 studied PIRP where there are multiple-pericitsgle
perishable product and a fleet of homogeneous k=highould distribute goods between multiple

customers. Because the additive goods will notdael in customer's warehouse and will be discarded
after finishing their shelf-time they introduce andinating set of constrains that goods will not be
sent to the customer locations more than its tmiakecutive demand during the product's shelf-time.
This will enforce that no goods are spoiled in oo®tr's location in each period. They introduce a
column generation-based heuristic algorithm foraotihg a good solution for their problem.Al
Shamsi et al. (2014) looked a bit different to pgegishability in IRP, as they considered the age fo
the only product in their three echelons supplyith@oblem and as the time passes the fresh
products get aged and this make different non-awing value for selling them. To gain the most
revenue from selling different aged product, théfgred two selling priority policies. Their devised
B&B solution method, calculate the best time ofisglusing the trade-off between cost and revenue.
They found the optimal solution to some randomiyeagated instances. Al Shamsi et al. (2014)
considered also the pollution in PRIP and using IR Modeling they tried to reduced Camitted
from the vehicles. The concentrating on cutting @@fssions resulted in a slight increase in thal tot
costs due to delivering the heavier loads firsy6abet al. 2015)Studied a multi-period stochaftie
considering greenhouse gas emissions and fuel ogoiEn for distribution of a single perishable
product. They also introduced some service levelstaints for meeting uncertain demand. For
evaluating the performance of the solutions ofdp@mization models, they presented a simulation
modeling. Mirzaei and Seifi (201%rmulated a PRIP in which the end customers’ dehdepends

on the age of the inventory. They considered that oblost sale as a function of the inventory age
and formulated it as a mixed integer non-lineagprmming. The solution approach devised using a
hybrid of simulated annealing (SA) and Tabu Sedft®) meta-heuristics linearize after linearizing
the model.Rahimi et al. (2016) proposed a bi-objectnathematical model for multi-products with
different shelf life PRIP considering social issud$ey also proposed a discount function for
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enforcing the selling the fresher product. Theirdeling also encompasses the concept of reverse
logistic for gathering the expired products frortaikers. They used the Fuzzy approach to transform
the two objectives into one that can be solvedgugie commercial software of GAMS. Shaabani and
Kamalabadi (2016%tudied a multi-period multi-product multi-retailerPRIP that products have a
fixed lifetime. They introduced a population-basgthulated annealing (PBSA) algorithm, which
they showed it has some superiority over the SA, genetic algorithm when they are using them
separately as a solution approach. For tighter apisyn, they also offered some lower bound and
upper bound using the Lagrangian Relaxation and BfpBroaches. Devapriya et al. (20p&)posed

two heuristics using genetic algorithm to find appmate solution for the large size P-PIRP problem
and reported their comparison using some test @nadl

3- Mathematical model of perishable |RP

The problem is defined on a graph= (V,A) with a node se¥ including a supplier (node 0) and a
number of retailers, and an arc set A. In the failhg, we introduce our assumptions and notations,
which are used in the modeling of the prohlem
Assumptions:

» A supplier serves a given number of retailers wigogographically dispersed in a given
area, which is called as a two echelon supply chadter VMI system

» A single vehicle is considered

* Asingle perishable product with fixed life timeensidered

» Split deliveries during each period are not allonesith retailer is always replenished by a
single visit if need to be replenished at thatquri

» vehicle is able to perform one route at the begigmif each time period

» Transportation (routing) costs are assumed to tyegotional to traveled distance

* The vehicle capacity cannot be exceeded

* No vehicle loading and unloading cost and timeoissidered

* both supplier and the retailers have a limitedagjercapacity and no stock out is allowed

* The total demand on each route is less than orl égjtize vehicle capacity

» Each route begins and ends at the vendor

* No vendor ordering cost is considered

* The production is not capacitated

* The production costs is only related to the fixedts as setup cost

* The deliveries from the supplier to the retailees @ways of new or freshly processed
product

* Demand is known and deterministic and dynamic

* The inventory level of a customer at the end oéiagal cannot exceed the maximal available
inventory capacity;

e Maximum level (ML) policy for inventories is congred

Notations:
This study uses the following notations.

Setsk Description

indexes

n the numbers of retailers

0 the vendor’s node) = {0}

v set of nodes including retaileis; = {1, ..., n}
% set of nodes including vendor and retailétsz V'u 0 = {0,1, ...,n}
p the number of periods in planning horizon
T planning horizon;T = {1, ..., p}

t index of each time period;e T

i,j index of each node;j e V

A setof arcsA = {(i,j):ij € V,i # j}
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Parameters Description

C; maximum capacity of retailer

e;j routing cost from verteéxoj, (i,j) € A

dt demand rate at retailéin periodt

Q vehicle capacity

ho unit inventory holding costs at vendor

h; unit inventory holding costs at retailier

Timax maximum shelf life of product

Y set of time period before the product get spoiled;{1, ..., Tmax}
M a large number

ft production setup cost in period

Variables Description

¥t is equal to 1 if and only if custompimmediately follows customéron the route of the
g - supplier’s vehicle in periotd
0 otherwise

. is equal to 1 if and only if production occursp@riodt
Yt o= 0 otherwise

P inventory level at the vertexe V at the beginning of the planning horizon
If inventory level at the vertexe V at the end of periotde T

qf the quantity of product delivered from the ventioretaileri in time period
vf continuous variables to enforce sub-tour elimorati

rt the amount of products are manufactured by vendivegtimet € T

Mathematical mode!:

PIRP = minEfth+zhol(§+Zzhi1it+2226if)(itf (1)

teT teT iev’ teT iev jev teT
s.t.
15:15-1+rf—zqf, teT )
iev’
k=0, terT 3)
IF=114+qt-dl, iev,teT (4)
If>0, i€v,teT (5)
If<c, i€v,teT (6)
rt<Myt, teT (7)
rt < 2 2 e 2 I, teT (8)
iev! sey iev/
If < 2 atts1, i€EV tET (9)
SEY
gf<c -1, iev, teT (10)
q{SCiZij, iev teT (11)
jEv

35



quSQ. teT (12)

iev’

Exszz:xﬁ, jEVLET 13)
LEV LEV

2X{031,teT 14
;ipv_v]'t+QXitjSQ_C[},l'EU’,jEU’,tET (15)
gt <vi<Q.,iev' terT (16)
qf=0,iev, jeRU{0}, teT 17
vf >0,i€v', teT (18)
X, v e{01}; ijeEv,i#j,teT (19

The objective function (1) comprises four paftsproduction setup cost (ii) inventory holdingst
at supplier (iii) inventory holding cost at retage and (iv) routing cost for the supplier's vehicl
Constraints (2), (3), (4), (5),(6) relate to theantory decisions. To be more specific, the contsa
(2) calculate the inventory level at the vendathatend of periade T. Constraints (3) ensure that we
do not face any negative inventory at the venddine@end of each period. Constraints (4) deschbe t
inventory quantities at each retailer at the engp@fod € T. Constraints (5) and (6) are capacity
limitations of the retailer warehouse, i.e. thatficonstraints set is related to the minimum inegnt
level and the second constraints set is relatedaimum inventory level, respectively. Constraints
(7) are enforcing setup costs. Constraints (8)(&hdelate to the perishability of products. Coastts
(8) limits the production rate that may lead to plegishability of products so that the productiater
rt at time t plus inventory at the end of the presiperiod in suppliéf~*and retailer§ ~* could not
be higher than the total proceeding demand ofustamers during the perishable product’s lifetime.
Constraints (9) limit the inventory level in eachstomer, up to the sum of its proceeding demand
during the lifetime of perishable product. It isfomentioning that these constraints work juse lik
the constraints (6) and in different numerical amstes, one of these constraints may get nonbinding.
Constraints (10)—(11) relate to the quantity dekdeby vendor's vehicle based on the ML policy.
Constraint (12) guarantees that the vehicle capacitespected. Constraints (13)—(16) are concerned
with routing of the vendor‘'s vehicle. In particulazonstraints (13) ensure flow conservation for
vehicle at each node in each period. Constraidkr(ean that we have only one vehicle. Constraints
(15) and (16) are concerned with subtour elimimatioonstraints (17)—(19) ensure the integrality and
non-negativity of decision variables.

4- Solution approach

Before thinking about any solution strategy R3PRIP, knowing the complexity of the problem
would shed a light on the way we should step ist Jmowing that the PRIP embedded a vehicle
routing problem (VRP) that is NP-complete problestray our way of using the exact solution
method to where we prefer using the approaches aftetmore friendly methods with complex
problems like heuristics, and metaheuristic. Onethed high-performance metaheuristic, which
provides high quality solution to the complex pmebk, is Genetic Algorithm (GA). It uses
randomized search technique using the crossovemautdtion operators to do the neighborhood
search inspired from the natural selection prodessiany cases, it can offer near optimized soytio
within a reasonable cost. That is why we use thathod in our study as our solution approach.

4-1- Solution representation

To be able to use genetic algorithm in solvingropation problems, a suitable structure to display
any solutions, which is called chromosome, is negliiHere to display each solution chromosome of
a multi-period P-PRIP that is associated with gngihicle, and single product, we use a three-
dimensional matrix consisting witttx2 elements - calling each element a gene.iTarelt related to
each customer and each period in the planning trorizspectively. The dimension of chromosome
which has only 2 elements is embedding two esdent@amation including the delivery amounts and
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routing schedule. More specifically, the delivegrtpof chromosome that has a dimensioixofl
shows the amount of the commodities at any pdribdt the supplier send to each customé&he
routing section of chromosome that also has a dilarofixtx1, indicates the routing data that
supplier’s vehicle at any periadA sample solution chromosome with five custon{ers) and 3
periods t=3) is shown in figure 2.The chromosome we are ukgrg is like the chromosome which
have been introduced in the study of Moin, Sallti Ariz (2011). The difference is that, there, a-two
dimensional matrix oixp is used to display solution chromosome contaioimly the delivery
amounts, while in this study we also representinmgunformation of each answer as the third
dimension. The reason why we add the routing athihg dimension to the solution chromosome is
related to the time of calculation. Although thiesa close relation between the delivery schedute a
routing schedule in the IRP, considering them siamdously will reduce the burden of heavy
calculations that are resulting from undergoindedént evolution processes of GA.

t=3 t=2 t=1

i=5

Pl
L
S
B
Pl

Routina

Deliveries

Figure 2. An example of three-dimensional chromosome oftgmiu

Assume that the value of geﬁhidteliveryin three-dimensional chromosome, represents theuaimo
of goods shipped to the custonett perioct as follows:
k if vehicle visit the customer i in period t

it =
Chdelivery - { 0 otherwise

The value ofChétem,ery will be k if the vehicle have met the customen periodt, means that the
amount of delivered goods to him is equaktotherwise it would be zero. Besides, assume tieat t
value of geneﬁ*hﬁi,uting in three-dimensional chromosome represents tleeityriof meeting of the
customei at period in as follows:

Chit . — {j € {1,...,P} if vehicle visit the customer i in period t
routing 0 otherwise
The value ofChi’i,uting will be j € {1, ..., P}if the vehicle have met the custonien periodt,in the

other word it shows the priority of meeting of eamlstomer, otherwise it would be zero. For more
explanation about the values on the chromosomeegitnand how interpreting them, a numerical
example is given in figure 3. In order to displagtnx elements easily, we separated the chromosome
of figure 2 in two sections, "routing" section, whiis displayed on the right and "delivery" section
which is displayed on the left.

re'tai(i!eﬂrOd e 2 3 retaitle;:'Od ! 2 .
1 12 0 0 1 4 0 0

2 5 8 0 2 2 4 0

3 0 13 3 3 0 1 1

4 1 9 6 4 3 2 3

5 6 2 4 5 1 3 2

(a) delivery section of chromosome (b) routing section of chromosome

Figure 3.Graphically separated solution chromosome
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Based on our problem’s assumptions including ekistence of only one car, which is allowed
providing at most one visit to each customer inheaeriod, we will describe our sample data in the
figure 3. On the right part of the figure and omipg one, which is shown in the column heading one,
the car starts its path from supplier that for diaily it has not been showed in the chromosome, an
arrives firstly at the customer 5 because it hastdlp priority between the other customers. The top

priority here is one Chgi’ﬂmg = 1).After unloading the products there, it will go tiee next top
21

routing — 2. This process will continue

priority in the same period (column heading one)ciwhisCh

to the time we will visit the lowest priority in @h period which iﬁhgﬁging =4. It is worth

mentioning that the zero values mean that no widlitoe done by the supplier’'s vehicle on that pdri
to the customers that have zero values. Then thé gath of vehicle in period one would be from
supplier to 5-2-4-1 then return to the suppliekelwise, vehicle in accordance with the prioritiés o
each chromosome routing section will deliver praduo customers, too. To explain the delivery
section of chromosome on the left of figure 3, é@ample consider the first period of the delivery
program, which have a column heading one. Accortlinthe priorities identified previously in the

routing part, the period one that includes the fafh4-1 firstly, 6 units of goods?(zgse‘llilery =6)is
sent to the customer 5, then 5 units of the pradtatthe customer2, after that 1 unit to customer
4,and finally12 unit to customer 1.In this studgfermining the values m;toutmg andCh‘dtelivery , IS

done with a randomized based heuristic called “&wded partial delivery” which is presented in the
following section.

4-2- Partial delivery

Generally, partial delivery in each period mes@sding a part of the total demand of each custome
in that period. One application of the partial dety can be found in the classical problem of VRP
with the name of the split delivery or split loafter introducing the idea of split delivery by @r
and Trudeau 1989) in VRP, in which the restrictioat each customer has to be visited exactly ance i
removed, many studies have shown its benefit. BimigLthis mechanism in our study, however, as we
presume that the vehicle is allowed to make at mosttour in each period, as a dominant constraint.
Then we need a new version of partial or splitvieli, to be entirely matched to our problem
specifications and we call it “partial delivery”’eBently, the partial delivery for the multi-periodP
is introduced as delivery exchange mechanism fprawing the transportation costs by Abdelmaguid
and Dessouky (2006). They use additions or redustmf delivery amounts in the current delivery
schedule in a given period at a time to/from anopgeriod whenever customer and vehicle capacity
limitations permit. Therefore, by using this prazes a given delivery schedule, it is possible that
some quantities to be transferred from successoodzeto a preceding period or from preceding
periods to a successor period. We use this ideahwias been used by them as an improvement
mechanism in mutation part of their proposed GA¢@sstruction mechanism in the initialization of
solutions of our GA. The “forwarded partial deliyéwe are introducing here is applicable only ie th
context of the multi-period IRP with classical Itation of visiting the customers only one time per
period. Due to not allowing any backlog, the custommdemand must be met in each period with
delivering enough goods to them in right time oersooner in the preceding periods. In the other
words, the partial delivery over the planning honizs trying to send goods for full filing somerpa
of the future demand rather than the current densmd that's why we call it forwarded partial
delivery. To make the forwarded partial deliveryrmeffective, we devise a random mechanism for
calculation the amount of partial deliveries ang @iso would create more integrality with the othe
random mechanism of GA. On the other hand, theamndiversification we are making into the
delivery schedule will help genetic algorithm sématise solution space more thoroughly. Using this
mechanism, while creating greater flexibility to eh¢he demand, may also lead to maximum use of
unused of vehicle and that would let to some radaostin costs. Knowing that the transportation cost
directly affects the objective function of IRP, tbfore taking advantage of all available transpimnma
capacity, also will affect the objective functiohlBP, indirectly.

Using an example, we would present our propdsstdom forwarded partial delivery” heuristic.
We suppose that the chromosome's routing sectiooupfsupposed sample solution is give as in
figure4 part (a). We will describe how it is gertethlater. Due to our assumptions that routing
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schedule of each period is done independent obther periods by the only one vehicle, then the
routing schedule will be determined for each pededarately. To do this, firstly, we determjrjec
Twhich is the total number of periods that custom®@wust be served based on the routing section of
chromosome. Here we call them the delivery poifitese delivery points are shown in a maiffas
follows.

There,icustomer index anfle ] is the number of delivery points. Referring toufig 4part (a), the
partial delivery matrix for customer3 we havek® = [2,3]. In the other word, partial deliveK/is
equivalence of the tour structure that vehicle tfakevisiting the customers, without the startingda
ending points, which is the supplier location.

period - 1 2 3 period ] 1 2 3
retailer| retailer|
1 9 0 0 1 4 0 0
2 3 4 0 2 2 4 0
3 0 15 7 3 0 1 1
4 6 11 2 4 3 2 0
5 2 0 3 5 1 3 2
b) demand a) routing part of chromosome
period ] 1 2 3
retailer|
1 9 0 0
2 5 2 0
3 0 19 4
4 6 13 0
5 3 1 1

c) delivery part of chromosome

Figure 4. An example of separated chromosome matrix withadem

The pseudo code of the random “partial deliveryirstic (RPDH) is presented in figure 5which
describes the main steps of determining the amaiutiéliveries that supplier’s vehicle should semd t
the selected customers. This will lead us to know o fill up the partial delivery matrix in figuré
part (c).
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1. Inputs:
— P; the total number of periods in planning horizon,
- I; the numbers of retailers
— J; total number of delivery points

Leti = 1, retailer index

Letr = 1;the delivery points counter

Calculate the minimum needad= z;;‘g” df

Ki(r+1) ¢

Calculate the sum of demand to the next deliveigtfo= Zi:Ki(r)+1 i

GeneratdRnd a random number from interval [0 , 1]

Letw = u + B* Rnd , and IetChZZZ';;(T?

Let unfilled demand, up to delivery poikit(r) to zero and IRnd> 0, update the unfilled
demand between two delivery poiti[r) + 1, K‘(r + 1)] based on the value and
substitute it with the original demand

9. Letr = r + 1;if r < Jgotostep 4;elseif = J letK'(r + 1) = P then go to step
4otherwise go to next step

10. Leti = i + 1;if i < Igo to the step 4; otherwise go to next step
11. Finish.

= w

© N o o K~ 0N

Figure5. The random partial delivery heuristic (RPDH)

As mentioned, the general idea of random paditiVery heuristic is using a random mechanism in
order to increase the flexibility in deliveries atmmaximize use of remaining space on vehicle, to
satisfy the future demand of each customer. Intstioe random partial delivery heuristic works as
following. According to the given routing sectioi solution chromosome and demand matrix of
customers, the least amount of the goods (minimefivaty) that satisfy the demand of customer
between two consecutive visits of supplier's vehiid calculated. By looking ahead to the sum of
future demand during the next visit and multiplyibgvith a random number in [0,1], then adding it
to the minimum delivery, the amount of partial detiy of the first vehicle visit to that customer is
reached. The unsatisfied demand matrix is updatddtas process goes on to the last vehicle visit o
that customer to determine of all partial delivéoy that customer. This process is also done fer th
remaining customers, too.

4-3- Creating theinitial population

Generating of the initial population (initiablations) play a great role in the performance of
Genetic Algorithm. That is why the development pfedficient method that can provide good initial
population leading to providing a good start foe throcess of evolution of GA and therefore
increasing the total performance of it. Here fatiatization of GA process, we propose our algarith
using the partial delivery that was introducedhe previous section. Our main idea of devising a
process for initial population generation is toateethe maximum diversity in initial population. We
consider two criteria as our diversity index foftesting solutions from the solution space: diverse
routing schedule and diverse deliveries’ quantitiesr having more diversity in the routing, two
important factors are the number of customers veseservice (which may be equal to the total
number of retailers or a subset of them) and tiwipes by which the vehicle visit them. For hayin
a diverse delivery schedule, using the randomizatigb delivery mechanism that was presented in
previous section, which try to generate a diversevelry amount in a randomly manner, would be a
desirable method here. In the figure 6 we repredenipseudo code of the generating of the initial
population process.
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Inputs:
- P; total the number of periods in planning horizon
-1, total the numbers of customers
— Npop; total the number of population
Letr = 1;the population counter
Leti = 1, the customer index
To design a diverse routing schedule:
» generate a random integer numBex from interval[0, P] as non/subgroup/all of the periods
« randomly assign the integer numbers in intervalR%d] to Rnd number of randomly selected
periods as the routing priorities for customer
 assign zero to remainimy— Rndunassignedperiods
To design a diverse delivery amount:
« assign the delivery amounts based on the randotialpdelivery heuristic (RPDH) for the
selected customers by the previous step
i =1+ 1;if i <= 1 go to the step 4; otherwise go to next step
r = r + 1;if r < Npop go to step 4; otherwise go to next step
Finish.

Figure 6.Pseudo code of the generating of the initial patoh process

4-4- The least-cost insertion heuristic
The least-cost insertion heuristic or cheapestrtion heuristic is a fast heuristic method idenrto

create a tour service in a low cost and can hehedace the overall time of the genetic algoritimm i
its evolutional stages. The initial idea of the é&sitcost heuristic insertion method is adapted
fromClarke and Wright (1964). In the start of teadt-cost insertion method, it is assumed thatsat f
all customers are directly and individually senmdsupplier's vehicle, so we have the serving tour
equals to all of customers. Then the algorithmédipaving a customer from a tour and re-insert it to
another tour, tries to reduce transportation tatere lower cost tour. It continues the proces®of
insertion of one customer into other tours so thay merged all into one tour (Mester, Braysy and

Dullaert 2007).

1. Input:
— N; total numbers of retailers
- t; period number

2. Consider touG" = {i,j|i,j € N, Chit iy #0,Chl o # 0;¥) # i, Chityny < CRLp o 3
where A = {1, ...,|G*|} are customers to be serviced in period t, and &

3. Consider the customéE N and ¢ G'to insert into toulG®

4. Leta,, isthew,, customer in the tous*

5. Calculatesy,,, that is the cost of newly created taur G* by inserting the customeiin the
beginning of toulGt while zero represents the supplier

6. Calculatee,, ;q, ., thatis the cost of newly created taur G* by inserting the customer
between two neighboring customer @f anda,, .1, wherea,, is not the first customer in tour
Gt

7. Letw=w+1;if w<|A]| go to step 6; otherwise go to next step

8. Calculate:samli0 which is the cost of newly created tdur G by inserting the customeiin the
end of theG*

9. Calculate themin {&y;q, ,&q, ia, 4, "Saw+1iaw+z'---'€a|A|-1ia,-'€a|A|i0} that is related to the least
cost insertion place of custonieinto tourG*

10. Finish.

Figure7. The least-cost insertion heuristic
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Because we use this algorithm in repairing theasitde solutions, we limit the whole process ois th
method for re-inserting one or more given custooustomers from a given period into an another
tour in the other period which is present the datgiseudo code in figure 7.

4-5- Feasible solutions

Due to various constraints in our problem, thecpss of creating the initial population may praglu
the answers that are infeasible, but the only arssae taken into account that do not violate these
limitations and, in the other word, are feasiblen€rally, in the literature, there are three major
approaches to handle the constraints for havingjliksinitial solutions in GA: deletion, penaltydan
repair. The deletion or removal approach omits itifeasible solutions directly as unacceptable
answers, while in repair approach, using some ri@gaheuristic, it tries to bring the solution irttee
feasible area. Finally, in penalty approach, tlieasible solutions are penalized so to be omitteah f
the initial population, gradually. Since betweerdh three approaches, the removal approach limits
the diversity in solutions space we will not usdnitthis study. On the other hand, the penalty
approach due to exploring the solutions that erishe boarders of feasibility and infeasibilityear
will generate more efficient solutions compare e temoval approach. The last approach that is
repair approach will result in better solution lituheeds devising more delicate and cumbersome
procedures to transform an unacceptable answerairfeasible one. In this study, we take the last
approach because its application is not well stuihelRP. Other reasons that make us to take this
approach are the complexity of solving P-PRIP thatem from several constraints embedded in its
structure. In order to tackle these constraints actieve near-optimal solutions, genetic algorithm
requires specific guidance mechanisms in its eimlyirocess. These guidance mechanisms also can
be revised so that it can be used to correct theagptable answers that is generated in differant p
of GA process (initial solution or derived from ssover or mutations mechanisms). In the following,
we represent our proposed chromosome repairingeduwes to repair the solutions that violate the
hard constraint of problem including minimum lewefl inventory (or backlogging), maximum
capacity of customer’s vehicle and product expiratiate.

4-5-1- Shortage constraints

Because the shortage is not allowed in our prolalechbased on the VMI system the inventory
levels of customers’ warehouse should not fall lothan a preset minimum values, all solution
generated by the genetic algorithm must meet ttestdctions; otherwise these solutions would be in
infeasible space. Because in generating the isitiition, we use completely random based
procedure to determine the routings and then theora partial delivery heuristic (RPDH) use it for
calculating the deliveries then it is not far frexpectation to face some shortage in some solution.
To prevent this, a repairing mechanism should lvésdd to make it is possible to repair infeasible
solutions, which stem from the violation of minimuevel of inventories. The main idea of this
mechanism would be to provide service to custortertstheir inventory fall under the pre-
determined values or the inventory on hand is notigh to meet that demand before the next
planned meet by supplier vehicle. In other worihare exist any period, from the starting petiiod
the planning horizon to the next planned delivenydach customer, where the customer is facing
shortage, the planned delivery should be changdlb$dhis shortage does not occur. In this case,
two possible situations exist: first, facing the@dhge before the first planned visit and second,
between the two visits. To tackle the first sitaatiplanning an extra visit is mandatory and t&l&c
the second situation, beside an extra visit, fioissible to modify the planned deliveries so thatan
goods are delivered in one of the preceding pdyafdre the shortage occurs. In figure 8 the
procedure of adding an extra visit is depicted. 3&@ond measure due to its simplicity is not
represented here.
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i = 1,n=the number of customers
\4

——>| Periods before the first planned vehicle meet stameri is S; = {1, ..., |[K{(1)| — 1}
\4

eté;) =17 — ; and calculat i= € 5, 0 <
Lets? = I? — ¥y d?and calculat®lD; = {816 € S;, 8° <0
V

ND; = ¢

Yes

v No

For eacli € J that] = {1, ...,|ND;|}, calculate changes in the ca$iC; as a result of the

transferring temporarily one unit of goods frailﬂng'e'filﬁg)y to Chfiié’;'iﬁé(r’;) and updating the
(i, ND;(j))

routing

routing priority ofCh using the least-cost insertion method

\4

Determingj,,; € Jwith minimum related\TC; as the best period for adding an extra visit,

updat€h® V2iUbes) then re-run the random partial delivery heurigR®DH) for the customer,

routing

Yes No

Figure 8.The proposed backlog repairing procedure

The value oB? =10 — Y d? for each customershows net customer needs in any perddtat
6 € S; andS; = {1,...,|K'(1)| — 1} are the possible periods for which there is ndcusr service
by supplier's vehicle, in the other word, the pdadoefore the first planned visit by vehicle. If we
have a shortage in any period belong;towe should plan an extra service (vehicle vigit)that
period or its precedence periods which is {1|ND;|}. To decide what is the best period to choose,
we compare their effects on the total cBC; , and any period that results in fewer changesti t

cost would be selected. To calculate this, we teanpy transfer one unit of goods froﬁmg‘e’l{;g?y,

which is the amount of previously planned delivarythe first visit of customei by vehicle, to

Chg‘elfi?je(r];). To calculate the change in cost correctly, theting value of Chfo';vt?jgb”t))with the

help of the least-cost insertion method is deteechias well. Now, the least cost period for plagnin
an extra visit is found. To finalize, the randonmtjgd delivery heuristic for the customeis run again

to assign new deliveries so that the shortagesskiadi The whole process continues for other
customers to repair possible backlogs.

4-5-2- Vehicle capacity constraints

Given that the generated solutions may alsaatéolhe vehicle capacity constraints, therefois it
necessary to design a mechanism for repairing theskitions that violates capacity
restrictions. Because in our problem, we have asdutimat the vehicle’s tour in each period is done
independently from other periods, so it is enouglltdnsider the possible violation in each period
regardless of other periods. Here we use the gressdych algorithm that was proposed by
Abdelmaguid and Dessouky (2006). The general idealgorithm is selecting a random period,
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where vehicle capacity is violated, Then, selectng random customer from the served customers
on that period, and after that try to reduce oni eindelivered products from it and transfer it to
another period so that no vehicle capacity violemmgpen after receiving that extra unit of products
If the number of periods that can accept extra amié of product, without occurring any vehicle
capacity violation, is more than one period, trgodthm try to compare the cost of transferringltio
these periods and choose the least cost periosnfrove the propose algorithm of Abdelmaguid and
Dessouky (2006) we help the least cost insertiothagketo find the real cost of insertion.

SupposesS is set of periods where the vehicle capacity hesnbviolated and includes rest of
periods in the planning horizon plus a dummy pdriedl.For each periade S, vehicle capacity
violation is assumed to kg, which is a negative value. For every period D, the unused capacity
of the vehicle is shown wittp, and pr;; = max (— Y es 0 — Yrep P, 0). Assume that the
scheduled delivery amountgfand z; ., the transferred amount to the custorndrom the same
customer during the periade Sis equal toyN , ¥.cp zti,T = —o;. In addition, the total amount of
goods transferred frome D should not violate remaining capacity of customeavarehouse in that
period meaning YN, ¥ e z,fl,T <p: and should not violate the remaining capacity of
warehousg,es zf ; < C; — If. The last limitation that must be considered whenwant to transfer

products to customeris the sum of the delivery in the current sched)ie, zti,T < q}. The purpose
of this transferring is minimizing the cost of teportation and holding cost of the total system. In
figure 9, the over usage of vehicle capacity repgihas been presented.

Calculates;

For t=1to [S| so thatteS do the steps 3-5

While ¢; < 0 do the steps 4-6

For each customeérfor whichg! > 0, calculate changes in the cost\dfC/ ,as a result of
the transferring one unit of goods from periow any other period € D providing that the
customer's warehouse capacity and capacity ofe¢hile allow;

Supposg has the lowest valukTc/

t,T?
6. Leto, =0, +1,9;=q;—1,p,=p,—1,q;=q; +1
7. Finish.

PobdPE

o

Figure 9. Over usage of vehicle capacity repair heuristic

4-5-3- Perishability constraints

Here, perishability is possible to happen thtaug the supply chain warehouses including in both
customers’ warehouse and supplier's warehousefi¥ing the chromosomes that are infeasible due
to violation of perishability constraints, we takee strategy of combating any deterioration by
limiting the amount of inventory level of inventes and production rate. For customers, we put an
upper bound for the inventory level at the end atheperiod so that it not be larger than the total
demand during the shelf life of perishable goodar @roposed fixing procedure for hedging the
perishability in customers’ warehouse is shown igure 10. For hindering the perishability in
suppliers’ warehouse the way is to limit the prdéurcrate in each period so that it does not exceed
the total demand of all customers during the difelininus the inventory level at the end of praxgo
period throughout the supplier chain. Due to shiifprwardness of this strategy, we will not
introduce any specialized procedure and only redhad perishability limitations as production
capacity.
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1. Inputs:
- P; the number of periods in planning horizon
- N; the numbers of customers
—Tmax ; Maximum shelf life of product
—d; demand of customer | in period t
Leti = 1;the customers index
Lett = 1;the period index
Consider t,,,dummy periods in the end of planning horizon
Calculater = max (0,{I{ ™" = Xsey d '[P = (1, ..., Tmay)}) that is quantity of goods
would be perished in the end of period t,,x — 1 in customers’ warehousendlfis
the inventory level of customeéiin the end of period
6. If A =0, go to step10; otherwise go to next step

7. LetT=][t+1,..,PJand calculate changes in the cA%t; as a result of the transferring
(4] (1,6)

delivery delivery

using the least-cost insertion method;

akrown

temporarily one unit of goods froGh
(1,6)

routing

8. Determine,,;; € Twith lowestATC; as the best period for transferring one unit of

to anyCh where6 € T and update

the routing priority ofCh

goods, then updatéh(i’t) ch®fvest)  op 0.0 and then using the least-cost insertig

delivery’™""delivery ’ routing’
(i.8pest)
method’h, ;e

=]

9. A=2A-1;if A >0 go to step 7; otherwise go to next step;
10. t = t + 1;if t < p go to the step 5; otherwise go to next step;
11.i =i + 1;if i < N go to step 7; otherwise go to next step;
12. Finish
Figure 10. Pseudo code of the fixing the perishability in thistomers’ warehouse

4-6- Fitness evaluation and selection

Generally, the roulette-wheel method is wideged in GA for selection process. We apply this
method in our selecting process, too. Here thedircalculation is based on the objective funatfon
our problem.

4-7- Crossover operator

Using the crossover operator, two parents fitoenpopulation with the preset possibility are cimpse
by combining some parts of these two parents, tildren are produced. This makes children inherit
the properties from their parents. Crossover operased in this study is based on research
Abdelmaguid and Dessouky (2006)and Moin et al. 201ITheir proposed crossover operator use a
mask crossover operator as a random binary mathix(vhere N is the number of customers).To
describe how this operator works, we represemt &n example in figure 11 for routing section of a
sample solution chromosome with three periods.Hiawsa crossover operator mask, where there are
5 customers, the binary matrix of 1*5is defineda®wing.
Mask=[1 0 0 11]
The digit 1, indicates that the first child inhétie first property from the parent 1, and the zigit

shows it will inherit from the parent 2. For theesad child the reverse operation is performed.
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retaile’:eriod L 2 3 retaile’:eriod L 2 3
1 1 3 1 1 4 0 0
2 0 1 0 2 2 4 0
3 0 0 2 3 0 1 1
4 2 0 0 4 3 2 3
5 0 2 0 5 1 3 2
a) routing section of parent 1 \A 4 b) routing section of parent 2
Mask=[1 0 0 11]
retaile’r)eriOd i 2 3 retaile’r)eriOd i 2 3
1 1 3 1 < 1 4 0 0
2 2 4 0 « 2 0 1 0
3 0 1 1 3 0 0 2
4 2 0 0 4 3 2 3
5 0 2 0 5 1 3 2
c) routing section of child 1 d) routing section of child 2

Figurell. An example of applying the crossover operatorgisiie maskcrossover

4-8- Mutation operators

Mutation operator in the evolutionary processfegenetic algorithm causes some children that have
been produced from the initialization or crossqu&rcess, to be slightly changed aiming that thig ma
lead to a more thorough search of the solutionespad thus ensuring better solutions in the end of
process. As the transportation in this researclotie in each period independent of the other pgriod
so considering a process that try to integrateseieéis that take place in different periods duttimg
planning horizon with respect to other restrictiomsmy lead to reduced transportations and thereby
reducing the objective function of that chromosoifiee main idea of devising a mutation process in
this study is based on this consolidation idea,ctvhig presented in figure 12 with the following
notation.
RQ'= the unused vehicle capacity in the period t;
RU}= the unused capacity of the customer’s warehdtisgseriod t;
ED} = set of deliveries that can be fully transferfiresin the customer i in period greater thaa

periodt considering the vehicle capacity and warehouseaoity
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1. Input
— Nmute the number of population that will go under miaat
— P; the number of periods in planning horizon
— N; the numbers of retailers
let j=1; that j index of population
let i=1; that i index of each customer
let t=1; that t index of period
Calculateq! ; the amount of delivered products to customargeériod t;

CalculateRQt;

CalculateEDf = {gf|s€ (t+1,..,P), ¢ <RQ% qf <RU};
Calculateu = min {RQt, RUf}

Calculate 4 = {qf € ED}| ¥ qf <)}

. SelectB € A so that the cardinality ofBlis maximized (meaning that seleBtwith the maximum
number of elements that transferring them to tmeeseustomer from successive periods pwill not
violate both the customer's warehouse capacityehitle’s capacity constraints of periby

11. If B # @, Add the values off € B to gf, then for the transferregf, set its related routing priority ir

the routing part of chromosome to zero, then getép 12;

12. Sett=t+1;if p ¥go to step 5; otherwise go to step 13

13. Seti=i+1;if i <=ngo to step 5; otherwise tp step 14

14. Setj=j+ 1;if j <=Nmute go to step 5; otherwise go to next step

15. Finish

© 0o NG~ ®WN

[En
o

Figure 12. Mutation operator for consolidating transportatio

4-9- Neighboring search

To get better objective function for the solasothat are produced from different stages of GA
including the initial populations, and the offsgriproduced by crossover and mutation operators, we
can use some neighboring search techniques thatdesan widely used in the classical VRP. They all
help the vehicle to take the shortest route toesé¢ne customers and thus reduce child objective
function. Among various methods used for this pagthat has been introduced by researchers, we
use the swapping 2 customers (2-opt) and the swgpicustomers (3-opt), remove and insertion,
reverse all, and partial reverse for the routingtiea of the solution chromosome. The figure 13
illustrates how these operators work with a nunarxample. The column on the left, shows the a
sample routing part of a solution chromosome fauStomers and 3 periods in the planning horizon
and the results of going under each neighboringcegachnique are shown on the right column.

5- Enhanced Genetic Algorithm

In this section, we describe the structure of mwposed enhanced genetic algorithm. In the first
step, the initial populations are generated with kelp of randomized partial delivery heuristic
(RPDH). These initial populations are as primaryepgs that form a pool of initial solutions. Then
through the evolutionary processes of genetic @hgor they will be transformed into the children
aiming to result in better objective function. Afthe repairing of infeasible solutions and conwert
them into feasible ones using our proposed reppigrocedures, they go under the process of
neighborhood searching to improve their objectiwection. This evolutionary process is terminated
after a certain number of predetermined iteratmmstopping rules is met and then the best answer i
reported. The detailed steps of enhanced chromasepa& mechanism based genetic algorithm are
shown in figure 14
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retailerermd 1 2 3 retailerermd 1 2 3
1 o | 1 | 1 Swapping 2 1 o | 1] 1
customers
2 113 [ 3 2 p3 [ 3] 3
3 4 0 2 3 4 0 2
4 3—+—2 | 0 > 1 2 0
5 2 0 0 2 0 0
retaileremd 1 2 3 retailereriod 1 2 3
1 0 | 1 | 1 | >wepeines3 1 o [ 1] 1
customers
2 1| 3 3 2 » 3 3 3
3 4 | o \2\>-< 3 4 [ o] 2
4 320 | 1] a b2 2 0
5 20 | 0 | 5 > 1 0 0
retailereriod 1 2 3 retailereriOd 1 2 3
1 0 1 1 Remove and 1 0 1 1
2 1 3 3 insertion 2 1 3 3
3 4 0 2 > 2 0 2
4 3 2 0 4 2 0
5 2= 0 0 3 0 0
retaileremd 1 2 3 retaileremd 1 2 3
1 0 1 1 Reverse all 1 0 1 1
2 1 |13 3 2 4 3 3
3 4 0 2 3 1 0 2
4 3 2 0 4 2 2 0
5 2 PJo 0 5 L| 3 0 0
retaileremd 1 2 3 retaileremd 1 2 3
1 0 1 1 Partial 1 0 1 1
2 1 3 3 reverse 2 1 3 3
3 4 []0 2 3 [| 2 0 2
4 3 2 0 4> 3 2 0
5 2 PO 0 5 L 4 0 0

Figure 13. Different neighboring search methods
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Generate the initial population
N4
Repair all infeasible initial solutions
N4
Neighboring search for improving solutions
N4
Generate new children using crossover and mutation
N4
Repair the infeasible children
V4
Neighboring search for improvement of children
N4

Select the best solution

Y

Stopping criteria
met?

Figure 14.Enhanced chromosome repair mechanism based gaiggiithm

6- Numerical experiments

In this section, the result of enhanced chromos@pairing mechanism based genetic algorithm
for solving some generated sample instances oflpssle production inventory routing problem are
presented to show the efficacy of our algorithme A has been implemented in MATLAB-2014a
on a personal computer with Intel Core2Duo, CPB@H, windows7-32bit, and 3.2GB RAM.

6-1- Test instances
Due to the lack of benchmark numerical examptesP-PIRP because of being relatively a new

topic, here are we use the numerical examples peatily (Archetti et al. 2007) that has been

generated for IRP and make some changes in ordengider the production of perishable product as

following.

— The planning horizon H:3,6;

— The time that product get perishegd,y = 2 when H=3 and,., = 2,3 when H=6;

— Number of retailers, would be 5K that k= 1,2, ... , 10 when H=3 and k&, 1.., 6 when H=6

- Demand of each customer i in each period{ibat assumed to be fixed in all periods so that
df = d; fort € T and is selected randomly from interval [10, 100]

— The initial inventory levafOf fresh products of customer i, — D;And for thesupplier
warehousHEIs zero.

— Inventory holding cost of one unit of product bycleacustomei is H;That is randomly chosen
from [0, 0.05]

— Inventory holding cost of one unit of product byplier isHgyls 0.03

— The vehicle capacity Q is equalts * ¥, df

- Transportation costC;;Related to edge (i) i$1j=[\/(XI—X])Z+(Y[—Y])ZJWhere the pints
(X1, Y;)Are selected randomly form interval [0, 100]
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- Production setup cost #(,/(50)2 + (50)?) as five-fold of the transportation cost from tluplier
location to a middle distance customers.

6-2- Experimental results

For our performance analysis, we compare theltseesf running each instance using EGA and
CPLEX. All the instances run in CPLEX with the tidmmit of 3600seconds and we record the lower
bound and best integer found as upper bound. Titial iparameter values for EGA can be seen in
table 2. By practice, we have found that the bedties for Probability of crossover (Pc) and
Probability of mutation (PM) is better to be fixatlvalues that can be seen in there. The population
SizgNGA) in our study is considered ratherly low in compan to non-repairing based GA
approaches that needs almost lots of generatioresrain enough feasible population after omitting
infeasible solutions resulted from mutation andssower. We also found that the large humber of
population size have negative effect on the perfowe of GA due to the fact of large time
consumption of repairing mechanisms. This reasen atimulate us to devise only one stopping
criteria as time limitation and did not considenant criteria like number of generation and genenati
gap.

Table 2. The initial parameter values for GA

parameter value number of customers
Probability of crossover (Pc) 0.8 n={5,10, .0}5
Probability of mutation (PM) 0.2 n={5,10, ...,}60
10 n={5, 10, 15, 20 }
Population size (NGA) 16 n={20, 25, 30, 35}
20 n={35, 40, 45, 50}
Stopping criterion (time in seconds) 3600 n={5,,10Q, 50}

For EGA, we performed 10 runs for all instances sewbrded the average results. The results of
the implementing the instances using both EGA aRUEX solver are summarized in tables 3, 4, 5.
On the left hand side of tables, we bring the naiheach instance, number of the customer (or
retailer), shelf life time of perishable productdaplanning horizon of instance, respectively. The
number of binary variables of each instance isndamh too. The column heading LP relaxation is the
linear programming model runs in CPLEX by relaxthg subtour elimination variables and related
constraints to gain an alternative lower boundefach instance and for judging better about the dowe
bound found by CPLEX. Due to the existence of midiffierences between these values, we can rely
more on the CPLEX lower bounds. The result of CPLEe¥er runs including the lower bound and
upper bound, and the gap between these two vahee€RBU run time with the limitation of 3600s is
shown in the tables, too. It is worth mentioningttive have extended the default memory amount
needed for running the medium to large size ingamtherwise the upper bound for them cannot be
reached. The gap for EGA is calculated with cormgathe average objective function values and the

lower found by CPLEX solver as following.

UBCPLEX - LBCPLEX "

CPLEX 4, =

yap = 100

LBCPLEX

For EGA, we reported the average objective functiafues by running 10 times of each
instances and its needed time with the limitatién3600s. The gap for EGA is calculated with
comparing the average objective function valuestardower bound found by CPLEX solver is as

following.

_ UBEGA - LBCPLEX

EGAgqp =

* 100
LBcprex
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In the improvement column, we reported improvententlting from implementing the EGA
by calculating its gap and the CPLEX gap and i®kswing.

UBgg4 — LB
Improvement = ke CPLEX L 100

LBCPLEX

The solutions in bold are the solution foundHfyA that is better than the upper bound found by
CPLEX at the same time limitation in tables 3, &d ease of the comparison of CPU time of
CPLEX solver and proposed EGA, we put the datdo$e tables into the graphs as can be seen in
figure 15. Totally, as the number of the custonggosvs, the CPU time for both the EGA and CPLEX
solver increase as well. This increase for CPLEXIrisstic when the planning horizon include 3
periods (p=3) and n=20 customers. When this isrihtter of p=6 time periods in planning horizon
this would be n=10 customers. Considering the shelflife time
Tmax: EGA would take more CPU time when the planningZom increase from p=3, in the left hand
side graph of the figure 15, to p=6 which is twamrical charts in the right hand side. The relation
between CPU time when p=6 and shelf life time cahmointerpreted. The CPLEX gap, proposed
EGA gap and the improvement in gap is graphedguré 16. The improvement in gap found by EGA
in comparison with the gap found by CPLEX solveows an increasing trend in all the instances.
Besides, It shows that upper bound found by EGAoatnin most of the cases is better that upper
bound found by CPLEX. When p=3 (table3), EGA camfthe optimal solution for small problems
(n=5,10) to medium instances (n=15,20) and fordasge problems (n=30,...,50), EGA can find
better solution compare to CPLEX. The increasiegdrof improvement confirms it, too. When p=3
andt,,x = 2 (table 4), the performance of EGA is acceptablesimall instances and large ones
(n=25,30), but this is not the fact in the mediurolpems. By letting the shelf life time extended
more, with the same planning horizon (table 5), BE&showing higher performance only for medium
to large instances. We have brought the resultgectibe function of EGA for a sample instance P-
PRIP-2-3-1NO05 to show how this value changes amthmber of generation changes in figure 17.
The comparison of the objective function value€€&A and CPLEX upper bound for all instances
are provided in figure 18. Both EGA and CPLEX shaw increasing trend in all instances as the
number of customers grows and it is evident thafE&oort dominant upper bound compare to the
CPLEX. For the two pictures on the right hand sitehe figure 18, which has similar number of
periods but different shelf life time of productptbh CPLEX and EGA report higher values in
comparison with the longer shelf life time of pratuAdditionally, EGA shows steadier increasing
trend in large size instance than CPLEX that canfine validity of the EGA upper bounds as the
number of the customers grows.

7- Conclusion and future studies

This study is devoted to provide mathematicatlefimg and discovering the solution to the problem
of production inventory-routing problem (PIRP) intwo echelons supply chain system where the
vendor must decide when and how much to produde/edgroducts to the customer’s warehouse
through wisely selected routs. The special casthefperishable products was considered (P-PIRP)
and is modeled as mixed integer programming (M)e to the complexity of the problem and
disability of the exact solution methods to bringoat optimal solutions, we get interested in
metaheuristic for getting good enough and approténsalutions. Genetic Algorithm as one of the
high performance metaheuristic was selected andmpower its searching mechanisms through
solution space, we embedded several differentnieganechanisms. The problem runs through some
different generated instances that show some sufigrin comparison to the business application.
For shedding light on the way of following up ofstistudy, using other evolutionary metaheuristic fo
solving this problem may offer some improvementthis CPU time of the solution approach which is
mostly resulting from repairing mechanisms.
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Table 3. Results fort,,, = 2, H=3

LP relaxation CPLEX solver EGA
instances mame  n T M il poing Bord  Bound  Gap'  Tme  functon Tme  Gap’ Rt
(LB) (LB) (UB) (%) (s) value (s) (%)
P-PIRP-2-3-1N05 5 2 3 78 1296.62 1499.62 1499.62 .000 2.03 1499.62 2.03 0.00 0.00
P-PIRP-2-3-2N10 10 2 3 303 1110.55 1815.96  1815.96 0.00 15.97 1815.96 8.79 0.00 0.00
P-PIRP-2-3-1N15 15 2 3 678 1837.43 2130.19 2130.19 0.00 35.21 2145.19 29.08 0.70 0.00
P-PIRP-2-3-1N20 20 2 3 1203 1714.09 2153.09 2B3.0 0.00 217.53 2153.09 23.97 0.00 0.00
P-PIRP-2-3-1N25 25 2 3 1878 2059.38 1930.01 2@®4.5 37.54 3600.77 2665.36 53.61 38.10 -1.49
P-PIRP-2-3-1N30 30 2 3 2703 2285.12 2006.15 3@6.0 54.33 3600.75 2908.40 234.70 44.97 17.23
P-PIRP-2-3-1N35 35 2 3 3678 2212.56 221756  3813.85 71.98 3600.83 3266.91 623.76 47.32 34.26
P-PIRP-2-3-1N40 40 2 3 4803 2404.79 2017.30 3%3.4 63.26 3600.69 3094.05 323.37 53.38 15.62
P-PIRP-2-3-1N45 45 2 3 6078 2708.98 1928.23  4m49.7 135.96 3601.25 3323.37 532.25 72.35 46.79
P-PIRP-2-3-1N50 50 2 3 7503 2641.25 2256.66 4%07.3 99.74 3601.54 3548.42 666.41 57.24 42.61

@ UBcprsx—LBcrisx +100

LBcpLEX

b

LBcpLEx

€ GapcpLex—Gapsca +100

GapcpLEx

UBgGa—LBcprex 100
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Table 4. Average results fort,,, = 2, H=6
LP relaxation CPLEX solver EGA

, # Binar Lower Lower Upper . Objective ' Improvement

Instances’ name " Tmax variableys Bound Bound B(E)Snd C—éap Time furjwtion Time (gap P (%)
(LB) (LB) (UB) (%) (s) value (s) (%)
P-PIRP-2-6-1NO5 5 2 6 156 3818.36 4501.11 4501.11 0.00 58.79 4501.91 349.71 0.02 0.00
P-PIRP-2-6-2N05 5 2 6 156 3270.17 3775.08 3775.08 0.00 21.17 3775.67 109.06 0.02 0.00
P-PIRP-2-6-1N10 10 2 6 606 3794.4 4052.64 6363.01 57.01 3600.68 6048.53 881.89 49.25 13.61
P-PIRP-2-6-2N10 10 2 6 606 3836.86 4306.38 6384.34 48.25 3600.84 6301.61 761.01 46.33 3.98
P-PIRP-2-6-1N15 15 2 6 1356 4858.91 4848.76 6846.25 41.20 3600.73 6337.95 1112.71  130.7 -1.34
P-PIRP-2-6-2N15 15 2 6 1356 4230.843 4184.99 7016.72 30.31 3600.00 7118.95 1004.67 170.1 -3.61
P-PIRP-2-6-1N20 20 2 6 2406 4257.775 4052.64 7085.48 74.84 3600.58 7015.96 1486.99 73.12 2.29
P-PIRP-2-6-2N20 20 2 6 2406 4156.47 4259.49 6909.70 62.22 3602.64 7146.22 3262.17 67.77 -8.92
P-PIRP-2-6-1N25 25 2 6 3756 5013.43 4981.78 14827.67 197.64 3600.00 9277.31 3527.30 86.22 56.37
P-PIRP-2-6-2N25 25 2 6 3756 5474.011 5416.49 10357.36 91.22 3602.50 9619.70 3244.14 77.60 14.93
P-PIRP-2-6-1N30 30 2 6 5406 5533.948 5599.21 13334.36 138.15 3600.83 10479.60 3360.08 87.16 36.91
P-PIRP-2-6-2N30 30 2 6 5406 5771.73 5613.23 13929.96 148.16 3600.74 11594.74 3531.36 106.56 28.08
Table 5. Average results fort,,,, = 3, H=6
LP relaxation CPLEX solver EGA
, # Bina i iecti ] Improvement
nsaces vame e W[ lwesana Lol RS o tme  QEES wme  ow ™G
(LB) (UB) value

P-PIRP-3-6-1N05 5 3 6 156 2629.71 3322.87 3322.87 0 44.58 3342.87 129.08 0.06 -0.06
P-PIRP-3-6-2N05 5 3 6 156 2319.48 2791.31 2791.31 0 23.82 2791.6 160.73 0.01 -0.01
P-PIRP-3-6-1N10 10 3 6 606 2991.74 2938.18 4327.43 32.11 3601.29 4044.68 947.6 37.66 -17.28
P-PIRP-3-6-2N10 10 3 6 606 3123.53 4501.02 5388.18 19.71 3601.29 5299.58 958.51 17.74 9.99
P-PIRP-3-6-1N15 15 3 6 1356 3399.854 3435.69 4526.64 31.75 3600.54 4837.15 2395.87 441.0 -26.10
P-PIRP-3-6-2N15 15 3 6 1356 2806.227 2999.14 4%61. 65.43 3635.67 4893.63 2917.67 16.93 3.46
P-PIRP-3-6-1N20 20 3 6 2406 3148.892 3272.62 6548.06 100.09 3600.82 6141.12 2857.73 87.65 12.42
P-PIRP-3-6-2N20 20 3 6 2406 3002.927 3077.92 5889.5 91.35 3600.79 5608.86 3438.78 82.23 9.98
P-PIRP-3-6-1N25 25 3 6 3756 3438.194 3443.65 8478.88 146.22 3556.69 7455.72 3153.86 116.51 20.32
P-PIRP-3-6-2N25 25 3 6 3756 3802.336 3677.8 8514.19 131.50 3466.59 7855.82 3470.89 113.6 13.61
P-PIRP-3-6-1N30 30 3 6 5406 3878.957 3872.01 9853.69 154.48 3250.00 8499.37 3619.49  119.51 22.64
P-PIRP-3-6-2N30 30 3 6 5406 3964.069 3914.00 16013.72 309.14 3598.09 8214.33 3242.99 109.87 64.46
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