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Abstract 

One of the important aspects of distribution optimization problems is simultaneously 
controlling the inventory while devising the best vehicle routing, which is a famous 
problem, called inventory-routing problem (IRP). When the lot-sizing decisions are 
jointed with IRP, the problem will get more complicated called production inventory-
routing problem (PIRP). To become closer to the real life problems that includes 
products that have a limited life time like foods, it seems reasonable to narrow down 
the PIRP problem to the perishable products, which is perishable-production 
inventory-routing problem (P-PIRP). This paper addresses a P-PIRP in a two echelon 
supply chain system where the vendor must decide when and how much to produce 
and deliver products to the customer’s warehouse. Here, the general model of PIRP as 
mixed integer programming (MIP)is adopted and the perishability constraint are added 
in order to solve the P-PIRP problems. Due to the complexity of problem, providing 
solution for the medium to large instances cannot be easily achieved by business 
applications, and then using the meta-heuristics is unavoidable. The novelty of this 
research is devising an enhanced genetic algorithm (GA) using multiple repairing 
mechanisms, which because of its computationally cumbersomeness have absorbed 
less attention in the literature. The problem runs through some generated instances and 
shows superiority in comparison to the business application. 
Keywords: Production inventory routing problem, IRP, mixed integer-programming, 
perishable, genetic algorithm. 

 
1- Introduction 
   Inventory management is one significant aspect of the supply chain management (SCM) which due 
to its significant impacts on vendor/supplier costs of supply network; it has been in the center of 
attentions of supply chain partners including vendor, manufacturer, retailers, and distributors. As a 
result, many researchers and scholars have investigated the problem of optimizing inventories for 
gaining more profits for all partners and it leads to many advances in SCM consist of many modern 
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systematical tools and techniques. One of the latest and widely used improving techniques is Vendor-
Managed Inventory system (VMI). In the strategic level, it provides more collaboration between the 
partners of a supply chain, and in operation level, it is a replenishment tool where the retailer let the 
vendor/supplier know its demand and its inventory information. In this regard, the vendor/supplier  is 
assumed to gain responsibility of maintaining inventories between predetermined levels and 
determining order quantities for retailer that eventually it makes “better” managing of the retailer’s 
inventory. Often, vendor as the central decision maker also manages a fleet of vehicles to do the 
deliveries for replenishment in retailer's sites. VMI was pioneered as a pilot program in the retail 
industry between Procter & Gamble and Wal-Mart in the 1980s and resulted in significant benefits, 
such as lower inventory levels, fewer stock-outs, and increased sales, and has been adopted by many 
other supply chains such as those of Dell, Barilla, and Nestle (Savaşaneril and Erkip 2010).  
   Having adopted this system, vendor, in addition to solve the problem of the optimizing the quantity 
of goods for sending to retailers, should solve another inherited sub-problem that is optimizing the 
routs in which retailers are serving. As can be seen in the Figure1., considering inventory 
management and transportation planning decisions simultaneously, is one of the core aspects of the 
VMI system. In this case, the vendor must solve an integrated problem, which is known as inventory-
routing problem (IRP). 

 

Figure1. The logistics network of a VMI system  

    Traditionally, these decisions have been made separately and each one solely was seeking for its 
costs improvements while there is an obvious direct contradiction between costs of transportation and 
inventory decisions - decreases in one of them make the other one increase and vice versa. Some 
disadvantages of this disintegration is as following(Kleywegt, Nori and Savelsbergh 2002). 
Commonly, the orders do not arrive uniformly or have a non-uniform arrival pattern over the time, 
and this cases the vendor’s resources, for example, transportation and storage resources, cannot be 
used well overtime. This leads to vendor’s resources sometimes be stretched to the limit by arriving a 
large number of orders, while during the rest of work time, be relatively idle. Another drawback is 
due to not knowing the exact inventory levels at the retailers. This information can help vendor 
compare the apparent urgent and the real urgent orders and prioritize all of them so that the real urgent 
orders did not be delayed. On the other hand, the integration of decisions which is brought by 
implementing the VMI, would totally decrease the whole supply chain costs (Sindhuchao et al. 2005). 
More specifically, some advantages are as following. Sharing retailer’s inventory level information 
makes more accuracy in proactive planning that cases more uniform utilization of transportation 
capacity then more reduction in transportation costs. It also decrease the amount of inventory needed 
to be kept to achieve a desirable customer service level(Kleywegt et al. 2002). 
     Running a VMI system would lead to solve an IRP, which itself is a variant of well-studied vehicle 
routing problem (VRP).For clarifying the core difference between these two problems, it is worth 
mentioning that in VRP, the vendor should fulfill the orders that have been generated by some 
retailers while trying to minimize the distance traveled by selecting proper routes. However in IRP, 
while the whole process is the same as VRP, orders are not generated by retailers and the vendor 
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decides how much to deliver to which retailer(Campbell and Savelsbergh 2004).Additionally, because 
the VRP is a NP-hard problem then IRP is categorized as NP-hard problems. In VMI, when the 
vendor is also a manufacturer and produces its products in its plants, he also is interested in 
integrating his production decisions like lot-sizing and production setup cost, with IRP decision, then 
the problem is called production inventory-routing problem (PIRP). PIRP is also well known in 
literature as integrated production and distribution scheduling problem (IPDSP) and production 
routing (PR), too. Additionally, PIRP is more complicated than IRP due to adding the production 
decision variables. 
   Although, solution approach to PIRP can be considered without regard to specifications and product 
features, application of it to short life cycle (perishable or decaying products) like products such as 
food, medical products and pharmaceuticals, chemicals, blood and floral industry would show its 
widespread use to the more realistic situation in real world. The perishability context here we are 
using is the same as Federgruen, Prastacos and Zipkin (1986) that the term perishable is for referring 
to a product that has a fixed lifetime during which it can be used and after which it must be discarded. 
Considering perishability in PIRP (P-PIRP) is among the issues that researchers have paid less 
attention in the literature on it, and is the core attention of this paper. 
   The motivation for doing this research is rather poor attention of researchers to the problem of 
integrating the production and distribution in the supply chain of a wide range of products that have 
fixed life time and have a plethora of examples in our life, for example dairies and foods. In this 
study, we introduce the mixed integer programming for the P-PIRP with following specifications. We 
assume a limited planning horizon and containing multiple periods. The supplier’s production cost 
that is mostly related to the setup cost. The retailers’ demand is known and there is one product and 
only one vehicle, starting from the only vendor, serving a number of geographically scattered 
retailers, which finally should return to the vendor. Due to the complexity of P-PIRP which stem from 
embedded VRP and perishability and production lot-sizing, our solution approach to the problem is 
introducing an enhanced repair based genetic algorithm approach for P-PIRP which using a handful of 
heuristic procedures try to find a good solution in a reasonable amount of time compare to the 
common commercial software. The novelty of this research is stem from the fact that implementing 
the repairing infeasible solutions strategy in metaheuristic like GA is technically cumbersome and 
need deliberate procedures that some time will have negative effect on the performance of it. That is 
why very few researchers are eager to follow this strategy but, we shows that if this repairing 
mechanism devised carefully, it can offer good solutions in reasonable CPU time.  
The remainder of the paper is organized as follows. In section 1, we review the most relevant research 
conducted from the year 2012. In Section2, we define our P-PIRP in more detail and offer the 
mathematical formulation as MIP. Then, in section 3, our solution approach using GA is presented, 
too. In Section 4, numerical experiments will be provided. Finally, we end with conclusion's remarks 
in Section 5.  
 

2- Literature review 
Here, in literature review, we focus mainly on the approaches that have been taken for solving 

PRIP and P-PRIP by the authors yet, and then some recent works that deals with closely to our 
approach will be reviewed. The introduction of IRP date back to the paper of Bell et al. (1983) in 
which only transportation costs are included, demand is stochastic, and customer inventory levels 
must be met. From that time a bundle of research, have been done on different variants of the 
problem. For more details and reviewing related published studies, we refer the interested reader 
toAndersson et al. (2010) and to Coelho, Cordeau and Laporte (2014), and Adulyasak, Cordeau and 
Jans (2015). In the latter survey paper, a classification for IRP literature have been offered according 
to seven criteria, namely, time, demand, topology, routing, inventory decisions, fleet composition, and 
fleet size. Referring those extensive surveys we here turn our attention to the more relevant or 
uncovered literatures that can be seen in the Table 1.It shows the latest work done on the PIRP from 
the year 2012 which were not reviewed in those surveys. 

Federgruen et al. (1986) are the first authors who have studied the IRP for perishable products. 
The problem contain only one period and they consider the products in two categories as old –
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products and fresh products which the old units while be out-of-dated at the end of that period and the 
fresh ones would last for another one period. They used Lagrangian relaxations method as their 
solution approach. 

Table 1. Classification of the recent papers on the PIRP and P-PIRP 

author/ year focus demand 
time 

/structure/routing 

inventory policy/ 
inventorydecisions/ 

products 

fleet 
composition/  

fleet size 
perishability solution approach 

Federgruen et al. 
(1986) 

PIRPa uncertain 
one-period/one-to-

many/multiple 
maximum level/ 
lost sale/single 

heterogeneous/ 
multiple 

allowed Lagrangian relaxations 

Le et al. (2013) PIRP deterministic 
multi-period/one-

to-many/ 
order-up-to level/ 
lost sale /single 

homogeneous/ 
multiple 

not allowed 
Path flow formulation, Column 

generation-based heuristic 
(Coelho and 

Laporte 2014) 
PIRP deterministic 

multi-period/one-
to-many/multiple 

maximum level/ 
lost sale /single 

heterogeneous/ 
multiple 

allowed Branch & Bound 

        
Al Shamsi, Al 

Raisi and Aftab 
(2014) 

PIRP deterministic 
multi-period/one-
to-many/multiple 

maximum level/ 
lost sale /single 

homogeneous/ 
multiple 

not allowed 
Modeled as a MIP and solved 
using the commercial software 

of GAMS 

Soysal et al. 
(2015) 

PIRP uncertain 
multi-period/one-
to-many/multiple 

maximum level/ 
backlog/single 

homogeneous/ 
multiple 

allowed 

deterministic approximations of 
stochastic model using chance-

constrained programming 
solution by commercial MILP 

solver 

Mirzaei and Seifi 
(2015) 

PIRP deterministic 
multi-period/one-
to-many/multiple 

maximum level/ 
lost sale /single 

homogeneous/ 
single 

allowed 

mixed integer non-linear 
programming modeling, solution 
by a hybrid of SA and TS meta-

heuristics 
Rahimi, Baboli 

and Rekik (2016) 
PIRP deterministic 

multi-period/one-
to-many/multiple 

maximum level/ 
backlog/multiple 

heterogeneous 
/multiple 

allowed 
bi-objective mathematical 

model, fuzzy solution approach 
Shaabani and 
Kamalabadi 

(2016) 
P-PIRPb deterministic 

one-period/one-to-
many/multiple 

order-up-to level/ 
lost sale/multiple 

homogeneous/ 
multiple 

not allowed 
population-based simulated 

annealing (PBSA) 

Devapriya, 
Ferrell and 

Geismar (2016) 
P-PIRP deterministic 

one-period/one-to-
many/multiple 

order-up-to level/ 
lost sale/multiple 

homogeneous/ 
multiple 

not allowed 
Two heuristics using genetic  

algorithms 

This study P-PIRP deterministic 
multi-period/one-
to-many/ multiple 

maximum level/ 
lost sale /single 

homogeneous/on
e 

not allowed 
Enhanced repair based Genetic 

Algorithm (EGA) 
a perishable IRP 
b perishable production IRP  
 
 
   Shaabani and Kamalabadi (2016) also studied PIRP where there are multiple-periods, single 
perishable product and a fleet of homogeneous vehicles should distribute goods between multiple 
customers. Because the additive goods will not be used in customer's warehouse and will be discarded 
after finishing their shelf-time they introduce a dominating set of constrains that goods will not be 
sent to the customer locations more than its total consecutive demand during the product's shelf-time. 
This will enforce that no goods are spoiled in customer's location in each period. They introduce a 
column generation-based heuristic algorithm for obtaining a good solution for their problem.Al 
Shamsi et al. (2014) looked a bit different to the perishability in IRP, as they considered the age for 
the only product in their three echelons supply chain problem and as the time passes the fresh 
products get aged and this make different non-increasing value for selling them. To gain the most 
revenue from selling different aged product, they offered two selling priority policies. Their devised 
B&B solution method, calculate the best time of selling using the trade-off between cost and revenue. 
They found the optimal solution to some randomly generated instances. Al Shamsi et al. (2014) 
considered also the pollution in PRIP and using a MIP modeling they tried to reduced Co2 emitted 
from the vehicles. The concentrating on cutting CO2 emissions resulted in a slight increase in the total 
costs due to delivering the heavier loads first.(Soysal et al. 2015)Studied a multi-period stochastic IRP 
considering greenhouse gas emissions and fuel consumption for distribution of a single perishable 
product. They also introduced some service level constraints for meeting uncertain demand. For 
evaluating the performance of the solutions of the optimization models, they presented a simulation 
modeling. Mirzaei and Seifi (2015) formulated a PRIP in which the end customers’ demand depends 
on the age of the inventory. They considered the cost of lost sale as a function of the inventory age 
and formulated it as a mixed integer non-linear programming.   The solution approach devised using a 
hybrid of simulated annealing (SA) and Tabu Search (TS) meta-heuristics linearize after linearizing 
the model.Rahimi et al. (2016) proposed a bi-objective mathematical model for multi-products with 
different shelf life PRIP considering social issues. They also proposed a discount function for 
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enforcing the selling the fresher product. Their modeling also encompasses the concept of reverse 
logistic for gathering the expired products from retailers. They used the Fuzzy approach to transform 
the two objectives into one that can be solved using the commercial software of GAMS. Shaabani and 
Kamalabadi (2016) studied a multi-period multi-product multi-retailer P-PRIP that products have a 
fixed lifetime. They introduced a population-based simulated annealing (PBSA) algorithm, which 
they showed it has some superiority over the SA, and genetic algorithm when they are using them 
separately as a solution approach. For tighter comparison, they also offered some lower bound and 
upper bound using the Lagrangian Relaxation and B&B approaches. Devapriya et al. (2016) proposed 
two heuristics using genetic algorithm to find approximate solution for the large size P-PIRP problem 
and reported their comparison using some test problems. 
 
3- Mathematical model of perishable IRP 
   The problem is defined on a graph G = (V, A) with a node set V including a supplier (node 0) and a 
number of retailers, and an arc set A. In the following, we introduce our assumptions and notations, 
which are used in the modeling of the problem. 
Assumptions: 

• A supplier serves a given number of retailers who are geographically dispersed in a given 
area, which is called as a two echelon supply chain under VMI system 

• A single vehicle is considered 
• A single perishable product with fixed life timeis considered 
• Split deliveries during each period are not allowed, each retailer is always replenished by a 

single visit if need to be replenished at that period 
• vehicle is able to perform one route at the beginning of each time period  
• Transportation (routing) costs are assumed to be proportional to traveled distance 
• The vehicle capacity cannot be exceeded 
• No vehicle loading and unloading cost and time is considered 
• both supplier and the retailers have a limited storage capacity and no stock out is allowed 
• The total demand on each route is less than or equal to the vehicle capacity 
• Each route begins and ends at the vendor 
• No vendor ordering cost is considered 
• The production is not capacitated 
• The production costs is only related to the fixed costs as setup cost  
• The deliveries from the supplier to the retailers are always of new or freshly processed 

product 
• Demand is known and deterministic and dynamic 
• The inventory level of a customer at the end of a period cannot exceed the maximal available 

inventory capacity; 
• Maximum level (ML) policy for inventories is considered 

 
Notations: 
This study uses the following notations. 

Sets& 
indexes 

Description 

� the numbers of retailers  
	 the vendor’s node; 	 = {0} 

 ′ set of nodes including retailers; 
 ′ = {1,… , �} 

 set of nodes including vendor and retailers; 
 = 
 ′ ∪ 	 = {0,1,… , �} 
� the number of periods in planning horizon 
� planning horizon; 	� = {1,… , �} 
� index of each time period ; � ∈ � 
�, � index of each node; �, � ∈ 
 
� set of arcs; � = {(�, �): �� ∈ 
, � ≠ �} 
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Mathematical model: 

(1) ���� = 	���� !"!
!∈#

+�ℎ&
!∈#

�&! + ��ℎ'
!∈#

�'!
'∈()

+���*'+
!∈#

,'+!
+∈('∈-

 

 s.t. 

(2) �&! = �&!./ + 0! − � 2'!
'∈()

	 , � ∈ � 

(3) �&! ≥ 0	, � ∈ � 
(4) �'! = �'!./ + 2'! − 4'! , � ∈ 56, � ∈ � 

(5) �'! ≥ 0, � ∈ 56, � ∈ �	 
(6) �'! ≤ 8'	, � ∈ 56, � ∈ �		 
(7) 0! ≤ 9	"! , � ∈ � 

(8) 0! ≤ ��4'	!:;./
;∈<'∈()

−	 	�&!./ −	� 	�'!./
'∈()

	 , � ∈ �	

(9) �'! ≤�4'	!:;./
;∈=

	 , � ∈ 56, � ∈ � 

(10)2'! ≤ 8' − �'!./,					� ∈ 56, � ∈ � 

(11)2'! ≤ 8'�>'+!
+∈-

, � ∈ 56, � ∈ � 

  
Parameters Description 
8' maximum capacity of retailer � 
*'+ routing cost from vertex� to�, (�, �) ∈ � 
4'! demand rate at retailer � in period � 
? vehicle capacity 
ℎ& unit inventory holding costs at vendor 
ℎ' unit inventory holding costs at retailer � 
@ABC maximum shelf life of product 
= set of time period before the product get spoiled;= = {1,… , @ABC} 
9 a large number 
 ! production setup cost in period t 
  
 
Variables 

 
Description 

 
>'+!   = 

 

{
 
 
is equal to 1 if and only if customer j immediately follows customer i on the route of the 
supplier’s vehicle in period t 
0   otherwise 

 
 
"!  = 

 

{
 
 
is equal to 1 if  and only if production occurs in period t 
0   otherwise 

   
�'&  inventory level at the vertex � ∈ 
 at the beginning of the planning horizon 
�'!  inventory level at the vertex � ∈ 
 at the end of  period � ∈ � 
2'!  the quantity of product delivered from the vendor to retailer i in time period t 
5'!  continuous variables to enforce sub-tour elimination 
0!  the amount of products are manufactured by vendor at the time �	 ∈ � 
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(12)�2'! ≤ ?
'∈-)

, � ∈ � 

(13)�>'+!
'∈-

= �>+'!
'∈-

, � ∈ 5, � ∈ � 

(14)�>'&!
'∈-

≤ 1	, � ∈ � 

(15)5'! − 5+! + ?>'+! ≤ ? − 2+! , � ∈ 56, � ∈ 56, � ∈ � 

(16)2'! ≤ 5'! ≤ ? , � ∈ 56, � ∈ � 

(17)2'! ≥ 0	, � ∈ 56, � ∈ � ∪ {0},		� ∈ �	 
(18)5'! 	≥ 0	, � ∈ 56,  � ∈ � 

(19)>'+! , 	"! ∈ {0,1}		; 				�, � ∈ 5	, � ≠ �	, � ∈ � 

 
   The objective function (1) comprises four parts: (i) production setup cost (ii) inventory holding cost 
at supplier (iii) inventory holding cost at retailers, and (iv) routing cost for the supplier’s vehicle. 
Constraints (2), (3), (4), (5),(6) relate to the inventory decisions. To be more specific, the constraints 
(2) calculate the inventory level at the vendor at the end of periodt ∈ T. Constraints (3) ensure that we 
do not face any negative inventory at the vendor at the end of each period. Constraints (4) describe the 
inventory quantities at each retailer at the end of periodt ∈ T. Constraints (5) and (6) are capacity 
limitations of the retailer warehouse, i.e. the first constraints set is related to the minimum inventory 
level and the second constraints set is related to maximum inventory level, respectively. Constraints 
(7) are enforcing setup costs. Constraints (8) and (9) relate to the perishability of products. Constraints 
(8) limits the production rate that may lead to the perishability of products so that the production rate 
0! at time t plus inventory at the end of the previous period in supplier�&!./and retailers�'!./ could not 
be higher than the total proceeding demand of all customers during the perishable product’s lifetime. 
Constraints (9) limit the inventory level in each customer, up to the sum of its proceeding demand 
during the lifetime of perishable product. It is worth mentioning that these constraints work just like 
the constraints (6) and in different numerical instances, one of these constraints may get nonbinding. 
Constraints (10)–(11) relate to the quantity delivered by vendor‘s vehicle based on the ML policy. 
Constraint (12) guarantees that the vehicle capacity is respected. Constraints (13)–(16) are concerned 
with routing of the vendor‘s vehicle. In particular, constraints (13) ensure flow conservation for 
vehicle at each node in each period. Constraints (14) mean that we have only one vehicle. Constraints 
(15) and (16) are concerned with subtour elimination. Constraints (17)–(19) ensure the integrality and 
non-negativity of decision variables. 

4- Solution approach  
   Before thinking about any solution strategy for P-PRIP, knowing the complexity of the problem 
would shed a light on the way we should step in. Just knowing that the PRIP embedded a vehicle 
routing problem (VRP) that is NP-complete problem, stray our way of using the exact solution 
method to where we prefer using the approaches that are more friendly methods with complex 
problems like heuristics, and metaheuristic. One of the high-performance metaheuristic, which 
provides high quality solution to the complex problems, is Genetic Algorithm (GA). It uses 
randomized search technique using the crossover and mutation operators to do the neighborhood 
search inspired from the natural selection process. In many cases, it can offer near optimized solution, 
within a reasonable cost. That is why we use this method in our study as our solution approach.  

4-1- Solution representation  
   To be able to use genetic algorithm in solving optimization problems, a suitable structure to display 
any solutions, which is called chromosome, is required. Here to display each solution chromosome of 
a multi-period P-PRIP that is associated with single vehicle, and single product, we use a three-
dimensional matrix consisting withi×t×2  elements - calling each element a gene. The i and t related to 
each customer and each period in the planning horizon, respectively. The dimension of chromosome 
which has only 2 elements is embedding two essential information including the delivery amounts and 
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routing schedule. More specifically, the delivery part of chromosome that has a dimension of i×t×1  
shows the amount of the commodities at any period t that the supplier send to each customer i. The 
routing section of chromosome that also has a dimension of i×t×1 , indicates the routing data that 
supplier’s vehicle at any period t. A sample solution chromosome with five customers (i=5) and 3 
periods (t=3) is shown in figure 2.The chromosome we are using here is like the chromosome which 
have been introduced in the study of Moin, Salhi and Aziz (2011). The difference is that, there, a two-
dimensional matrix of i×p  is used to display solution chromosome containing only the delivery 
amounts, while in this study we also represents routing information of each answer as the third 
dimension. The reason why we add the routing as the third dimension to the solution chromosome is 
related to the time of calculation. Although there is a close relation between the delivery schedule and 
routing schedule in the IRP, considering them simultaneously will reduce the burden of heavy 
calculations that are resulting from undergoing different evolution processes of GA.   

 

Figure 2. An example of three-dimensional chromosome of solution 

   Assume that the value of gene ChIJKLMJNOLP in three-dimensional chromosome, represents the amount 
of goods shipped to the customer i at period t as follows: 

8ℎQRS'-RTU'! = VW						� 	5*ℎ�XY*	5�Z��	�ℎ*	X[Z�\�*0	�	��	�*0�\4	�
0						\�ℎ*0]�Z*																																																												

^ 

   The value of  8ℎQRS'-RTU'!  will be k if the vehicle have met the customer i in period t, means that the 
amount of delivered goods to him is equal to k otherwise it would be zero. Besides, assume that the 
value of gene 8ℎT_`!'ab'!  in three-dimensional chromosome represents the priority of meeting of the 
customer i at period t in as follows: 

8ℎT_`!'ab'! = V� ∈ {1,… , �}						� 	5*ℎ�XY*	5�Z��	�ℎ*	X[Z�\�*0	�	��	�*0�\4	�
0																													\�ℎ*0]�Z*																																																												

^ 

   The value of  8ℎT_`!'ab'!  will be � ∈ {1,… , �}if the vehicle have met the customer I in period t,in the 
other word it shows the priority of meeting of each customer, otherwise it would be zero. For more 
explanation about the values on the chromosome elements and how interpreting them, a numerical 
example is given in figure 3. In order to display matrix elements easily, we separated the chromosome 
of figure 2 in two sections, "routing" section, which is displayed on the right and "delivery" section, 
which is displayed on the left. 

 
Figure 3.Graphically separated solution chromosome 

period 

retailer 
1  2  3  

1  12  0  0  

2  5  8  0  

3  0  13  3  

4  1  9  6  

5  6  2  4  

(a) delivery section of chromosome 

 

period 

retailer 
1  2  3  

1  4  0  0  

2  2  4  0  

3  0  1  1  

4  3  2  3  

5  1  3  2  

(b) routing  section of chromosome 

 

t=1 t=2 t=3 

i=1 

i=2 

i=3 

i=4 

i=5 

Routing 

Deliveries 
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   Based on our problem’s assumptions including the existence of only one car, which is allowed 
providing at most one visit to each customer in each period, we will describe our sample data in the 
figure 3. On the right part of the figure and on period one, which is shown in the column heading one, 
the car starts its path from supplier that for simplicity it has not been showed in the chromosome, and 
arrives firstly at the customer 5 because it has the top priority between the other customers. The top 

priority here is one (	ChNcdPLef(g,/) = 1).After unloading the products there, it will go to the next top 

priority in the same period (column heading one) which is	ChNcdPLef(h,/) = 2. This process will continue 

to the time we will visit the lowest priority in that period which is	ChNcdPLef(/,/) = 4. It is worth 

mentioning that the zero values mean that no visit will be done by the supplier’s vehicle on that period 
to the customers that have zero values. Then the total path of vehicle in period one would be from 
supplier to 5-2-4-1 then return to the supplier. Likewise, vehicle in accordance with the priorities of 
each chromosome routing section will deliver products to customers, too. To explain the delivery 
section of chromosome on the left of figure 3, for example consider the first period of the delivery 
program, which have a column heading one. According to the priorities identified previously in the 

routing part, the period one that includes the path 5-2-4-1,firstly, 6 units of goods (8ℎQRS'-RTU(g,/) = 6) is 
sent to the customer 5, then 5 units of the products to the customer2, after that 1 unit to customer 
4,and finally12 unit to customer 1.In this study, determining the values of ChNcdPLefLP  and ChIJKLMJNOLP  , is 
done with a randomized based heuristic called “forwarded partial delivery” which is presented in the 
following section. 

4-2- Partial delivery 
   Generally, partial delivery in each period means sending a part of the total demand of each customer 
in that period. One application of the partial delivery can be found in the classical problem of VRP 
with the name of the split delivery or split load. After introducing the idea of split delivery by (Dror 
and Trudeau 1989) in VRP, in which the restriction that each customer has to be visited exactly once is 
removed, many studies have shown its benefit. For using this mechanism in our study, however, as we 
presume that the vehicle is allowed to make at most one tour in each period, as a dominant constraint. 
Then we need a new version of partial or split delivery, to be entirely matched to our problem 
specifications and we call it “partial delivery”. Recently, the partial delivery for the multi-periods IRP 
is introduced as delivery exchange mechanism for improving the transportation costs by Abdelmaguid 
and Dessouky (2006). They use additions or reductions of delivery amounts in the current delivery 
schedule in a given period at a time to/from another period whenever customer and vehicle capacity 
limitations permit. Therefore, by using this process in a given delivery schedule, it is possible that 
some quantities to be transferred from successor periods to a preceding period or from preceding 
periods to a successor period. We use this idea, which has been used by them as an improvement 
mechanism in mutation part of their proposed GA, as construction mechanism in the initialization of 
solutions of our GA. The “forwarded partial delivery” we are introducing here is applicable only in the 
context of the multi-period IRP with classical limitation of visiting the customers only one time per 
period. Due to not allowing any backlog, the customer's demand must be met in each period with 
delivering enough goods to them in right time or even sooner in the preceding periods. In the other 
words, the partial delivery over the planning horizon is trying to send goods for full filling some part 
of the future demand rather than the current demand and that’s why we call it forwarded partial 
delivery. To make the forwarded partial delivery more effective, we devise a random mechanism for 
calculation the amount of partial deliveries and this also would create more integrality with the other 
random mechanism of GA. On the other hand, the random diversification we are making into the 
delivery schedule will help genetic algorithm search the solution space more thoroughly. Using this 
mechanism, while creating greater flexibility to meet the demand, may also lead to maximum use of 
unused of vehicle and that would let to some reductions in costs. Knowing that the transportation cost 
directly affects the objective function of IRP, therefore taking advantage of all available transportation 
capacity, also will affect the objective function of IRP, indirectly. 
   Using an example, we would present our proposed “random forwarded partial delivery” heuristic. 
We suppose that the chromosome's routing section of our supposed sample solution is give as in 
figure4 part (a). We will describe how it is generated later. Due to our assumptions that routing 
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schedule of each period is done independent of the other periods by the only one vehicle, then the 
routing schedule will be determined for each period separately. To do this, firstly, we determine	l,l ⊆
�which is the total number of periods that customer i must be served based on the routing section of 
chromosome. Here we call them the delivery points. These delivery points are shown in a matrix n'as 
follows. 

There, �customer index and j ∈ J is the number of delivery points. Referring to figure 4part (a), the 
partial delivery matrix for customer i=3 we have	Kr = [2,3]. In the other word, partial delivery	KLis 
equivalence of the tour structure that vehicle take for visiting the customers, without the starting and 
ending points, which is the supplier location. 
 

Figure 4. An example of separated chromosome matrix with demand 

 
The pseudo code of the random “partial delivery” heuristic (RPDH) is presented in figure 5which 

describes the main steps of determining the amount of deliveries that supplier’s vehicle should send to 
the selected customers. This will lead us to know how to fill up the partial delivery matrix in figure 4 
part (c). 
 

period 

retailer
1  2  3  

1  9  0  0  

2  3  4  0  

3  0  15  7  

4  6  11  2  

5  2  0  3  

b) demand 

 

period 

retailer
1  2  3  

1  4  0  0  

2  2  4  0  

3  0  1  1  

4  3  2  0  

5  1  3  2  

a) routing part of chromosome 

 
period 

retailer
1  2  3  

1  9  0  0  

2  5  2  0  

3  0  19  4  

4  6  13  0  

5  3  1  1  

c) delivery part of chromosome 
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Figure 5. The random partial delivery heuristic (RPDH) 

   As mentioned, the general idea of random partial delivery heuristic is using a random mechanism in 
order to increase the flexibility in deliveries and to maximize use of remaining space on vehicle, to 
satisfy the future demand of each customer. In short, the random partial delivery heuristic works as 
following. According to the given routing section of solution chromosome and demand matrix of 
customers, the least amount of the goods (minimum delivery) that satisfy the demand of customer 
between two consecutive visits of supplier’s vehicle is calculated. By looking ahead to the sum of 
future demand during the next visit and multiplying it with a random number in [0,1], then adding it 
to the minimum delivery, the amount of partial delivery of the first vehicle visit to that customer is 
reached. The unsatisfied demand matrix is updated and this process goes on to the last vehicle visit of 
that customer to determine of all partial delivery for that customer. This process is also done for the 
remaining customers, too. 

 

4-3- Creating the initial population 
    Generating of the initial population (initial solutions) play a great role in the performance of 
Genetic Algorithm. That is why the development of an efficient method that can provide good initial 
population leading to providing a good start for the process of evolution of GA and therefore 
increasing the total performance of it. Here for initialization of GA process, we propose our algorithm 
using the partial delivery that was introduced in the previous section. Our main idea of devising a 
process for initial population generation is to create the maximum diversity in initial population. We 
consider two criteria as our diversity index for selecting solutions from the solution space: diverse 
routing schedule and diverse deliveries’ quantities. For having more diversity in the routing, two 
important factors are the number of customers receives service (which may be equal to the total 
number of retailers or a subset of them) and the priorities by which the vehicle visit them. For having 
a diverse delivery schedule, using the randomized partial delivery mechanism that was presented in 
previous section, which try to generate a diverse delivery amount in a randomly manner, would be a 
desirable method here. In the figure 6 we represent the pseudo code of the generating of the initial 
population process. 

 

1. Inputs: 
− �; the total number of periods in planning horizon,  

− �; the numbers of retailers  

− l; total number of delivery points 
2. Let �	 = 	1; retailer index 
3. Let 0	 = 	1; the delivery points counter  

4. Calculate the minimum needed μ = ∑ 4'!xy(T)
'z/  

5. Calculate the sum of demand to the next delivery pointβ = ∑ 4'!xy(T:/)
'zxy(T):/  

6. Generate Rnd  a random number from interval [0 , 1] 

7. Let |	 = 	}		 + 	~ ∗ 	��4 , and let 8ℎQRS'-RTU',!zxy(T) = | 

8. Let unfilled demand, up to delivery point	n'(0) to zero and If Rnd> 0, update the unfilled 

demand between two delivery point [n'(0) + 1, n'(0 + 1)] based on the ω value and 
substitute it with the original demand 

9. Let 0	 = 	0	 + 	1; if  0	 < 	l go to step 4;else if 0 = 	l let n'(0 + 1) = � then go to step 
4otherwise go to next step 

10. Let �	 = 	�	 + 	1; if 	�	 ≤ 	�go to the step 4; otherwise go to next step 
11. Finish. 

Max 
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Figure 6.Pseudo code of the generating of the initial population process 

4-4- The least-cost insertion heuristic 
   The least-cost insertion heuristic or cheapest insertion heuristic is a fast heuristic method in order to 
create a tour service in a low cost and can help to reduce the overall time of the genetic algorithm in 
its evolutional stages. The initial idea of the lowest-cost heuristic insertion method is adapted 
fromClarke and Wright (1964). In the start of the least-cost insertion method, it is assumed that at first 
all customers are directly and individually served by supplier’s vehicle, so we have the serving tour 
equals to all of customers. Then the algorithm by removing a customer from a tour and re-insert it to 
another tour, tries to reduce transportation to create a lower cost tour. It continues the process of re-
insertion of one customer into other tours so that they merged all into one tour (Mester, Bräysy and 
Dullaert 2007). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. The least-cost insertion heuristic 

1. Inputs: 
− �; total the number of periods in planning horizon 

− �; total the numbers of customers 

− ��\�; total the number of population 
2. Let 0	 = 	1; the population counter  
3. Let �	 = 	1; the customer index 
4. To design a diverse routing schedule: 

• generate a random integer number ��4 from interval [0	, �] as non/subgroup/all of the periods 

• randomly assign the integer numbers in interval [1 , ��4] to ��4 number of randomly selected 
periods as the routing priorities for customer � 

• assign zero to remaining � − ��4unassignedperiods 
5. To design a diverse delivery amount: 

• assign the delivery amounts based on the random partial delivery heuristic (RPDH) for the 
selected customers by the previous step 

6. �	 = 	�	 + 	1; if � <= 	� go to the step 4; otherwise go to next step 
7. 0	 = 	0	 + 	1; if 0	 < 	��\� go to step 4; otherwise go to next step 
8. Finish. 

 

 

 1. Input: 
− N; total numbers of retailers 
− t; period number 

2. Consider tour �� = {�, �|�, � ∈ �, 8ℎ0\[������ ≠ 0	, 8ℎ0\[������ ≠ 0; ∀� ≠ �	, 8ℎ0\[������ < 8ℎ0\[������ } 
where  � = {1,… , |�� |}  are customers to be serviced in period t, and let] ∈ � 

3. Consider the customer i ∈ N andi ∉ �� to insert into tour ��  
4. Let �]  is the ]�ℎ  customer in the tour ��  
5. Calculate �0��1 that is the cost of newly created tour � +	��  by inserting the customer � in the 

beginning of tour ��  while zero represents the supplier 
6. Calculate  ��] ��]+1  that is the cost of newly created tour � + 	��  by inserting the customer � 

between two neighboring customer of  �]  and �w+1, where �]  is not the first customer in tour  
��  

7. Let w = w + 1 ; if w ≤ |�| go to step 6; otherwise go to next step 
8. Calculate ��|�|�0 which is the cost of newly created tour � + 	��  by inserting the customer � in the 

end of the ��  
9. Calculate the min 	{�0��1 	 , ��] ��]+1 	, ��]+1��]+2 , . . . , ��|�|−1��� , ��|�|�0} that is related to the least 

cost insertion place of customer i into tour ��  
10. Finish. 
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Because we use this algorithm in repairing the infeasible solutions, we limit the whole process of  this 
method for re-inserting one or more given customer/customers from a given period into an another 
tour in the other period which is present the detail in pseudo code in figure 7. 

 
4-5- Feasible solutions 
   Due to various constraints in our problem, the process of creating the initial population may produce 
the answers that are infeasible, but the only answers are taken into account that do not violate these 
limitations and, in the other word, are feasible. Generally, in the literature, there are three major 
approaches to handle the constraints for having feasible initial solutions in GA: deletion, penalty and 
repair. The deletion or removal approach omits the infeasible solutions directly as unacceptable 
answers, while in repair approach, using some repairing heuristic, it tries to bring the solution into the 
feasible area. Finally, in penalty approach, the infeasible solutions are penalized so to be omitted from 
the initial population, gradually. Since between these three approaches, the removal approach limits 
the diversity in solutions space we will not use it in this study. On the other hand, the penalty 
approach due to exploring the solutions that exist in the boarders of feasibility and infeasibility area 
will generate more efficient solutions compare to the removal approach. The last approach that is 
repair approach will result in better solution but it needs devising more delicate and cumbersome 
procedures to transform an unacceptable answer into a feasible one. In this study, we take the last 
approach because its application is not well studied in IRP. Other reasons that make us to take this 
approach are the complexity of solving P-PRIP that is stem from several constraints embedded in its 
structure. In order to tackle these constraints and achieve near-optimal solutions, genetic algorithm 
requires specific guidance mechanisms in its evolution process. These guidance mechanisms also can 
be revised so that it can be used to correct the unacceptable answers that is generated in different part 
of GA process (initial solution or derived from crossover or mutations mechanisms). In the following, 
we represent our proposed chromosome repairing procedures to repair the solutions that violate the 
hard constraint of problem including minimum level of inventory (or backlogging), maximum 
capacity of customer’s vehicle and product expiration date. 

 

4-5-1- Shortage constraints  
   Because the shortage is not allowed in our problem and based on the VMI system the inventory 
levels of customers’ warehouse should not fall lower than a preset minimum values, all solution 
generated by the genetic algorithm must meet these restrictions; otherwise these solutions would be in 
infeasible space. Because in generating the initial solution, we use completely random based 
procedure to determine the routings and then the random partial delivery heuristic (RPDH) use it for 
calculating the deliveries then it is not far from expectation to face some shortage in some solution. 
To prevent this, a repairing mechanism should be devised to make it is possible to repair infeasible 
solutions, which stem from the violation of minimum level of inventories. The main idea of this 
mechanism would be to provide service to customers that their inventory fall under the pre-
determined values or the inventory on hand is not enough to meet that demand before the next 
planned meet by supplier vehicle. In other words, if there exist any period, from the starting period in 
the planning horizon to the next planned delivery for each customer, where the customer is facing 
shortage, the planned delivery should be changed so that this shortage does not occur. In this case, 
two possible situations exist: first, facing the shortage before the first planned visit and second, 
between the two visits. To tackle the first situation, planning an extra visit is mandatory and to tackle 
the second situation, beside an extra visit, it is possible to modify the planned deliveries so that more 
goods are delivered in one of the preceding period before the shortage occurs. In figure 8 the 
procedure of adding an extra visit is depicted. The second measure due to its simplicity is not 
represented here.  
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Figure 8.The proposed backlog repairing procedure 

   The value of δL� = IL& −∑ dL��  for each customer i shows net customer needs in any period θ that  
θ	 ∈ 	 �' and �' = {1,…	, �n'(1)� − 1}			 are the possible periods for which there is no customer service 
by supplier’s vehicle, in the other word, the periods before the first planned visit by vehicle. If we 
have a shortage in any period belong to	�', we should plan an extra service (vehicle visit) in that 
period or its precedence periods which is {1,…, |NDL|}. To decide what is the best period to choose, 
we compare their effects on the total cost ∆�8'	, and any period that results in fewer changes in total 

cost would be selected. To calculate this, we temporarily transfer one unit of goods from	8ℎQRS'-RTU(L,xy(/)) , 

which is the amount of previously planned delivery in the first visit of customer � by vehicle, to 

8ℎQRS'-RTU(L,���(+)). To calculate the change in cost correctly, the routing value of 	8ℎT_`!'ab(',	��y(+��� ))with the 
help of the least-cost insertion method is determined as well.  Now, the least cost period for planning 
an extra visit is found. To finalize, the random partial delivery heuristic for the customer i is run again 
to assign new deliveries so that the shortages vanished. The whole process continues for other 
customers to repair possible backlogs.  

4-5-2- Vehicle capacity constraints 
   Given that the generated solutions may also violate the vehicle capacity constraints, therefore it is 
necessary to design a mechanism for repairing those solutions that violates capacity 
restrictions. Because in our problem, we have assumed that the vehicle’s tour in each period is done 
independently from other periods, so it is enough to consider the possible violation in each period 
regardless of other periods. Here we use the greedy search algorithm that was proposed by 
Abdelmaguid and Dessouky (2006). The general idea of algorithm is selecting a random period, 

Start 

� = 1,�=the number of customers 

Let ¡'¢ = �'& −∑ 4'¢¢ and calculate	NDL = {£|£	 ∈ 	�' , 	δL� < 0}  

For each� ∈ l that		l = 	 {1, … , |�¤'|},  calculate changes in the cost ∆�8'	as a result of the 

transferring temporarily one unit of goods from 8ℎQRS'-RTU(L,xy(/))   to 8ℎQRS'-RTU(',��y(+)) and updating the 

routing priority of ChT_`!'ab(L,	��y(+)) using the least-cost insertion method 

i=i+1 

No Yes 
 

Finish 

i ≤ n 

Periods before the first planned vehicle meet of customer	� is �' = {1, 	 … 	, 	|n'(1)| − 1} 

Determine	�¥R;! ∈ lwith minimum related ∆�8' as the best period for adding an extra visit,  

updateChT_`!'ab(L,	��y(+��� ))  then re-run the random partial delivery heuristic (RPDH) for the customer 

� 

NDL = ∅ Yes 
 

No 



44 

 

where vehicle capacity is violated, Then, selecting one random customer from the served customers 
on that period, and after that try to reduce one unit of delivered products from it and transfer it to 
another period so that no vehicle capacity violence happen after receiving that extra unit of products. 
If the number of periods that can accept extra one unit of product, without occurring any vehicle 
capacity violation, is more than one period, the algorithm try to compare the cost of transferring to all 
these periods and choose the least cost period. To improve the propose algorithm of Abdelmaguid and 
Dessouky (2006) we help the least cost insertion method to find the real cost of insertion.  
Suppose � is set of periods where the vehicle capacity has been violated and ¤ includes rest of 
periods in the planning horizon plus a dummy period� + 1.For each period� ∈ �, vehicle capacity 
violation is assumed to be §!, which is a negative value. For every period @ ∈ ¤, the unused capacity 
of the vehicle is shown with ̈© and ¨ª:/ = max	(−∑ §!!∈­ − ∑ ¨©©∈� , 0). Assume that the 
scheduled delivery amount is2'!and ®!,©' , the transferred amount to the customer i from the same 

customer during the period � ∈ �is equal to ∑ ∑ ®!,©'!∈��'z/ = −§!. In addition, the total amount of 
goods transferred from @ ∈ ¤ should not violate remaining capacity of customer’s warehouse in that 
period meaning ∑ ∑ ®!,©'!∈­�'z/ ≤ ¨!  and should not violate the remaining capacity of 

warehouse∑ ®!,©'!∈­ ≤ 8' − �'!. The last limitation that must be considered when we want to transfer 

products to customer i is the sum of the delivery in the current schedule, ∑ ®!,©'!∈� ≤ 2'!. The purpose 
of this transferring is minimizing the cost of transportation and holding cost of the total system. In 
figure 9, the over usage of vehicle capacity repairing has been presented. 

 
Figure 9. Over usage of vehicle capacity repair heuristic 

4-5-3- Perishability constraints 
   Here, perishability is possible to happen throughout the supply chain warehouses including in both 
customers’ warehouse and supplier’s warehouse. For fixing the chromosomes that are infeasible due 
to violation of perishability constraints, we take the strategy of combating any deterioration by 
limiting the amount of inventory level of inventories and production rate. For customers, we put an 
upper bound for the inventory level at the end of each period so that it not be larger than the total 
demand during the shelf life of perishable goods. Our proposed fixing procedure for hedging the 
perishability in customers’ warehouse is shown in figure 10. For hindering the perishability in 
suppliers’ warehouse the way is to limit the production rate in each period so that it does not exceed 
the total demand of all customers during the shelf life minus the inventory level at the end of previous 
period throughout the supplier chain. Due to straight forwardness of this strategy, we will not 
introduce any specialized procedure and only regard the perishability limitations as production 
capacity.  
 

1. Calculate �; 
2. For t=1 to |	�| so that  �¯�  do the steps 3-5 
3. While §! < 0 do the steps 4-6 

4. For each customer i for which 2'! > 0, calculate changes in the cost of ∆�8!,©' as a result of 

the transferring one unit of goods from period � to any other period @ ∈ ¤ providing that the 
customer's warehouse capacity and capacity of the vehicle allow; 

5. Suppose j has the lowest value ∆�8!,©+ ,  

6. Let §! = §! + 1, 2+! = 2+! − 1, ̈ © = ¨© − 1 , 2+© = 2+© + 1 

7. Finish. 
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Figure 10. Pseudo code of the fixing the perishability in the customers’ warehouse 

 
4-6- Fitness evaluation and selection 
   Generally, the roulette-wheel method is widely used in GA for selection process. We apply this 
method in our selecting process, too. Here the fitness calculation is based on the objective function of 
our problem. 

4-7- Crossover operator 
   Using the crossover operator, two parents from the population with the preset possibility are chosen, 
by combining some parts of these two parents, two children are produced. This makes children inherit 
the properties from their parents. Crossover operator used in this study is based on research 
Abdelmaguid and Dessouky (2006)and Moin et al. (2011).  Their proposed crossover operator use a 
mask crossover operator as a random binary matrix 1*N (where N is the number of customers).To 
describe how this operator works, we represent it in an example in figure 11 for routing section of a 
sample solution chromosome with three periods. To show a crossover operator mask, where there are 
5 customers, the binary matrix of 1*5is defined as following. 
Mask =[1		0		0		1	1]  

The digit 1, indicates that the first child inherit the first property from the parent 1, and the zero digit 
shows it will inherit from the parent 2. For the second child the reverse operation is performed. 

1. Inputs: 
− �; the number of periods in planning horizon 

− �; the numbers of customers 

− τ²³´ ; maximum shelf life of product 

− dL	P; demand of customer I in period t 
2. Let �	 = 	1; the customers index 
3. Let �	 = 	1; the period index 
4. Consider  τ²³´dummy periods in the end of planning horizon 
5. Calculate λ	 = max	(0, {ILP./ −	∑ dL	P:¶./|ψ = (1, … ,¶∈¸ τ²³´)}) that is quantity of goods 

would be perished in the end of period  t + τ²³´ − 1 in customers’ warehouse i and ILPis 
the inventory level of customer � in the end of period � 

6. If  λ = 0, go to step10; otherwise go to  next step   

7. Let ¹ = [t + 1	, … , P]and calculate changes in the cost ∆TCL 	as a result of the transferring 

temporarily one unit of goods from ChIJKLMJNO(L,P)   to any ChIJKLMJNO(L,�) where θ ∈ ¹ and update 

the routing priority of ChNcdPLef(L,�)  using the least-cost insertion method;  

8. Determine 	£¥R;! ∈ ¹with lowest ∆TCL 	as the best period for transferring one unit of 

goods, then update ChIJKLMJNO(L,P) ,ChIJKLMJNO(L,¢��� )  , 8ℎNcdPLef(L,!) , and then using the least-cost insertion 

method8ℎNcdPLef(L,¢��� ) 
9. λ = λ − 1; if λ > 0 go to step 7; otherwise go to next step; 
10. t	 = 	t	 + 	1; if t ≤ 	p go to the step 5; otherwise go to next step; 
11. i	 = 	i	 + 	1; if i ≤ 	N go to step 7; otherwise go to next step; 
12. Finish. 
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Figure11. An example of applying the crossover operator using the maskcrossover 

 

4-8- Mutation operators 
   Mutation operator in the evolutionary processes of genetic algorithm causes some children that have 
been produced from the initialization or crossover process, to be slightly changed aiming that this may 
lead to a more thorough search of the solution space and thus ensuring better solutions in the end of 
process. As the transportation in this research is done in each period independent of the other periods, 
so considering a process that try to integrate deliveries that take place in different periods during the 
planning horizon with respect to other restrictions, may lead to reduced transportations and thereby 
reducing the objective function of that chromosome. The main idea of devising a mutation process in 
this study is based on this consolidation idea, which is presented in figure 12 with the following 
notation. 
�?!= the unused vehicle capacity in the period t; 
�¼'!= the unused capacity of the customer’s warehouses i in period t; 
½¤'! = set of deliveries that can be fully transferred from the customer i in period greater than t to 

period t considering the vehicle capacity and warehouses capacity 
 

period

retailer 
1  2  3  

1  1  3  1  

2  0  1  0  

3  0  0  2  

4  2  0  0  

5  0  2  0  

a) routing section of parent 1 

 

period

retailer 
1  2  3  

1  4  0  0  

2  2  4  0  

3  0  1  1  

4  3  2  3  

5  1  3  2  

b) routing section of parent 2 

 

period

retailer 
1  2  3  

1  4  0  0  

2  0  1  0  

3  0  0  2  

4  3  2  3  

5  1  3  2  

d) routing section of child 2 

period

retailer 
1  2  3  

1  1 3 1 

2  2 4 0 

3  0 1 1 

4  2 0 0 

5  0 2 0 

c) routing section of child 1 

Mask =[1		0		0		1	1]  
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Figure 12. Mutation operator for consolidating transportation 

 

4-9- Neighboring search 
   To get better objective function for the solutions that are produced from different stages of GA 
including the initial populations, and the offspring produced by crossover and mutation operators, we 
can use some neighboring search techniques that have been widely used in the classical VRP. They all 
help the vehicle to take the shortest route to serve the customers and thus reduce child objective 
function. Among various methods used for this purpose that has been introduced by researchers, we 
use the swapping 2 customers (2-opt) and the swapping 3 customers (3-opt), remove and insertion, 
reverse all, and partial reverse for the routing section of the solution chromosome. The figure 13 
illustrates how these operators work with a numerical example. The column on the left, shows the a 
sample routing part of a solution chromosome for 5 customers and 3 periods in the planning horizon 
and the results of going under each neighboring search technique are shown on the right column. 

5- Enhanced Genetic Algorithm 
   In this section, we describe the structure of our proposed enhanced genetic algorithm. In the first 
step, the initial populations are generated with the help of randomized partial delivery heuristic 
(RPDH). These initial populations are as primary parents that form a pool of initial solutions. Then 
through the evolutionary processes of genetic algorithm, they will be transformed into the children 
aiming to result in better objective function. After the repairing of infeasible solutions and converting 
them into feasible ones using our proposed repairing procedures, they go under the process of 
neighborhood searching to improve their objective function. This evolutionary process is terminated 
after a certain number of predetermined iterations or stopping rules is met and then the best answer is 
reported. The detailed steps of enhanced chromosome-repair mechanism based genetic algorithm are 
shown in figure 14. 

 

1. Input:  
− Nmute; the number of population that will go under mutation  

− P; the number of periods in planning horizon 
− N; the numbers of retailers 

2. let j=1; that j index of population 
3. let i=1; that i index of each customer  
4. let t=1; that t index of period  

5. Calculate qLP ; the amount of delivered products to customer i in period t; 
6. Calculate RQP; 
7. Calculate ½¤'! = 	 {2';|	Z ∈ �� + 1,… , ��	, 2'; ≤ �?!, 	2'; ≤ �¼'! 	}; 
8. Calculate  } = ���	{�?!	, �¼'!} 
9. Calculate 		� = {2'; ∈ ½¤'!� ∑ 2'; ≤ μ	�} 
10. Select Á ∈ � so that the cardinality of |Á|is maximized (meaning that select B with the maximum 

number of elements that transferring them to the same customer i from successive periods of t will not 
violate both the customer's warehouse capacity and vehicle’s capacity constraints of period t ) 

11. If B ≠ ∅, Add the values of 2'; ∈ Á to 2'!, then for the transferred 2';, set its related routing priority in 
the routing part of chromosome to zero, then go to step 12; 

12. Set t = t + 1; if  p <t go to step 5; otherwise go to step 13 
13. Set i = i + 1; if  i <= n go to step 5; otherwise go to step 14 
14. Set j = j + 1; if  j <= Nmute  go to step 5; otherwise go to next step  
15. Finish. 
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Figure 13. Different neighboring search methods 
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Figure 14.Enhanced chromosome repair mechanism based genetic algorithm 

6- Numerical experiments 
In this section, the result of enhanced chromosome repairing mechanism based genetic algorithm 

for solving some generated sample instances of perishable production inventory routing problem are 
presented to show the efficacy of our algorithm. The GA has been implemented in MATLAB-2014a 
on a personal computer with Intel Core2Duo, CPU 2.93GH, windows7-32bit, and 3.2GB RAM.  

6-1- Test instances 
  Due to the lack of benchmark numerical examples for P-PIRP because of being relatively a new 
topic, here are we use the numerical examples produced by (Archetti et al. 2007) that has been 
generated for IRP and make some changes in order to consider the production of perishable product as 
following. 
− The planning horizon H:3,6; 
− The time that product get perished τ²³´ = 2 when H=3 and τ²³´ = 2,3 when H=6; 
− Number of retailers,n, would be 5K that k= 1,2, … , 10 when H=3 and k= 1,2, …, 6 when H=6 
− Demand of each customer i in each period is dLPthat assumed to be fixed in all periods so that 
dLP = dL for t ∈ T and is selected randomly from interval [10, 100] 

− The initial inventory levelIÃ&Of fresh products of customer i,is CÃ − DÃAnd for thesupplier 
warehouseI&&Is zero. 

− Inventory holding cost of one unit of product by each customer i is HÃThat is randomly chosen 
from [0, 0.05] 

− Inventory holding cost of one unit of product by supplier is H&Is 0.03 

− The vehicle capacity Q is equal to 1.5 ∗ ∑ 4'!'∈a  

− Transportation cost CÃÆRelated to edge (i,j) is CÃÆ = ⌊	ÈÉXÃ − XËÌh + ÉYÃ − YËÌh⌋where the pints 

ÉXÃ, YËÌAre selected randomly form interval [0, 100] 

Start 

Generate the initial population   

Finish 

Generate new children using crossover and mutation    

Select the best solution 

Repair all infeasible initial solutions 

Neighboring search for improving solutions 

Neighboring search for improvement of children 

Stopping criteria      
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− Production setup cost is 5*�Ï�50�h + �50�h� as five-fold of the transportation cost from the supplier 
location to a middle distance customers. 

 

6-2- Experimental results 
   For our performance analysis, we compare the results of running each instance using EGA and 
CPLEX. All the instances run in CPLEX with the time limit of 3600seconds and we record the lower 
bound and best integer found as upper bound. The initial parameter values for EGA can be seen in 
table 2. By practice, we have found that the best values for Probability of crossover (Pc) and 
Probability of mutation (PM) is better to be fixed at values that can be seen in there. The population 
size(NGA)  in our study is considered ratherly low in comparison to non-repairing based GA 
approaches that needs almost lots of generations to remain enough feasible population after omitting 
infeasible solutions resulted from mutation and crossover. We also found that the large number of 
population size have negative effect on the performance of GA due to the fact of large time 
consumption of repairing mechanisms. This reason also stimulate us to devise only one stopping 
criteria as time limitation and did not consider other criteria like number of generation and generation 
gap.  

Table 2. The initial parameter values for GA 

parameter value number of customers 
Probability of crossover  (Pc)   0.8 n={5,10 , …, 50} 

Probability of mutation  (PM)   0.2 n={5,10 , …, 50} 

Population size (NGA)   
10 n={ 5, 10, 15, 20 } 
16 n={20, 25, 30, 35} 
20 n={35, 40, 45, 50} 

Stopping criterion (time in seconds) 3600 n={5, 10 , …, 50} 

 
For EGA, we performed 10 runs for all instances and recorded the average results. The results of 

the implementing the instances using both EGA and CPLEX solver are summarized in tables 3, 4, 5. 
On the left hand side of tables, we bring the name of each instance, number of the customer (or 
retailer), shelf life time of perishable product, and planning horizon of instance, respectively. The 
number of binary variables of each instance is recorded, too. The column heading LP relaxation is the 
linear programming model runs in CPLEX by relaxing the subtour elimination variables and related 
constraints to gain an alternative lower bound for each instance and for judging better about the lower 
bound found by CPLEX. Due to the existence of minor differences between these values, we can rely 
more on the CPLEX lower bounds. The result of CPLEX solver runs including the lower bound and 
upper bound, and the gap between these two values and CPU run time with the limitation of 3600s is 
shown in the tables, too. It is worth mentioning that we have extended the default memory amount 
needed for running the medium to large size instances otherwise the upper bound for them cannot be 
reached. The gap for EGA is calculated with comparing the average objective function values and the 
lower found by CPLEX solver as following. 

8�Ð½>bBÑ = UBÓÔÕÖ× − LBÓÔÕÖ×
ÐÁÓÔÕÖ× ∗ 100 

For EGA, we reported the average objective function values by running 10 times of each 
instances and its needed time with the limitation of 3600s. The gap for EGA is calculated with 
comparing the average objective function values and the lower bound found by CPLEX solver is as 
following. 

½��bBÑ = UBÖÙÚ − LBÓÔÕÖ×
ÐÁÓÔÕÖ× ∗ 100 
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In the improvement column, we reported improvement resulting from implementing the EGA 
by calculating its gap and the CPLEX gap and is as following. 

���0\5*�*�� = UBÖÙÚ − LBÓÔÕÖ×
ÐÁÓÔÕÖ× ∗ 100 

    The solutions in bold are the solution found by EGA that is better than the upper bound found by 
CPLEX at the same time limitation in tables 3, 4, 5.For ease of the comparison of CPU time of 
CPLEX solver and proposed EGA, we put the data of those tables into the graphs as can be seen in 
figure 15. Totally, as the number of the customers grows, the CPU time for both the EGA and CPLEX 
solver increase as well. This increase for CPLEX is drastic when the planning horizon include 3 
periods (p=3) and n=20 customers. When this is the matter of p=6 time periods in planning horizon 
this would be n=10 customers. Considering the shelf life time 

@ABC, EGA would take more CPU time when the planning horizon increase from p=3, in the left hand 
side graph of the figure 15, to p=6 which is two graphical charts in the right hand side. The relation 
between CPU time when p=6 and shelf life time cannot be interpreted. The CPLEX gap, proposed 
EGA gap and the improvement in gap is graphed in figure 16. The improvement in gap found by EGA 
in comparison with the gap found by CPLEX solver shows an increasing trend in all the instances. 
Besides, It shows that upper bound found by EGA almost in most of the cases is better that upper 
bound found by CPLEX. When p=3 (table3), EGA can find the optimal solution for small problems 
(n=5,10) to medium instances (n=15,20) and for large size problems (n=30,…,50), EGA can find 
better solution compare to CPLEX. The increasing trend of improvement confirms it, too. When p=3 
and τ²³´ = 2 (table 4), the performance of EGA is acceptable for small instances and large ones 
(n=25,30), but this is not the fact in the medium problems. By letting the shelf life time extended 
more, with the same planning horizon (table 5), EGA is showing higher performance only for medium 
to large instances. We have brought the resulted objective function of EGA for a sample instance P-
PRIP-2-3-1N05 to show how this value changes as the number of generation changes in figure 17. 
The comparison of the objective function values of EGA and CPLEX upper bound for all instances 
are provided in figure 18. Both EGA and CPLEX show an increasing trend in all instances as the 
number of customers grows and it is evident that EGA report dominant upper bound compare to the 
CPLEX. For the two pictures on the right hand site of the figure 18, which has similar number of 
periods but different shelf life time of product, both CPLEX and EGA report higher values in 
comparison with the longer shelf life time of product. Additionally, EGA shows steadier increasing 
trend in large size instance than CPLEX that confirm the validity of the EGA upper bounds as the 
number of the customers grows. 

 

7- Conclusion and future studies 
   This study is devoted to provide mathematical modeling and discovering the solution to the problem 
of production inventory-routing problem (PIRP) in a two echelons supply chain system where the 
vendor must decide when and how much to produce, deliver products to the customer’s warehouse 
through wisely selected routs. The special case of the perishable products was considered (P-PIRP) 
and is modeled as mixed integer programming (MIP). Due to the complexity of the problem and 
disability of the exact solution methods to bring about optimal solutions, we get interested in 
metaheuristic for getting good enough and approximate solutions. Genetic Algorithm as one of the 
high performance metaheuristic was selected and to empower its searching mechanisms through 
solution space, we embedded several different repairing mechanisms. The problem runs through some 
different generated instances that show some superiority in comparison to the business application. 
For shedding light on the way of following up of this study, using other evolutionary metaheuristic for 
solving this problem may offer some improvements in the CPU time of the solution approach which is 
mostly resulting from repairing mechanisms. 
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Table 3. Results for		ÛÜÝÞ = ß	, H=3 

Instances’ name n τ²³´ H 
# Binary 
variables 

LP relaxation  CPLEX solver  EGA  
Improvement c 

(%) 
Lower 
Bound 
(LB) 

 
 
 

Lower 
Bound 
(LB) 

Upper 
Bound 
(UB) 

Gap a 
(%) 

Time 
(s) 

 
 
 

Objective 
function 

value 
Time 
(s) 

Gap b 
(%)  

P-PIRP-2-3-1N05 5 2 3 78 1296.62  1499.62 1499.62 0.00 2.03  1499.62 2.03 0.00  0.00 

P-PIRP-2-3-2N10 10 2 3 303 1110.55  1815.96 1815.96 0.00 15.97  1815.96 8.79 0.00  0.00 

P-PIRP-2-3-1N15 15 2 3 678 1837.43  2130.19 2130.19 0.00 35.21  2145.19 29.08 0.70  0.00 

P-PIRP-2-3-1N20 20 2 3 1203 1714.09  2153.09 2153.09 0.00 217.53  2153.09 23.97 0.00  0.00 

P-PIRP-2-3-1N25 25 2 3 1878 2059.38  1930.01 2654.56 37.54 3600.77  2665.36 53.61 38.10  -1.49 

P-PIRP-2-3-1N30 30 2 3 2703 2285.12  2006.15 3096.00 54.33 3600.75  2908.40 234.70 44.97  17.23 

P-PIRP-2-3-1N35 35 2 3 3678 2212.56  2217.56 3813.85 71.98 3600.83  3266.91 623.76 47.32  34.26 

P-PIRP-2-3-1N40 40 2 3 4803 2404.79  2017.30 3293.45 63.26 3600.69  3094.05 323.37 53.38  15.62 

P-PIRP-2-3-1N45 45 2 3 6078 2708.98  1928.23 4549.78 135.96 3601.25  3323.37 532.25 72.35  46.79 

P-PIRP-2-3-1N50 50 2 3 7503 2641.25  2256.66 4507.39 99.74 3601.54  3548.42 666.41 57.24  42.61 
a   àáâãäåæ.çáâãäåæ

Õèâãäåæ ∗ 100 

b   àáåéê.çáâãäåæ
Õèâãäåæ ∗ 100	

c   ë³ìâãäåæ.ë³ìåéê
ÙBÑâãäåæ ∗ 100 

  



53 

 

Table 4. Average results for		ÛÜÝÞ = ß	, H=6 

 
 

Table 5. Average results for		ÛÜÝÞ = í	, H=6 

 
  

Instances’ name � τ²³´ H 
# Binary 
variables 

LP relaxation  CPLEX solver  EGA  

Improvement 
(%) 

Lower  
Bound 
(LB) 

 
 
 

Lower 
Bound 
(LB) 

Upper 
Bound 
(UB) 

Gap 
(%) 

Time 
(s) 

 
 
 

Objective 
function 

value 

Time 
(s) 

Gap 
(%) 

P-PIRP-2-6-1N05 5 2 6 156 3818.36  4501.11 4501.11 0.00 58.79  4501.91 349.71 0.02  0.00 
P-PIRP-2-6-2N05 5 2 6 156 3270.17  3775.08 3775.08 0.00 21.17  3775.67 109.06 0.02  0.00 
P-PIRP-2-6-1N10 10 2 6 606 3794.4  4052.64 6363.01 57.01 3600.68  6048.53 881.89 49.25  13.61 
P-PIRP-2-6-2N10 10 2 6 606 3836.86  4306.38 6384.34 48.25 3600.84  6301.61 761.01 46.33  3.98 
P-PIRP-2-6-1N15 15 2 6 1356 4858.91  4848.76 6846.25 41.20 3600.73  6337.95 1112.71 30.71  -1.34 
P-PIRP-2-6-2N15 15 2 6 1356 4230.843  4184.99 7016.72 30.31 3600.00  7118.95 1004.67 70.11  -3.61 
P-PIRP-2-6-1N20 20 2 6 2406 4257.775  4052.64 7085.48 74.84 3600.58  7015.96 1486.99 73.12  2.29 
P-PIRP-2-6-2N20 20 2 6 2406 4156.47  4259.49 6909.70 62.22 3602.64  7146.22 3262.17 67.77  -8.92 
P-PIRP-2-6-1N25 25 2 6 3756 5013.43  4981.78 14827.67 197.64 3600.00  9277.31 3527.30 86.22  56.37 
P-PIRP-2-6-2N25 25 2 6 3756 5474.011  5416.49 10357.36 91.22 3602.50  9619.70 3244.14 77.60  14.93 
P-PIRP-2-6-1N30 30 2 6 5406 5533.948  5599.21 13334.36 138.15 3600.83  10479.60 3360.08 87.16  36.91 
P-PIRP-2-6-2N30 30 2 6 5406 5771.73  5613.23 13929.96 148.16 3600.74  11594.74 3531.36 106.56  28.08 

Instances’  name � τ²³´ H 
# Binary 
variables 

LP relaxation  CPLEX solver  EGA 
Improvement 

(%) Lower Bound 
(LB) 

 
 
 

Lower 
Bound 
(LB) 

Upper 
Bound 
(UB) 

Gap 
(%) 

Time 
(s)  

Objective 
function 

value 

Time 
(s) 

Gap 
(%) 

P-PIRP-3-6-1N05 5 3 6 156 2629.71  3322.87 3322.87 0 44.58  3342.87 129.08 0.06  -0.06 
P-PIRP-3-6-2N05 5 3 6 156 2319.48  2791.31 2791.31 0 23.82  2791.6 160.73 0.01  -0.01 
P-PIRP-3-6-1N10 10 3 6 606 2991.74  2938.18 4327.43 32.11 3601.29  4044.68 947.6 37.66  -17.28 
P-PIRP-3-6-2N10 10 3 6 606 3123.53  4501.02 5388.18 19.71 3601.29  5299.58 958.51 17.74  9.99 
P-PIRP-3-6-1N15 15 3 6 1356 3399.854  3435.69 4526.64 31.75 3600.54  4837.15 2395.87 41.04  -26.10 
P-PIRP-3-6-2N15 15 3 6 1356 2806.227  2999.14 4961.45 65.43 3635.67  4893.63 2917.67 16.93  3.46 
P-PIRP-3-6-1N20 20 3 6 2406 3148.892  3272.62 6548.06 100.09 3600.82  6141.12 2857.73 87.65  12.42 
P-PIRP-3-6-2N20 20 3 6 2406 3002.927  3077.92 5889.5 91.35 3600.79  5608.86 3438.78 82.23  9.98 
P-PIRP-3-6-1N25 25 3 6 3756 3438.194  3443.65 8478.88 146.22 3556.69  7455.72 3153.86 116.51  20.32 
P-PIRP-3-6-2N25 25 3 6 3756 3802.336  3677.8 8514.19 131.50 3466.59  7855.82 3470.89 113.6  13.61 
P-PIRP-3-6-1N30 30 3 6 5406 3878.957  3872.01 9853.69 154.48 3250.00  8499.37 3619.49 119.51  22.64 
P-PIRP-3-6-2N30 30 3 6 5406 3964.069  3914.00 16013.72 309.14 3598.09  8214.33 3242.99 109.87  64.46 
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Figure 15. CPU time comparison for the CPLEX solver and proposed EGA  

 

  
Figure 16. Comparison of CPLEX gap, proposed EGA gap, and the improvement 

 

 
Figure 17.The resulted objective function through different generations for the instance P-PIRP-2-3-1N05 

 

   
Figure 18.The comparison of the objective function values of EGA and CPLEX upper bound 
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