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Abstract 
Spare parts with intermittent demand pose obstacles in forecasting and 

inventory decisions since the demand pattern does not follow a regular 

probability distribution. Therefore, the significant difficulties in planning 

regard to demand quantity and arrival time. A well-structured strategy is 

aggregating the demand in low-frequency time intervals to reduce the zero-

demand occurrence. In this paper, we consider a planning model for a 

repairable spare part supply chain (SPSC) and examine the effect of 

aggregation on cost, stock level, and shortage. The planning model includes 

the repair and inventory decisions in an SPSC that uses the Multi-echelon 

Technique for Recoverable Item Control (METRIC) to formulate an 

inventory model. The empirical study from the Iranian Oil Company is used 

to evaluate the benefit of demand aggregation. The results show that 

choosing an optimal level of aggregation decreases the stock level and 

shortage. It also improves the demand estimation gap. The managerial 

insights help the practitioners make robust decisions since the coefficient 

of variation decreases. 

Keywords: Supply chain, spare part, aggregation, planning, inventory 

 

1-Introduction 
   Spare parts supply chain planning involves different repair and inventory decisions that significantly affect 

performance. Repairable spare parts are the primary resources used in repairing operations, accounting for 

about 80% of the spare parts' values (Driessen, 2018). Every industry considers profitability a major objective, 

so maintenance and repair should be set to achieve these goals by keeping resources such as equipment in 

acceptable working conditions to prevent possible shutdowns. Spare parts used in repairing equipment can be 

low-demand and high-value and may have a long supply time, so improving the planning reduces the shortages.       

Many companies hold spare part stocks to minimize downtime costs and ensure equipment availability. The 

main difficulty arises when we deal with low-demand spare parts since a high inventory level causes huge 

inventory costs while shortage imposes shutdown costs (Pinçe et al., 2021). The trade-off between the repair 

and inventory decisions gives the optimized stock level. Sherbrooke, (1968a) is the first researcher to develop 

a METRIC1  model for optimizing the stock level of repairable spare parts with low demand to minimize cost.    

Spare parts with intermittent demand need a specific technique to prepare data for use in the METRIC model 

due to zero demand in irregular time intervals (Babai et al., 2012). Inventory control decisions for intermittent 

items are used to determine order planning. The related decision will be made more wisely if a more accurate  

demand estimation exists. Demand estimation and stock control improvements can be interpreted as prominent 

cost reductions. Demand estimations are usually related to high deviations due to the origins of variation, such 

as demand occurrence and quantity, so the aggregation approach affects the errors. A vendor may implement 
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the point-of-sale data to forecast at the lower level, while the manufacturer may use the aggregated demand to 

forecast production planning (Chopra & Meindl, 2007). The aggregation, disaggregation, and levels can be 

affected over time, so the interaction between the planning and aggregation levels is noticeable to recognize 

the future structures (Babai et al., 2021; Mircetic et al., 2022). 

   The main problem happens when zero observations exist. A well-organized strategy to deal with unusual 

patterns is aggregating demand in lower-frequency intervals and eliminating zero observations. The literature 

review shows that aggregation is used in many fields such as financial, industrial, etc. while examining the 

effect of aggregation for intermittent demand is rarely discussed, especially when considering the planning 

decisions regarding the spare part supply chain. This paper analyzes the impact of aggregation levels on a 

mathematical model for the spare parts supply chain when intermittent demand exists, validated by a case 

study in an oil company. The benefit of using aggregation is to reduce zero-demand occurrences; thus, the 

planning decisions will be more reliable due to reducing variations.   

   The rest of the paper is structured in the following sections: First, section 2 provides the literature review. 

Then, the problem statement is explained in section 3. The model formulation is presented in section 4. The 

results are presented in section 5, followed by section 6, which describes the discussions. Finally, conclusions 

and future research opportunities are expressed in section 7.  

2-Literature review 
   This section reviews the works regarding spare part supply chain planning and forecasting. Finally, the 

research gaps are presented. (Gross & Ince, 1978) considered the maintenance and repair planning of machines 

and specified the number of spare parts and repair channels for stochastic failure in an M/M/c queuing network. 

The model's objective function is to maximize the availability of spare parts. Walker, (1997) investigated the 

number of machines and to find the optimal inventory level of spare parts to achieve the expected reliability. 

Lapide, (1998) states that the percentage variations will be lower for the aggregated data than for individual 

items. Aggregation usually causes a cut down on variance since the fluctuations in the data of one item are 

affected by the other items, so the total variance of the aggregated data is reduced, thereby enhancing the 

forecasting accuracy (DeLurgio, 1998). Axsäter, (2003) presented a single-item and single-echelon model with 

a continuous review policy considering the unilateral transshipment between warehouses to reduce shortages. 

Moini et al., (2021) considered a spare part supply chain that considers the stochastic demand, but demand 

estimation is not discussed. Jain & Raghavan, (2009) published a paper regarding inventory planning in a 

multi-tier supply chain. In this network, manufacturers, warehouses, and vendors are considered. M/M/∞ 

model is used for a logistics hub and M/M/1 for manufacturing centers to assess performance. Nikolopoulos 

et al., (2011) examined the effect of aggregation levels for spare parts with intermittent demand. They 

considered the aggregation level equal to lead time plus review period (L+R) and compared the disaggregation 

results with aggregation. Farhadi, (2013) presented a mathematical model that maximizes the availability of 

spare parts considering redundancy and the number of parallel spare parts. Redundancy is analyzed by the K-

out-of-N system considering different quality of spare parts. The model determines the number of orders and 

the quality, considering the budget and availability of the system. The model is formulated by the Markov 

process and tree diagram. van Jaarsveld et al., (2015)  developed an integer programming model regarding a 

multi-location, single-echelon, multi-item spare parts supply chain that uses a continuous review policy. They 

analyzed lateral transshipment to assess the effect on performance. Keizer et al., (2017) developed a multi-

item maintenance supply chain model to minimize the expected cost by formulating the uncertainty using the 

Markov process considering replenishment policy (s, S). M. Assadi et al., (2019) formulated queuing models 

at repair centers to obtain the optimal capacity and maximize availability. Qin et al., (2021) formulated two 

models with cost and profit objective functions for a repairable spare part supply chain that considers 

performance evaluation in servicing centers by implementing a new formulation of uncertain demand. The 

researchers focus on the repairable spare parts supply chain that considers various decisions such as lateral 

transshipment, inventory planning, and system performance measurement. They formulate the uncertain 

demand in the METRIC model using the Markov process, while low-demand spare parts planning problems 

are not well investigated.  

   Spare parts with intermittent demand are commonly discussed when zero demand happens. Many models 

are used to forecast this type of demand, such as (Croston, 1972), which considers demand quantity and inter-

demand intervals. Also,  Syntetos & Boylan, (2005) presented the Syntetos-Boylan approximation (SBA), and 

(Babai et al., 2019) developed a modified SBA (MSBA) by manipulating the smoothing parameters. Willemain 

et al., (2004) proposed a bootstrap method that forecasts the intermittent demand for spare parts by generating 

random data from historical data. This method obtains the demand quantity and occurrence, providing more 
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accurate results. Amin-Naseri & Tabar, (2008) examined recurrent neural networks (NN) for forecasting the 

lumpy demand of spare parts. This method outperforms the parametric models such as Croston, SBA, and 

MSBA. Amirkolaii et al., (2017) analyzed the neural network for single- and multi-feature demand. The results 

show that adding higher features improves the forecasting accuracy for spare parts with intermittent demands. 

Dodin et al., (2021) used a machine learning (ML) method for aircraft spare parts with intermittent and non-

intermittent demands when discussing the aftermarket. This method results in better accuracy and run time. 

The increasing trend of attention on well-balanced integration between planning and forecasting is under the 

focus of many researchers, as shown by (Basten et al., 2015; Driessen, 2018; Goltsos et al., 2022) since it 

highly affects the In this study, we contribute to the existing literature in repairable spare parts by presenting 

a model that considers planning decisions and examines the level of demand aggregation and integration of 

the decisions. Concerning the reviewed papers, the contributions of this study would be organized as follows: 

 Considering the level of demand aggregation for the spare parts with intermittent demand 

 Integrating the planning model concerning analyses of the integration of decisions 

 Developing the METRIC model by considering the effect of intermittent demand and aggregation level 

 Presenting a planning model concerning integrated repair and inventory decisions 

 

3- Problem statement 
   The spare part supply chain is illustrated in figure 1. The developed model for the repairable spare part supply 

chain considers the planning decisions such as repair and inventory. The network consists of installation bases, 

inspection centers, repair centers, and warehouses. The failed equipment is transferred from installation bases 

to inspection centers, where the inspection team decides on repairing or disposing. The equipment which enters 

the repair centers is repaired by replacing the spare parts which are supplied by the central warehouses. As the 

equipment is repaired, it is stocked in warehouses or delivered to the installation base. Spare parts used in the 

equipment are high-value and low-demand, while they need high responsiveness. Hence, companies may hold 

massive inventories of spare parts to meet the demand, but the inventory costs may be too high because of the 

high value of these items. A well-organized inventory model with performance assessment is suggested that 

considers the queues in warehouses. METRIC is one of the models for this purpose which assesses the 

performance in the warehouses by formulating the queuing of order replenishment. A critical factor in 

planning, especially in the spare part supply chain, is the items' demand patterns directly affecting the 

uncertainty. The demand type of spare parts is divided into four main categories such as smooth, lumpy, 

intermittent, and erratic. This classification is determined based on the variation of quantity and demand inter-

arrival. According to this definition, smooth demand has the lowest variation in demand quantity and inter-

arrivals, while the lumpy type has a high value for both. The quantity variation for erratic demand is high, but 

the inter-arrival variation is low. The last one, the intermittent demand type, is against the erratic. We focus on 

intermittent demand and examine the effect of aggregation level on planning performance. The aggregation 

can be performed for a group of items, places, periods, and other possible criteria. In this study, the aggregation 

is examined over time. Considering the aggregation becomes essential since it reduces the variation by merging 

the multiple origins of data. The developed model discusses the planning decisions considering the effect of 

aggregation levels. The following list describes the details of the decisions made by the model: 

 Stock level in central and local warehouses 

 Expected waiting time for order replenishment 

 The flows between the facilities 

 The aggregation level for each spare part 

 Repairing or not repairing the equipment 

  

4- Mathematical model 
   The model is described in this section. First, we present the assumptions, then the parameters and variables 

are shown. Finally, the objective function and constraints are explained.  
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4-1- Assumptions 

 The changes in cost will be subtle over the time 

 Shortages will not happen in central warehouses 

 Each equipment (LRU1) has several spare parts (SRU2) 

  LRUs’ demands depend on spare parts (SRUs) 

 Each SRU lies only in one LRU 

  (S-1, S) replenishment policy is implemented 

 

 

                                                           
1 Line Replaceable Unit 
2 Shop Replaceable Unit 

Table 1. A brief of the literature review 
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Fig 1. The perspective of the spare part supply chain  

 

4-2-  Indices and sets 

𝑠 ∈ 𝑆 , 𝑠1, 𝑠2 ⊆ 𝑠 Equipment / Spare parts 

𝑗, 𝑗′ ∈ 𝐽 
𝑤, 𝑟, 𝑖 , 𝑐, 𝑠′ ⊆ 𝑗, 𝑗′ 

All nodes 

𝑤, 𝑤′ ∈ 𝑊 
𝑤1 ⊆ 𝑤; 𝑤2 ⊆ 𝑤 

Warehouses, Central and Local warehouses 

𝑟 ∈ 𝑅; 𝑟1 ∈ 𝑟; 𝑟2 ∈ 𝑟 
Repair centers; Inner-company; Outer-company repair 

centers 

𝑖 ∈ 𝐼 Inspection center 

𝑐 ∈ 𝐶 Installation bases 

𝑡 ∈ 𝑇 Period (time interval) 
 

 

4-3- Parameters 

𝑑𝑠𝑐𝑡 Spare part s demand (failure) at installation base c  in period t 

𝑡𝑐𝑠𝑗𝑗′  Transportation cost from node j to 𝑗′ 

𝑝𝑢𝑠1𝑠2
 Probability of demand for spare part 𝑠1 in equipment 𝑠2 ∈ 𝑠  in the repair center 

ℎ𝑠𝑤 Spare part s holding cost in warehouse w  

𝐼𝑠𝑤𝑡
0  Initial inventory of spare part s in warehouse w in period t 

𝜏𝑠𝑤1𝑤2
 Traveling time of spare part s from central warehouse 𝑤1 to local warehouse 𝑤2 

𝜋 ′
𝑠 Shortage cost of spare part s 

𝜏𝑠𝑤1
 

= ∑ 𝜇𝑠𝑠′𝑤1

𝑠′

 Travel time of spare part s from supplier 𝑠 ′ to central warehouse 𝑤1 

𝐺𝑠𝑖 Probability of repairability of equipment s in inspection center i 

𝑟𝑐𝑠𝑟 Repair cost of equipment s in repair center r 
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4-4- Decision variables 

𝑥𝑠𝑐𝑖𝑡
′  Amount of equipment s from installation base c to inspection center i in period t 

𝑦𝑠𝑖𝑟𝑡
′  Amount of equipment s from inspection center i to repair center r in period t 

𝑥(2)
𝑠𝑟𝑤1𝑡

 Amount of equipment s from repair center r to the central warehouse 𝑤1 in period t 

𝑦(1)
𝑠𝑤1𝑤2𝑡 Amount of equipment s from central warehouse 𝑤1 to local warehouse 𝑤2 in period t 

𝑦(2)
𝑠𝑟𝑤2𝑡 Amount of equipment s from repair center r to local warehouse 𝑤2 in period t 

𝑧(1)
𝑠𝑤2𝑐𝑡 Amount of equipment s from local warehouse 𝑤2 to installation base c in period t 

𝑧(2)
𝑠𝑟𝑐𝑡 Amount of equipment s from repair center r to installation base c in period t 

𝑤𝑎𝑠𝑤1𝑡 Spare part s replenishment waiting time in the central warehouse 𝑤1 in period t 

𝑤𝑠𝑠𝑤1𝑟𝑡 Amount of spare part s from central warehouse 𝑤1 to repair center r in period t 

𝐼𝑠𝑤𝑡
+  Average on-hand inventory of spare part s in warehouse w in period t 

𝐼𝑠𝑤𝑡
−  Average shortage of spare part s in warehouse w in period t 

𝑠𝑡𝑠𝑤𝑡 Stock level of spare part s in warehouse w in period t 

𝜆𝑠𝑤𝑡 Demand rate of spare part s in warehouse w in period t 

𝑎𝑠 Number of periods for aggregating spare part s demand 

𝑢𝑎𝑠
 Aggregated demand of spare part s over   𝑎𝑠  period(s) 

 

 

4-5- Objective function and constraints 
   The objective function aims to minimize total cost, which is presented in equations (4-1-1) to (4-1-11). 

Transportation costs are presented in equations (4-1-1) to (4-1-8). Equations (4-1-1) - (4-1-3) respectively 

show the transportation costs from repair centers to central warehouses, local warehouses, and installation 

bases. The transportation costs between the warehouses are presented in equation (4-1-4). Equation (4-1-5) 

computes the traveling cost from local warehouses to installation bases. Equations (4-1-6) expresses the 

transportation cost from installation bases to inspection centers and equation (4-1-7) calculates the 

transportation costs from inspection to repair centers. The traveling cost of spare parts used in repairing the 

equipment, from central warehouses to repair centers, is defined in equation (4-1-8). The repair cost is 

presented in equations (4-1-9). Equations (4-1-10) and (4-1-11) calculate holding and shortage costs. 

𝑀𝑖𝑛 𝑍𝑡 = ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑟𝑤1
𝑥(2)

𝑠𝑟𝑤1𝑡

𝑤1𝑟𝑠𝑡

                                     (4-1-1) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑟𝑤2
𝑦(2)

𝑠𝑟𝑤2𝑡

𝑤2𝑟𝑠𝑡

                                     (4-1-2) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑟𝑐𝑧𝑠𝑟𝑐𝑡
(2)

𝑐𝑟𝑠𝑡

                                     (4-1-3) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑤1𝑤2
𝑦(1)

𝑠𝑤1𝑤2𝑡

𝑤2𝑤1𝑠𝑡

                                     (4-1-4) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑤2𝑐

𝑐𝑤2𝑠

𝑧𝑠𝑤2𝑐𝑡
(1)

𝑡

                                     (4-1-5) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑐𝑖

𝑖𝑐𝑠

𝑥𝑠𝑐𝑖𝑡
′

𝑡

                                     (4-1-6) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑖𝑟𝑦𝑠𝑖𝑟𝑡
′

𝑟𝑖𝑠𝑡

                                     (4-1-7) 

+ ∑ ∑ ∑ ∑ 𝑡𝑐𝑠𝑤1𝑟1

𝑟1𝑤1𝑠

𝑤𝑠𝑠𝑤1𝑟1𝑡

𝑡

                                     (4-1-8) 
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+ ∑ ∑ ∑ ∑ 𝑟𝑐𝑠𝑟𝑦𝑠𝑖𝑟𝑡
′

𝑟𝑖𝑠𝑡

                                  (4-1-9) 

+ ∑ ∑ ∑ ℎ𝑠𝑤𝐼𝑠𝑤𝑡
+

𝑤𝑠𝑡

                                   (4-1-10) 

+ ∑ ∑ ∑ 𝜋′
𝑠 𝐼𝑠𝑤𝑡

−

𝑤𝑠𝑡

                                   (4-1-11) 

 

   The balance between the reverse flow to the inspection center and demand is calculated by equation (4-2). 

Also, the flow from repair centers and warehouses should be equal to demand, as shown in equation (4-3).  

∑ 𝑥𝑠𝑐𝑖𝑡
′

𝑖

= 𝑑𝑠𝑐𝑡 ∀𝑠, 𝑐, 𝑡                        (4-2) 

∑ 𝑧(1)
𝑠𝑤2𝑐

𝑤2

+ ∑ 𝑧(2)
𝑠𝑟𝑐

𝑟

= 𝑑𝑠𝑐 ∀𝑠, 𝑐                        (4-3) 

 

   Equations (4-4) – (4-11) present the METRIC model constraints. The basic METRIC model is developed by 

(Sherbrooke, 1968b) for repairable items that is further extended from the aspect of planning and network 

design decisions, e.g., some researchers considered multi-item and location characteristics. Also, others added 

capacity limitations and lateral transshipments. The average on-hand inventory is shown in equation (4-4). 

Equation (4-5) is the demand of locals from each central warehouse. The average shortage in the central 

warehouse is computed by equation (4-6). The little law in equation (4-7) computes the average waiting time. 

The average replenishment time in local warehouses is presented in equation (4-8), which is the sum of average 

waiting time and constant travel time between central and local warehouses. The demand of each local 

warehouse is computed in equation (4-9). Then, the average on-hand and shortage inventory of local 

warehouses is shown in equation (4-10) and (4-11). The balance equations in central and local warehouses are 

presented in equations (4-12) and (4-13). 

 

𝐼𝑠𝑤1𝑡
+ = ∑ 𝑗. 𝑃(𝑋 = 𝑗)

𝑠𝑡𝑠𝑤1𝑡

𝑗=1

= ∑ 𝑗
𝑒−𝜆𝑠𝑤1𝑡𝜏𝑠𝑤1 (𝜆𝑠𝑤1𝑡𝜏𝑠𝑤1

)𝑠𝑡𝑠𝑤1𝑡−𝑗

(𝑠𝑡𝑠𝑤1𝑡 − 𝑗)!

𝑠𝑡𝑠𝑤1𝑡

𝑗=1
 

∀𝑠, 𝑤1,t 

            (4-4) 

𝜆𝑠𝑤1𝑡 = ∑ 𝑦𝑠𝑤1𝑤2𝑡
(1)

𝑤2

            (4-5) 

𝐼𝑠𝑤1𝑡
− = 𝐼𝑠𝑤1𝑡

+ − (𝑠𝑡𝑠𝑤1𝑡 − 𝜆𝑠𝑤1𝑡𝜏𝑠𝑤1
)            (4-6) 

𝑤𝑎𝑠𝑤1𝑡 =
𝐼𝑠𝑤1𝑡

−

𝜆𝑠𝑤1𝑡
, 𝜆𝑠𝑤1𝑡 ≠ 0            (4-7) 

�̄�𝑠𝑤2𝑡 = ∑(𝜏𝑠𝑤1𝑤2
+ 𝑤𝑎𝑠𝑤1𝑡)

𝑤1

 

∀𝑠, 𝑤2, t 

           (4-8) 

𝜆𝑠𝑤2𝑡 = ∑ 𝑦𝑠𝑤1𝑤2𝑡
(1)

𝑤1

            (4-9) 

𝐼𝑠𝑤2𝑡
+ = ∑ 𝑗𝑠 ×

𝑒−𝜆𝑠𝑤2𝑡�̄�𝑠𝑤2 (𝜆𝑠𝑤2𝑡�̄�𝑠𝑤2
)𝑠𝑡𝑠𝑤2𝑡−𝑗𝑠

(𝑠𝑡𝑠𝑤2𝑡 − 𝑗𝑠)!

𝑠𝑡𝑠𝑤2𝑡

𝑗𝑠=1

             (4-10) 

𝐼𝑠𝑤2𝑡
− = 𝐼𝑠𝑤2𝑡

+ − (𝑠𝑡𝑠𝑤1𝑡 − 𝜆𝑠𝑤2𝑡�̄�𝑠𝑤2𝑡)             (4-11) 
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𝐼𝑠𝑤1𝑡
0 + ∑ 𝑥(1)

𝑠𝑠′𝑤1𝑡

𝑠′

+ ∑ 𝑥(2)
𝑠𝑟𝑤1𝑡

𝑟

= 𝑠𝑡𝑠𝑤1𝑡 + ∑ 𝑦(1)
𝑠𝑤1𝑤2𝑡

𝑤2

+ ∑ 𝑤𝑠𝑠𝑤1𝑟𝑡

𝑟

 
∀𝑠, 𝑤1          (4-12) 

𝐼𝑠𝑤2𝑡
0 + ∑ 𝑦(1)

𝑠𝑤1𝑤2𝑡

𝑤1

+ ∑ 𝑦(2)
𝑠𝑟𝑤2𝑡

𝑟

= 𝑠𝑡𝑠𝑤2𝑡 + ∑ 𝑧(1)
𝑠𝑤2𝑐𝑡

𝑐

 ∀𝑠, 𝑤2          (4-13) 

   Inner-company repair centers use tools, budgets, materials, and energy, while outer-company repair centers 

operate independently. Equation (4-14) calculates the spare parts required in inner-company repair centers that 

the central warehouses supply them. 

∑ 𝑤𝑠𝑠𝑤1𝑟1𝑡

𝑤1

≥ 𝑝𝑢𝑠𝑠1
× ∑ 𝑦𝑠1𝑖𝑟1𝑡

′

𝑖

 ∀𝑠, 𝑟1, 𝑡                           (4-14) 

 

   The amount of repairable equipment is computed in equation (4-15) based on the probability of repairability. 

equation (4-16) shows the flow balance in repair centers. Finally, the domains of variables are shown. 

∑ 𝑦𝑠𝑖𝑟𝑡
′

𝑟

= ∑ 𝐺𝑠𝑖 × 𝑥𝑠𝑐𝑖𝑡
′

𝑐

 ∀𝑠, 𝑖, 𝑡                           (4-15) 

 ∀𝑠, 𝑟, 𝑡                           (4-16) 

∑ 𝑦𝑠𝑖𝑟𝑡
′

𝑖

= ∑ 𝑥(2)
𝑠𝑟𝑤1𝑡

𝑤1

+ ∑ 𝑦(2)
𝑠𝑟𝑤2𝑡

𝑤2

+ ∑ 𝑧(2)
𝑠𝑟𝑐𝑡

𝑐

 

𝑥𝑠𝑐𝑖𝑡
′ ,  𝑦𝑠𝑖𝑟𝑡

′ ,  𝑥
𝑠𝑠′𝑤1𝑡

(1)
, 𝑥𝑠𝑟𝑤1𝑡

(2)
 ,  𝑦𝑠𝑤1𝑤2𝑡 

(1)
,  𝑦𝑠𝑟𝑤2𝑡

(2)
 , 

 𝑧𝑠𝑤2𝑐𝑡
(1)

,  𝑧𝑠𝑟𝑐𝑡
(2)

,  𝑠𝑡𝑠𝑤𝑡 ∈  ℤ+ ;    𝐼𝑠𝑤𝑡
+ ,  𝐼𝑠𝑤𝑡

− ∈  ℝ+ 

 

4-6- Aggregation formulation 
    The aggregation comes from minimizing the effect of variation on planning and forecasting. As an 

acceptable theoretical and practical concept, the variation decreases as the number of samples rises. 𝑢𝑎𝑠
 shows 

the aggregated demand and 𝑎𝑠 is the number of aggregated periods, shown in equation (4-17). The estimated 

demand per period is calculated by 
𝑢𝑎𝑠

𝑎𝑠
. First, we present the measures to evaluate the gaps between the 

aggregated demand, the forecasted demand, and real demand. The gap between the aggregated demand and 

real demand (ARG) is obtained by dividing the aggregated demand 𝑢𝑎𝑠
 by the number of aggregated periods  

𝑎𝑠. Another measure is defined as the gaps between the aggregated demand and forecasted demand (AFG). 

𝑢𝑎𝑠
= ∑ ∑ 𝑑𝑠𝑐𝑡

𝑐

𝑎𝑠

𝑡=1
          (4-17) 

𝐴𝑅𝐺𝑠𝑡 =
|

𝑢𝑎𝑠

𝑎𝑠
− ∑ 𝑑𝑠𝑐𝑡𝑐 |

∑ 𝑑𝑠𝑐𝑡𝑐
 

         (4-18) 

𝐴𝐺𝐹𝑠𝑡 =
|

𝑢𝑎𝑠

𝑎𝑠
− 𝐹𝑠𝑡|

𝐹𝑠𝑡
 

         (4-19) 

    

   The introduced measures will assess the performance of the aggregation strategy. The forecasts are obtained 

by three methods which are used for intermittent demand. These approaches are Croston, Syntetos-Bolyan 

approximation (SBA), and Modified SBA. Croston's method considers the historical data and the intervals 

between demand. The estimated demand is shown by 𝑧𝑡 and the estimate of the interval between demand by 

𝑝𝑠𝑡. This method uses 𝛼𝑠 as the smoothing factor. The interval between the last two periods with demand is 

denoted by 𝑞𝑠. Finally, the forecast is obtained in equation (4-22) by dividing 𝑧𝑠𝑡 by 𝑝𝑠𝑡 which results in 𝐹𝑠𝑡. 
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𝑧𝑠𝑡 = 𝑧𝑠 𝑡−1 + 𝛼𝑠(∑ 𝑑𝑠𝑐𝑡

𝑐

− 𝑧𝑠 𝑡−1)                         (4-20) 

𝑝𝑠𝑡 = 𝑝𝑠 𝑡−1 + 𝛼𝑠(𝑞𝑠 − 𝑝𝑠 𝑡−1)                         (4-21) 

𝐹𝑠𝑡 =
𝑧𝑠𝑡

𝑝𝑠𝑡
                         (4-22) 

The SBA method uses the Croston formula and modifies bias yielded by multiplying (1 −
𝛽𝑠

2
) to the basic 

Croston. 

𝐹𝑠𝑡 = (1 −
𝛽𝑠

2
)

𝑧𝑠𝑡

𝑝𝑠𝑡
      (4-23) 

    Modified SBA, shown in equation (4-24), is an extension to SBA, improving this method by treating the 

zero-demand occurrences differently. The formula follows equation (4-23) when demand is positive, but if the 

demand is zero, the first term in equation (4-24) is the estimated demand, while the second term is the demand 

interval. 

 

                        (4-24) 
�̂�𝑡 = 𝑧𝑡−1 

�̂�𝑠𝑡 = {
𝑝𝑠 𝑡−1                                      𝑝𝑠𝑡 ≤ 𝑝𝑠 𝑡−1

𝑝𝑠 𝑡−1 + 𝛽𝑠(𝑝𝑠𝑡 − 𝑝𝑠 𝑡−1)   𝑝𝑠𝑡 > 𝑝𝑠 𝑡−1
 

 

   The planning model is solved for each period by considering the aggregation or disaggregation strategy. The 

number of periods for aggregating the demand is called “aggregation level,” which composes the demand data 

used to solve the planning model. ARG and AFG assess the model performance and the objective function to 

determine the optimal aggregation level. The case study and results are discussed in the next section. 

5- Computations and results 
   Iran possesses about 9% of the global oil reserves worth 45.7 billion dollars, 4% of the world share. Spare 

parts are critical resources used in maintenance and repair operations. The National Iranian South Oilfields 

Company (NISOC) includes a region from Bushehr province to the north of Khuzestan, such as Ahwaz, 

Aghajari, Gachsaran, Kranj, Bibi Hakimeh, Marun, and Rag Sefid. Three central warehouses, six local 

warehouses, three repair centers, and ten installation bases are considered. The central warehouses are in 

Gachsaran and Ahwaz. The equipment is moved to the inspection center for technical inspection, where 

repairable items are assigned to repair centers. The data of spare parts are presented in table 2. The spare parts 

are divided into four categories in which spare parts with similar demand patterns lie in a category.  

 

Table 2. Spare parts data statistics 

 
spare parts category 

 1 2 3 4 

Mean 7.12 8.15 7.97 7.4 

Std. 4.29 4.52 4.64 5.14 

 C.V. 0.36 0.31 0.34 0.48 

Minimum 0 0 0 0 

Maximum 15 25 19 24 

   The model is solved using GAMS by a PC with a CPU @ 2.5 GHz and 16 GB RAM. Table 3 and figure 2 

show the cost for each aggregation level. It is observed that the cost decreases as the aggregation level 

increases. This trend continues until it reaches three levels, which means it is optimal to aggregate demand for 

three periods to reduce the possible errors. However, the cost tends to increase as the number of levels deviates 

from other values.  
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Table 3. Spare parts data statistics 

Aggregation level 1 2 3 4 5 

Cost 

(× 𝟏𝟎𝟔) 
1.3 1.27 1.25 1.26 1.28 

 

Fig2.  MASE vs. aggregation level  

 

   The results for MASE of moving average (MA) are presented in table 4 according to aggregation levels. It 

can be seen that the minimum MASE is obtained when demands for three periods are aggregated. It can be 

interpreted as the minimum gaps between the MA and the real demand. Although aggregation can reduce 

MASE, it raises errors since the high level of aggregating does not accurately reflect the demand of each 

period. 

Table 4. MASE for various aggregation level 

level MASE 

2 0.71 

3 0.69 

5 0.7 

7 0.73 

6- Discussions and analyses 
   The results provided in the previous section give a perspective of the model's applicability. In this section, 

the results are discussed to obtain enriched insights. 

6-1- MASE results for aggregation levels  
   The changes in MASE for MA are illustrated in figure 3. Another finding is the equal value of MASE for 

aggregation levels two and six, which points out the similar result for both levels. Therefore, they can be used 

interchangeably when the demand data is unavailable for other aggregation levels. This would be a valuable 

point since a lack of data can be a significant obstacle in many research so demand estimation can be important 

for this purpose.  

 

Fig 3.  MASE vs. aggregation level  
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   Different models are tested to examine the effect of smoothing parameters to tune these models. Following 

Croston’s result, MASE decreases as alpha increases, and SBA confirms but rises in MSBA. This parameter 

affects the estimations by the weight it gives to quantity or time interval. A prominent perception is that 

historical data is not always compelling since the demand pattern may change over time due to working 

conditions, equipment lifetime, and other factors. The analysis for MSBA shows that weight to historical data 

is more critical due to conditional forecast for MSBA, which depends on positive and zero demand quantity. 
 

Table 5. MASE for smoothing parameter 

Alfa Croston SBA MSBA 

0.03 0.65 0.68 0.61 

0.05 0.64 0.67 0.61 

0.1 0.63 0.66 0.62 

0.15 0.62 0.65 0.62 

0.2 0.59 0.53 0.62 

 

6-2- Results of model comparison and parameters 
   The effect of change in the smoothing parameter is also illustrated in figure 4. It can be seen that close MASE 

is observed for 𝛼𝑠 = 0.15, so the methods can be used interchangeably in this case. Additionally, MSBA 

outperforms other methods when the lowest value for the smoothing parameter is used. As we move to the 

right side, MSBA results in better MASE than other methods. These analyses can be used as a criterion for 

implementing various methods when the smoothing factor fluctuates. Another result that is analyzed in table 

6 and figure 5 illustrates MASE by changing the aggregation levels, which is comparable with previous 

outcomes. The aggregation levels between three and five result in optimal MASE, which is close to MA. 

Considering figure 6, it is evident that SBA has the minimum MASE while MA gives the maximum value. 

Croston and MSBA have comparative results so that they can be implemented interchangeably.  

 

Fig 4.  Effect of smoothing parameter on MASE  

 

 

Table 6. MASE for aggregation levels 

Aggregation level MASE 

2 0.71 

3 0.68 

5 0.67 

7 0.68 

9 0.69 

10 0.7 
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Fig 5.  MASE vs. aggregation level  

 

Table 7. MASE for aggregation levels 

Model SBA Croston MSBA MA 

MASE 0.53 0.59 0.61 0.69 

 

Fig 6.  MASE for various models  

 

6-3- Inventory performance 
   To evaluate the inventory performance of the developed model, we consider the stock level and shortage and 

trigger the changes. We assume that a shortage happens if the demand cannot be met from the stock. The 

expected shortage showed by 𝐼𝑠𝑤1𝑡
−   for each period which is calculated in equations (4-6) and (4-11). To 

compare the methods, we vary the demand and aggregation levels to calculate the resulting stock level and 

shortage volumes. We depict the related curve for stock level and shortage versus the mentioned parameters. 

First, we focus on the stock level analysis versus demand shown in figure 7. The diagram depicts that the stock 

level increases by the demand since high shortage costs cause to increase in the stock level. This trend 

continues until a certain point, a trade-off between the cost, capacity, and stock level. In other words, increasing 

the stock level is not economical due to facility capacity, investment cost, or company policy. In this case, two 

options are recommended: cause and effect diagrams to justify the failures and the increasing trend. The other 

option is to update the planning policies by customizing the planning for each spare part according to demand 

patterns which highly affect subsequent decisions. 
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8 

 

Fig 7.  Stock level vs. demand  

 

   To shed light on the aggregation decisions, figure 8 is drawn, which shows the relation of stock level with 

aggregation level. The trade-off between the stock level and aggregation level reaches the minimum value 

when demands of three periods are aggregated. This behavior can be interpreted as the effect of aggregation 

level on planning accuracy since it can theoretically reduce the variance. In practice, the division of demand 

to different intervals increases error since new arrival for low-demand items does not happen in each period, 

so using the expected value can reduce possible errors. Additionally, considering weight for the share of each 

period can result in more accurate estimations. 

 

 

Fig 8.  Stock level vs. aggregation level  

   Following the previous analysis of the stock level, the shortage decreases as the stock level increases, as 

shown in figure 9. The aggregation causes the planning to be more accurate, resulting in supply at the right 

time and quantity. As we deviate from the optimal aggregation level, the shortage increases since the 

forecasting error rises due to the high variation level. Therefore, we can conclude that the more sparsity of the 

observations causes less accurate planning. A good practice is eliminating the outlier points to control the 

disproportionate results that may eventuate in misleading interpretations. 
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Fig 9.  Shortage (%) vs. aggregation level 

 

6-4- Performance evaluation 
   As stated earlier, we introduced two criteria for the gaps between the aggregated and real demand (ARG) 

and the gaps between the aggregated and forecasted demand (AGF). The aggregated demand which is denoted 

by 𝑢𝑎𝑠
 and the aggregation levels is signified by 𝑎𝑠. These variables directly impact ARG and AGF measures. 

The main difference between  
𝑢𝑎𝑠

𝑎𝑠
 and 𝑑𝑠𝑐𝑡 comes from the concept of aggregation, which first computes total 

demand and then is divided by aggregation level. Indeed, this term calculates the expected demand, which 

estimates the real demand. We need to perform trial and error to obtain the optimal aggregation level that can 

be used for future estimation.   

 

 

Fig 10.  ARG as aggregation level changes 

   Figure 10 shows the ARG when the aggregation level changes. It is observed that ARG decreases as the 

aggregation level increases. This trend continues until aggregation level five but tends to increase afterward. 

This interpretation matches the previous analyses regarding aggregation; however, the trade-off between the 

costs and aggregation level may change the optimal level. So, we can conclude that the gap between the 

demand and estimation by aggregation deviates as the variation increases in comparison with the mean; in 

other words, the coefficient of variation (CV) increases. 

    AGF is another measure we considered to examine the gap between the forecast and aggregated demand. 

This measure is examined by two forecast estimations for positive and negative deviations, as illustrated in 

figure 11. An intersection occurs at level five, where AGF gives equal value for both deviations. This point of 

aggregation level matches the level for ARG.  
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Fig 11.  ARG and AGF as aggregation level changes 

   A prominent result of this analysis is that we can use AGF as a criterion for validating the forecast in which 

the aggregation level varies. In the next section, the conclusion and future research are presented.  

7- Conclusion and further research 
   Spare parts play a critical role in operation since the continuation of production highly depends on 

maintenance and repair. Spare parts have particular demand patterns, which makes the planning techniques 

different. Among various demand patterns, intermittent demand is one category that involves spare parts with 

low demand quantity and high arrival variance. This paper develops a mathematical model for the repairable 

spare part supply chain in which the demand pattern follows the intermittent pattern. High variation in the 

arrival of this pattern necessitates using a technique to deal with the sparse demand. Aggregation is one of the 

techniques that can reduce the variance of the estimation, but the main question arises: what level of 

aggregation should we use. To answer this question, the aggregation effect is examined in the planning model 

to optimize the cost, stock level, and shortage. In this regard, two criteria are defined for computing the gaps 

between the aggregation, demand, and forecast. ARG obtains the gaps between the aggregation and demand, 

and AGF computes the gaps between the forecast and aggregation. A National Iranian South Oilfields 

Company (NISOC) case study is used to validate the model. The results of this study are concluded as the 

following: 

 First, Aggregation analysis sheds light on the levels that can be used interchangeably for forecasting 

methods when the demand data is unavailable for all the levels. This is noteworthy when there is an obstacle 

to data gathering. Therefore, it is suggested that practitioners use aggregation analyses when they face the 

dilemma of finding the proper forecasting methods. 

 Second, the Smoothing parameter affects the estimations by giving weight to quantity or time interval. A 

well-balanced trade-off between the aggregation level and smoothing parameter gives insight into 

extracting the demand pattern estimation, which may change over time due to different factors such as 

working conditions. Moreover, this parameter can affect planning accuracy since demand estimation is the 

basis of a robust planning technique. 

 Third, the SBA forecasting method outperforms other models since it considers the interval of demand 

arrival.  

 Fourth, Shortage and stock levels are optimized around a minimum aggregation level, but they increase 

when we deviate from this point.  

 Fifth, ARG’s diagram is a near-convex curve which confirms the validity of improvement in the estimation 

gap. Additionally, AGF matches ARG, which gives an influencing insight into choosing the optimal 

aggregation level and aggregating demand without any concern for selecting the level.  

 Sixth, we can conclude that the gap between the demand and estimation by aggregation deviates as the 

variation increases in comparison with the mean; in other words, the coefficient of variation (CV) increases. 

This interpretation can be used to measure the performance of the other models when dealing with 

aggregation. 

 Seventh, Aggregation reduces the variance of data which affects the bullwhip effect since the variance of 

orders to the variance of demand is optimized by tuning the aggregation level. 



84 
 

91 

 Finally, we developed a planning model for the repairable spare parts supply chain of the Iranian oil 

company in which the effect of aggregation is analyzed. Several analyses are provided, which give 

managerial insights that practitioners can use. 

 This work can be an avenue for other research for further studies. Using machine learning algorithms for 

parameter estimation can be advantageous. Also, using multivariate time series allows one to consider 

several attributes, giving more accurate results. Additionally, considering the supply chain's hierarchical 

decisions results in a more comprehensive planning model. 
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