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Abstract 
Recent advances in manufacturing systems and multifunction machines have caused 

products to be produced through several alternative process plans. Therefore, the 

integration of process planning and scheduling, as two of the most critical functions, 

becomes essential to enhance manufacturing systems’ productivity. Several different 

algorithms have solved the integrated process planning and scheduling (IPPS) 

problem in the literature. All proposed algorithms require a list of available process 

plans in advance (type-1). In this paper, an efficient mixed-integer linear 

programming (MILP) model is presented based on the term "combination." Besides, 

a type-2 priority-based heuristic algorithm (PBHA II) is proposed using dispatching 

rules with prioritizing jobs, combinations, and operations to solve the IPPS problems 

expressed by AND/OR graphs and with a makespan criterion. The MILP model and 

proposed heuristic algorithm are tested on the most challenging benchmark 

problems. Experimental results show the superiority of the MILP model over the best 

one in the literature, as well as the effectiveness and high performance of PBHA II. 

New upper bounds have been obtained in a short computational time for 7 of 24 most 

complex problems, which have been used by many researchers over the last two 

decades. 

Keywords: Integrated process planning and scheduling, priority-based heuristic 

algorithm, dispatching rules 

1-Introduction 
Process planning and scheduling are the most important functions in a manufacturing system and 

significantly impact its flexibility and efficiency. Process planning determines the selection and 

sequence of production operations based on product design specifications as well as the required 

manufacturing resources, including machines, tools, and tool-approach directions (TADs). In general, 

a process plan identifies how a product can be manufactured according to engineering design. On the 

other hand, scheduling allocates limited manufacturing resources to the operation in the process plans 

over time, subject to the precedence relations in the process plan. These two functions are traditionally 

performed sequentially; Scheduling plans were generated after process plans had been determined. 

However, this method has some drawbacks (Li et al., 2010b, Li et al., 2010a). Unbalanced resource 

loads, unexpected bottlenecks, and the infeasibility of the generated process plan in the 

scheduling phase due to the unpredictable shop floor disturbances are the most important 

disadvantages. By integrating process planning and scheduling, the load of the resources is balanced, 

flow-time, work-in-process inventory, cycle time, and production costs are reduced (Lee and Kim, 

2001). 
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Three kinds of flexibility can be considered in the integrated process planning and scheduling (IPPS) 

context: operation flexibility (OF), sequencing flexibility (SF), and processing flexibility (PF). OF 

refers to the possibility of performing an operation on different machines and is also called routing 

flexibility. Sequencing flexibility implies the availability of various permutations of manufacturing 

operations as long as they satisfy the precedence constraints to create a specific feature of a job, and 

processing flexibility means the possibility of producing the same manufacturing feature with an 

alternative set of operations. By taking all these flexibilities into account, although more reliable and 

stable plans are generated, the IPPS problem is much more complex. 

From the representation point, the IPPS problems are either type-1 or type- 2. In type-1, all available 

process plans of each job are predetermined in advance as the input data for a solution algorithm in 

which one process plan should be selected for each job. In type-2, the precedence relations between 

the operations and all job flexibilities are expressed by the network graphs. In real-world manufacturing 

systems with high-level flexibilities, the type-2 representation is more practical. Moreover, type-1 IPPS 

problems can simply be converted to type-2. There is still no solution method based on type-2 

representations to the best of our knowledge. This paper proposes an effective type -2 heuristic 

algorithm to solve the IPPS problems. 

The remainder of the paper is organized as follows: In section 2, we review some relevant literature 

on integrating process planning and scheduling. Representation and the definition of the problem are 

presented in section 3. Section 4 introduces an efficient type-2 mixed-integer linear programming 

(MILP) model for the IPPS problem. The proposed constructive heuristic algorithm is elaborated in 

section 5. Section 6 evaluates the proposed mathematical model and solution method using the most 

challenging benchmark problems in the literature. The last section concludes the paper. 

2-Literature review 
Although mathematical model-based exact algorithms cannot achieve the optimal solution of real-

world size IPPS problems in a reasonable computational time, mathematical modeling can accurately 

point out the characteristics of the problem and provide the basis for evaluating other algorithms. On 

the other hand, the ever-increasing improvement of computer capabilities enables researchers to apply 

mathematical approaches for even medium-size problems. In the IPPS mathematical modeling domain, 

the first attempt was made by Kim and Egbelu (1999). Tan and Khoshnevis (2004) proposed a 

polynomial mixed integer programming model (PMIPM) for the IPPS problem, but process and 

sequence flexibilities have not been considered in their model, nevertheless. By considering all types 

of flexibilities, a mathematical model was presented for the IPPS problem by Li et al. (2010a) with 

various objective functions based on sequence-based variables (Manne’s approach (Manne, 1960)). 

Their model has been used in other research with some modifications (Li et al., 2012a, Li et al., 2012b, 

Luo et al., 2017). Özgüven et al. (2010) extended their model for flexible job shop scheduling problems 

by considering process plan flexibility. The model was evaluated by hypothetical test problems with 

different process plan and routing flexibility levels. 

A more effective MILP model for the IPPS problem was proposed by Jin et al. (2015). They extended 

their model for the multi-objective case (Jin et al., 2016b). Three new MILP models for the IPPS 

problem, called Model-2, Model-3, and Model-4, were also developed by Jin et al. (2016a). Unlike 

previous MILP models in the literature, which assume that all the process plans are generated in 

advance (type-1), the proposed models are suitable for network graph-based instances (type-2). They 

can solve the instances expressed by an AND/OR graph. Their proposed models were established based 

on the term "combination," which is indispensable operations to complete the job without considering 

the precedence relationship between operations. Model-2 is based on position-based variables 

(Wagner’s approach (Wagner, 1959)), while the other two models are constructed according to 

Manne’s approach. Moreover, the common operations from all the combinations have been removed 

in Model-3. All the proposed MILP models have been tested on Kim’s benchmark instances (Kim et 

al., 2003). Their experiments showed the superiority of Model-4, which can be regarded as the best 

IPPS mathematical model in the literature until now. As one of the most popular topics in scheduling, 

several papers have proposed various approaches for the IPPS problem over the past two decades. Due 

to the complexity of the problem, most of the proposed solution methods are based on heuristic search 

approaches. The most prominent published papers for the IPPS problem with the performance measure 
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and assumptions considered in this research are summarized in table 1. 

As it is clear, most proposed methods are metaheuristic-based algorithms, which are general-purpose 

and problem-independent algorithms that can be applied to almost any optimization problem. Regarding 

several constraints imposed on the IPPS problem, such as the precedence relationship between 

operations of a job and machine availability on the one hand and the random mechanism of 

metaheuristics for generating new solutions, on the other hand, metaheuristic-based algorithms require 

a feasibility procedure to repair the unfeasible solutions. Due to the large solution space of the IPPS 

problem, it may take a long time to search the entire problem space for feasible solutions randomly. 

Therefore, metaheuristic algorithms may not perform efficiently for the real-world size IPPS problem. 

To cope with these difficulties, heuristic-based algorithms as problem-dependent approaches are 

applied. Using the IPPS problem’s particularities, heuristic approaches can find near-optimum or even 

global optimum solutions within a more reasonable time. However, a few heuristic methods can be 

found in the IPPS literature. A heuristic is presented by Bensmaine et al. (2014) for solving the IPPS 

problem in reconfigurable manufacturing systems using the two parameters they have defined, i.e., the 

availability time (AT) and selection index (SI). At each step, the operation with the highest SI is 

processed by the machine with minimum AT. Liu et al. (2020) applied two heuristic algorithms in two 

stages for the energy-efficient IPPS (EEIPPS) problem to minimize total tardiness and energy 

consumption. Dispatching rules, as the most popular constructive heuristics in scheduling, in 

conjunction with a priority-based assignment mechanism, are employed by Ausaf et al. (2015) to 

propose an efficient algorithm called the priority-based heuristic algorithm (PBHA) for the IPPS 

problem with makespan objective function. While introducing the concept of a chain as an independent 

subset of a job as well as the criticality of jobs and chains, jobs and chains are prioritized in this 

algorithm. Then operations are selected based on priorities while dispatching rules are incorporated to 

choose a processing machine for the selected operation. 

 

Table 1. Solution methods proposed for the problem considered in this study 

Study Solution Method Study Solution Method 

Zhu et al. (2022) GH + GA Uslu et al. (2022) GA + ACO 

Awad and Abd-Elaziz (2021) modified GA Wu and Li (2021) HS 

Barzanji et al. (2019) logic-based benders 

decomposition 

Li et al. (2019) GA + VNS 

Liu et al. (2018) quantum-inspired hybrid 

algorithm 

Keddari et al. (2018) shifting bottleneck heuristic + 

TS + KA 

Zhang and Wong (2016) ACO Zhang and Wong (2015) object-coding GA 

Jin et al. (2015) hybrid honey bee mating 

optimization 

Ausaf et al. (2015) priority-based heuristic 

algorithm 

Liu et al. (2016) ACO Wang et al. (2014) improved ACO 

Zhang and Wong (2014) enhanced ACO Li et al. (2012b) active learning GA 

Wong et al. (2012) two-stage ACO Lian et al. (2012) imperialist competitive 

algorithm 

Amin-Naseri and Afshari 

(2012) 

hybrid GA Lihong and Shengping (2012) improved GA 

Li et al. (2010a) EA Leung et al. (2010) agent-based ACO 

Li et al. (2010c) GA + TS Li et al. (2010d)  agent-based modified GA 

Rajkumar et al. (2010) GRASP Hengyun et al. (2009) PSO + SA 

Shao et al. (2009) modified GA Guo et al. (2009) PSO 

Li et al. (2008) GA Tian et al. (2008) immune algorithm 

Chan et al. (2008) GA with the dominant gene Kim et al. (2007) asymmetric multileveled SEA 

Li and McMahon (2007) SA Park and Choi (2006) GA 

Zhao et al. (2006) PSO + SA Fuqing et al. (2006) PSO + fuzzy inference system 

Wong et al. (2006c) online hybrid agent-based 

negotiation 

Wong et al. (2006a) hybrid-based agent 

negotiation 

Wong et al. (2006b) multi-agent negotiation Kim et al. (2003) SEA 

Lee and Kim (2001) simulation-based GA   

GH greedy heuristic, GA genetic algorithm, ACO ant colony optimization, HS harmony search, VNS variable 

neighborhood search, TS tabu search, KA kangaroo algorithm, EA evolutionary algorithm, GRASP greedy 

randomized adaptive search procedure, PSO particle swarm optimization, SA simulated annealing, SEA symbiotic 

evolutionary algorithm 
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However, all solution algorithms mentioned above assume that all available process plans are 

determined in advance. That is, these approaches are type-1. Nevertheless, it is sometimes time-

consuming to identify and list all the process plans for jobs, especially where multiple process plans 

are shown by AND/OR graphs. To fulfil such gaps in the literature, a simple and efficient type-2 

constructive priority-based heuristic algorithm (PBHA II) is proposed in this paper based on the 

effective type-2 mathematical modelling presented in section 4. 

3-Problem definition 

The IPPS problem is defined as n jobs to be accomplished by M machines. Each job contains a 

number of operations, each of which is processed by one of the alternative machines with known 

processing time. A set of alternative process plans are available for each job. The goal is to assign a 

process plan for each job and a machine for each operation as well as find the best sequence of 

processing the operations of the jobs considering the precedence constraints among operations in order 

to corresponding objectives can be achieved. The makespan minimization is selected as the objective 

here. 

 

Fig 1. An IPPS problem instance with two jobs and five machines 

The alternative process plans and precedence constraints are usually specified by disjunctive 

AND/OR graphs by which three types of flexibilities in process planning can be described. OR marks 

in the graph illustrate the operation combinations of the related job (process flexibility) because the 

operations on only one OR link-path should be processed. An IPPS problem, adopted by Zhang and 

Wong (2014), is shown in figure 1 with two jobs and two corresponding AND/OR graphs that should 

be processed by five available machines. Graph A and graph B describe the process plans of job 1 and 

job 2, respectively. According to the graphs, two process plans for each job can be recognized as 

follows: 

 

𝑇1 = {
𝑂1 → 𝑂2 → 𝑂3 → 𝑂5

𝑂1 → 𝑂4 → 𝑂5
,       𝑇2 = {

𝑂1 → 𝑂2 → 𝑂3 → 𝑂4 → 𝑂5

𝑂1 → 𝑂3 → 𝑂2 → 𝑂4 → 𝑂5
   

 

𝑇1 and 𝑇2 are the set of process plans of job 1 and job 2, respectively. Since graph A has one OR 

mark, job 1 can be performed through two operation combinations, while job 2 has only one operation 

combination, as demonstrated below: 

 

𝐻1 = {𝑂1, 𝑂2, 𝑂3, 𝑂5}, {𝑂1, 𝑂4, 𝑂5}, 𝐻2 = {𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5} 

 

𝐻1 and 𝐻2 represent the set of operation combinations of job 1 and job 2, respectively. In other words, 

job 1 can be done by {𝑂1, 𝑂2, 𝑂3, 𝑂5} or {𝑂1, 𝑂4, 𝑂5} while all operations of graph B are needed to 
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perform job 2. In this example, both jobs have operation flexibility, while only job 1 has process 

flexibility, and sequence flexibility can only be observed in job 2. Furthermore, the following 

assumptions are considered: 

 A machine can execute only one operation at a given time. 

 Different operations from one job cannot be processed at the same time 

 All processing times are deterministic, known in advance. 

 All jobs and machines are independent and available at time zero. 

 Job pre-emption is not taken into account. 

 Once a job’s operation is finished, it will be immediately transferred to another machine (the 

transport time is negligible). 

 Setup times are negligible or included in the processing times. 

4-Mathematical modelling 

In this section, model-4 of Jin et al. (2016a), as the best mathematical model in the literature till now, 

is modified to present an efficient type-2 model for the IPPS problem. A dummy job with one process 

plan (and one operation combination) is considered in the proposed model. The dummy job has one 

operation on each machine with zero processing time. A job that is processed immediately after the 

dummy job, indeed, is the first scheduled job on the related machine. The notations, parameters, and 

decision variables used to explain the model are as follows: 

4-1-Subscripts, notations, and sets 

𝑖, 𝑖 ′ jobs, 

𝑗, 𝑗 ′ operations, 

ℎ, ℎ′ combinations, 

𝑘 machines, 

𝑁 the set of jobs, 

𝑀 the set of machines, 

𝐻𝑖 the set of operation combinations for job i, 

𝑁𝑂𝑖,ℎ the set of operations of h-th combination of job i, 

𝑂𝑖,𝑗 the j-th operation of job i, 

𝑅𝑖,𝑗 the set of available machines for 𝑂𝑖,𝑗. 

4-2-Parameters 

𝑡𝑖,𝑗,𝑘 the processing time of 𝑂𝑖,𝑗on machine k, 

𝑛
= |𝑁| 

the number of jobs, 

𝑚
= |𝑀| 

the number of machines, 

𝑉𝑖,𝑗,𝑗′ 1, if the 𝑂𝑖,𝑗is an immediate predecessor of 𝑂𝑖,𝑗′according to the 

network graph of job i; 0, otherwise, 

𝑄𝑖,𝑗,𝑗′  1, if the 𝑂𝑖,𝑗should be processed before 𝑂𝑖,𝑗′directly or indirectly 

according to the network graph of job i; 0, otherwise, 

𝐴 a very large positive number. 

4-3-Variables 

𝐶𝑚𝑎𝑥 makespan, 

𝑋𝑖,ℎ 1, if the h-th alternative combination of operations is selected to 

accomplish job i; 0, otherwise, 
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𝑍𝑖,𝑗,ℎ,𝑘 1, if the h-th combination is selected for job i and 𝑂𝑖,𝑗is processed on 

machine k; 0, otherwise, 

𝑌𝑖,𝑗,𝑗′  1, if 𝑂𝑖,𝑗 precedes the operation 𝑂𝑖,𝑗′ ; 0, otherwise, 

𝑈𝑖,𝑗,𝑖′,𝑗′  1, if the j'-th operation of job i' is processed after the j-th operation of 

job i on machine k; 0, otherwise, 

𝐶𝑖,𝑗 the completion time of the j-th operation of job i. 

With regard to the above definitions, the modified type-2 model of the IPPS is formulated as follows: 

 

              min 𝐶𝑚𝑎𝑥     (1)     

subject to: 

∑ 𝑋𝑖,ℎ = 1,   ∀𝑖 ∈ 𝑁

ℎ∈𝐻𝑖

 (2) 

∑ 𝑍𝑖,𝑗,ℎ,𝑘 + (1 − 𝑋𝑖,ℎ)

𝑘∈𝑅𝑖,𝑗

= 1,   ∀𝑖 ∈ 𝑁, ℎ ∈ 𝐻𝑖, 𝑗 ∈ 𝑁𝑂𝑖,ℎ (3) 

𝐶𝑖,𝑗 ≥ ∑ 𝑡𝑖,𝑗,𝑘𝑍𝑖,𝑗,ℎ,𝑘 ,   ∀𝑖 ∈ 𝑁, ℎ ∈ 𝐻𝑖, 𝑗 ∈ 𝑁𝑂𝑖,ℎ

𝑘∈𝑅𝑖,𝑗

 (4) 

𝐶𝑖,𝑗′ ≥ 𝐶𝑖,𝑗 + ∑ 𝑡𝑖,𝑗′,𝑘

𝑘∈𝑅
𝑖,𝑗′

𝑍𝑖,𝑗′,ℎ,𝑘 − 𝐴(1 − 𝑋𝑖,ℎ), ∀𝑖 ∈ 𝑁, ℎ ∈ 𝐻𝑖, 𝑗, 𝑗 ′ ∈ 𝑁𝑂𝑖,ℎ , 𝑗 ≠ 𝑗 ′, 𝑉𝑖,𝑗,𝑗′

= 1 

(5) 

𝑌𝑖,𝑗,𝑗′ + 𝑌𝑖,𝑗′,𝑗 = 1,   ∀𝑖 ∈ 𝑁 − {0}, ℎ ∈ 𝐻𝑖, 𝑗, 𝑗 ′ ∈ 𝑁𝑂𝑖,ℎ , 𝑗 < 𝑗 ′, 𝑄𝑖,𝑗,𝑗′ + 𝑄𝑖,𝑗′,𝑗 = 0 (6) 

𝐶𝑖,𝑗′ ≥ 𝐶𝑖,𝑗 + ∑ 𝑡𝑖,𝑗′,𝑘

𝑘∈𝑅𝑖,𝑗′

𝑍𝑖,𝑗′,ℎ,𝑘 − 𝐴(2 − 𝑌𝑖,𝑗,𝑗′ − 𝑋𝑖,ℎ), 

               ∀𝑖 ∈ 𝑁 − {0}, ℎ ∈ 𝐻𝑖, 𝑗, 𝑗′ ∈ 𝑁𝑂𝑖,ℎ, 𝑗 ≠ 𝑗′, 𝑄𝑖,𝑗,𝑗′ + 𝑄𝑖,𝑗′,𝑗 = 0 

(7) 

𝐶𝑖′,𝑗′ ≥ 𝐶𝑖,𝑗 + 𝑡𝑖′ ,𝑗′,𝑘 − 𝐴(3 − 𝑈𝑖,𝑗,𝑖′,𝑗′ − 𝑍𝑖,𝑗,ℎ,𝑘 − 𝑍𝑖′ ,𝑗′,ℎ′,𝑘), 

               ∀𝑖, 𝑖 ′ ∈ 𝑁, 𝑖 ≠ 0, 𝑖 < 𝑖 ′, ℎ ∈ 𝐻𝑖, ℎ′ ∈ 𝐻𝑖′ , 𝑗 ∈ 𝑁𝑂𝑖,ℎ , 𝑗 ′ ∈ 𝑁𝑂𝑖′,ℎ′ , 𝑘 ∈ 𝑅𝑖,𝑗 ∩ 𝑅𝑖′,𝑗′  

(8) 

𝐶𝑖,𝑗 ≥ 𝐶𝑖′,𝑗′ + 𝑡𝑖,𝑗,𝑘 − 𝐴(2 + 𝑈𝑖,𝑗,𝑖′,𝑗′ − 𝑍𝑖,𝑗,ℎ,𝑘 − 𝑍𝑖′,𝑗′ ,ℎ′,𝑘), 

               ∀𝑖, 𝑖 ′ ∈ 𝑁, 𝑖 ≠ 0, 𝑖 < 𝑖 ′, ℎ ∈ 𝐻𝑖, ℎ′ ∈ 𝐻𝑖′ , 𝑗 ∈ 𝑁𝑂𝑖,ℎ , 𝑗 ′ ∈ 𝑁𝑂𝑖′,ℎ′ , 𝑘 ∈ 𝑅𝑖,𝑗 ∩ 𝑅𝑖′,𝑗′  

(9) 

𝐶𝑖, 𝑗   𝑖𝑖,ℎ𝑚𝑎𝑥
 (10) 

𝐶𝑖,𝑗 ≥ 0, (11) 

𝑋𝑖,ℎ, 𝑍𝑖,𝑗,ℎ,𝑘, 𝑌𝑖,𝑗,𝑗′ , 𝑈𝑖,𝑗,𝑖′,𝑗′ ∈ {0,1} (12) 

As presented by equation (1), the objective is to minimize the maximum completion time of jobs 

(makespan). Constraint set (2) ensures that only one combination of operations is selected for each job. 

Constraint set (3) is incorporated into the model to make sure that each operation is assigned to only 

one machine. Constraint set (4) ensures that the completion time of only selected operations can take 

on positive values. Constraint set (5) is incorporated into the model to compute the completion time of 

two operations of a job that have immediate precedence in the related network graph. Constraint sets 

(6) and (7) determine the sequence of the operations that have no explicit precedence relationship with 

each other. Constraint sets (8) and (9) are included in the model to schedule different operations on the 

same machine. Constraint set (10) is used to calculate the makespan. Constraint sets (11) and (12) 

define the decision variables. 

Modifications of the presented MILP model compared to Model-4 include the use of two-

dimensional variables 𝐶𝑖,𝑗 for the completion time of operations instead of three-dimensional variables 

𝐶𝑖,ℎ,𝑗, the replacement of the inefficient constraint set (35) of Model-4 with a new constraint set (4), 

and innovative changes to constraint sets (5-9) to make the model more efficient. 

To speed up the convergence, the only existing lower bound in the literature, i.e., the maximum of 
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the shortest combination of operations, presented by Lihong and Shengping (2012), is formulated as 

follows: 

𝐶𝑚𝑎𝑥
𝑖>0

(𝑚𝑖𝑛
ℎ∈𝐻𝑖

( ∑ ∑ 𝑡𝑖,𝑗,𝑘𝑍𝑖,𝑗,ℎ,𝑘

𝑘∈𝑅𝑖,𝑗𝑗∈𝑁𝑂𝑖,ℎ

))

𝑚𝑎𝑥

 (13) 

Equation set (13) is converted to its linear form using a binary variable 𝐵𝑖,ℎ, and as a result, the 

following sets of constraints are added to the basic model: 

 

𝐶 ∑ ∑ 𝑡𝑖,𝑗,𝑘𝑍𝑖,𝑗,ℎ,𝑘

𝑘∈𝑅𝑖,𝑗𝑗∈𝑁𝑂𝑖,ℎ

(1 − 𝐵𝑖,ℎ)   {0}𝑖

𝑚𝑎𝑥

 
(14) 

∑ 𝐵𝑖,ℎ ≥ 1,   ∀𝑖 ∈ 𝑁

ℎ∈𝐻𝑖

 (15) 

𝐵𝑖,ℎ ≤ 𝑋𝑖,ℎ,   ∀𝑖 ∈ 𝑁 (16) 

𝐵𝑖,ℎ ∈ {0,1} (17) 

𝐵𝑖,ℎdetermines which operation combination of job i generates the shortest path. Constraint set (15) 

ensures that at least one combination gives the shortest path for each job. If a combination of operations 

is not selected, it is not taken into account to determine the lower bound. Constraint set (16) is 

incorporated into the model for this reason. We called the resulting model the enhanced model. 

5-Constructive heuristic algorithm 
As mentioned in section 2, all solution algorithms presented for the IPPS problem assume all 

available process plans are known and listed in advance. In real-world problems, it is sometimes 

difficult and time-consuming to identify and generate all the process plans for a job according to its 

AND/OR graph, especially for jobs with high sequence flexibility. For instance, too many process 

plans can be identified for a job with the AND/OR graph in figure 2. It should be noted that the depicted 

graph is relatively simple, and it has no OR junction. However, there is only one combination of 

operations through which the job can perform. 

In this section, according to the term "combination," the type-2 version of the priority-based heuristic 

algorithm (PBHA) proposed by Ausaf et al. (2015) is developed. The resulting constructive heuristic 

algorithm is called PBHA II. Furthermore, priority functions and the strategy of operation selection are 

totally improved. PBHA II is not only applicable to the IPPS problems represented by complex graphs, 

but also it obtains significant results. 

 
Fig 2. An AND/OR graph with numerous process plans 
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5-1-Job selection mechanism 

Inspired by the lower bound of IPPS problems, the minimum processing time (𝐽𝑇𝑖) required for each 

job is obtained as follows: 

𝐽𝑇𝑖 = 𝑚𝑖𝑛
ℎ

( ∑ 𝑡𝑖,𝑗
∗

𝑗∈𝑁𝑂𝑖,ℎ

) 
           

Where, 

 

𝑡𝑖,𝑗
∗ = {

𝑡𝑖,𝑗,𝑘0
,        if machine 𝑘0 is selected for operation 𝑂𝑖,𝑗

𝑚𝑖𝑛
𝑘

𝑡𝑖,𝑗,𝑘 ,   if no machine is selected for 𝑂𝑖,𝑗 yet
  

 (19) 

The maximum 𝐽𝑇𝑖 (𝐽𝑇𝑐 = 𝑚𝑎𝑥
𝑖

𝐽𝑇𝑖) is called critical time, and the job with the processing time equal 

to 𝐽𝑇𝑐is defined as a critical job. To ensure that the highest priority is assigned to the critical job, the 

job score (JS) is calculated using the following relationship: 

𝐽𝑆𝑖 = 𝐽𝑇𝑖 − 𝑚𝑖𝑛
𝑖

𝐽𝑇𝑖 + 1 (20) 

Finally, the priority of each job is calculated as a probability (JP) as follows: 

𝐽𝑃𝑖 =
𝐽𝑆𝑖

∑ 𝐽𝑆𝑖𝑖∈𝑁
    (21) 

5-2-Combination selection mechanism 
An approach similar to job selection is applied to select a combination of operations for each job. 

Firstly, for each job, the minimum processing time of each combination (𝑇𝑖,ℎ) is determined by equation 

(22). Clearly, the combinations with less 𝑇𝑖,ℎ should have more priority for selection. It is also 

reasonable that a job with more priority has more chances to perform through its shortest path. 

Therefore, equations (23) and (24) are used to calculate the combination score (CS): 

 

  

 

 

Furthermore, |𝐻𝑖| is the number of combinations of job i. Then, the probability which indicates the 

priority of combination h of job i (𝐶𝑃𝑖,ℎ) is computed as follows: 

 

5-3-Operation selection mechanism 

As a prioritization approach for entering operations into the schedule, the ranked positional weight 

(RPW) method of assembly line balancing is adopted. The weight of operation 𝑂𝑖,𝑗 where combination 

𝑇𝑖,ℎ = ∑ 𝑚𝑖𝑛
𝑘

𝑡𝑖,𝑗,𝑘

𝑗∈𝑁𝑂𝑖,ℎ

 (22) 

 

 
 

𝐶𝑆𝑖,ℎ = 𝑚𝑎𝑥
ℎ

𝑇𝑖,ℎ − 𝑇𝑖,ℎ + 𝐷𝑖,ℎ (23) 

𝐷𝑖,ℎ = {
𝐽𝑃𝑖 ∗

∑ 𝑇𝑖,ℎℎ

|𝐻𝑖|
+ 1,         if 𝑇𝑖,ℎ = 𝑚𝑖𝑛

ℎ
𝑇𝑖,ℎ

1,                               otherwise

 

(24) 

𝐶𝑃𝑖,ℎ =
𝐶𝑆𝑖,ℎ

∑ 𝐶𝑆𝑖,ℎℎ∈𝐻𝑖

 (25) 

 (18) 
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ℎ0 is selected (𝑊𝑖,𝑗,ℎ0
) is obtained as follows: 

 

𝑊𝑖,𝑗,ℎ0
= 𝑚𝑖𝑛

𝑘
𝑡𝑖,𝑗,𝑘 + ∑ 𝑚𝑖𝑛

𝑘
𝑡𝑖,𝑗′,𝑘

𝑗′∈𝑁𝑂𝑖,ℎ0
,

𝑄
𝑖,𝑗,𝑗′

=1

    ∀𝑗 ∈ 𝑁𝑂𝑖,ℎ0
 

(26) 

At first, executable operations are determined. An operation is executable if all its immediate 

precedence operations are scheduled before, or if it does not have any predecessor. Afterward, 

executable operations are ranked according to their weight in descending order, and the first operation 

is selected to enter the schedule. 

5-4-Machine selection mechanism 
Dispatching rules are used to select a processing machine for the selected operation. A large number 

of dispatching rules have been applied in the scheduling domain. However, with regard to makespan 

as our optimization criterion, initial experiments show that two popular dispatching rules are more 

effective than others for this problem: 1) shortest processing time (SPT) and 2) earliest starting time 

(EST). SPT selects the machine with the shortest processing time for the operations, while EST selects 

the machine so that the earliest starting time for the operations will result. Since the best result of PBHA 

II is obtained using SPT and EST, other dispatching rules are ignored due to the computational time 

consideration. 

5-5-Dispatching rules-based population classification 
In this part of the algorithm, the population-based procedure proposed by Ausaf et al. (2015) is 

utilized for the selected dispatching rules. In each iteration, a population of solutions is generated and 

divided into two groups. One dispatching rule is used for each group to choose processing machines. 

At the end of each iteration, the population portion of dispatching rules is changed based on the average 

makespan for each group. The number of individuals in the worse group is reduced by r, and the number 

of individuals in the better group is increased by r instead. In this way, PBHA II uses the better 

dispatching rule more for the next iteration according to the prior iteration results. 

5-6-PBHA II stages 
The flow chart of PBHA II is depicted in figure 3. The algorithm is initiated by calculating the scores 

and then the probabilities of all jobs using equations (18-21). Afterward, the scores and probabilities 

of combinations are obtained for each job using equations (22-25). From here, the iterations of the 

algorithm are started. Due to PBHA II taking advantage of population-based approaches, Npop 

individuals are first generated and divided into two groups equally. Steps are repeated for each 

individual. 

The computed probabilities of combinations are used to select one combination of operations for 

each job. For the executable operations of the selected combination of a job, the weight is calculated 

using equation (26), and the operation with maximum weight is selected. Depending on which group 

individuals belong, the processing machines are determined by SPT or EST, and the operation is 

scheduled. Once a machine is selected for an operation, the scores and probabilities of the jobs are 

updated. 

These steps are repeated until the operations of all jobs are scheduled. At the end of each iteration, 

Npop solutions are generated, and the best one is sorted. The best solution of all iterations is presented 

as the algorithm output. Moreover, the average makespan of the generated solution is used to alter the 

population portion of each group for the next iteration. PBHA II is executed for a certain number of 

iterations unless the given IPPS problem’s lower bound is achieved. 



 

 

39 

 

 

Fig 3. Flow chart for PBHA II 

 

6-Computational results 

Both the proposed mathematical model and heuristic algorithm are evaluated in this section. The 

mathematical model is executed using Cplex solver (version 12.8) within the GAMS (version 25.0.2) 

environment, and PBHA II is coded in Matlab 9.4. All experiments are implemented on a computer 

with an Intel Core i5-3470@3.20 GHz with 8 GB RAM. 

6-1-Model evaluation 

The proposed type-2 model is compared with Model-4 of Jin et al. as the best mathematical model 

in the literature using Kim’s benchmark (Kim et al., 2003). This benchmark includes 24 test-bed 

instances, constructed with 18 jobs with various kinds and levels of flexibilities and 15 machines. The 

total number of operations of the problems varies from 79 to 300. Also, the 18 jobs can be done through 
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up to 12 combinations of operations. A time limitation of 3600 s is imposed. Table 2 presents the 

number of single equations, single variables, and discrete variables for the proposed basic model, the 

proposed enhanced model, and Model-4 of Jin et al. separately. 

 

Table 2. Comparison of three models in terms of the number of equations and variables 

No. TNO* 

Model-4  Basic model 

Single 

equations 

Single 

variables 

Discrete 

variables 
 

Single 

equations 

Single 

variables 

Discrete 

variables 

1 79 21,030 4,582 4,464  5,879 2,084 1,988 

2 100 127,135 7,692 7,402  30,368 3,348 3,231 

3 121 629,357 11,675 11,000  172,658 5,443 5,305 

4 95 164,166 7,322 6,990  38,777 2,938 2,826 

5 96 138,425 7,156 6,800  38,336 3,172 3,059 

6 109 212059 9233 8838  59,512 4,646 4,520 

7 99 127,406 6,131 5,745  34,354 2,701 2,585 

8 96 170,237 7,014 6,639  40,461 3,099 2,986 

9 105 219,087 11,050 10,728  63,394 5,198 5,076 

10 132 99,113 11,949 11,695  25,433 5,184 5,035 

11 168 1,013,833 19,847 19,019  265,249 8,695 8,510 

12 146 370,023 15,078 14,594  95,387 6,082 5,919 

13 154 469,251 16,506 15,908  120,443 7,651 7,480 

14 151 449,206 13,181 12,536  110,325 5,487 5,319 

15 149 391,128 18,861 18,424  106,945 8,475 8,309 

16 179 263,561 21,063 20,656  62,166 8,684 8,488 

17 221 1,426,076 32,116 31,152  367,676 13,775 13,537 

18 191 688,827 24,101 23,414  170,699 9,711 9,503 

19 205 794,980 27,408 26,658  213,696 12,028 11,806 

20 195 673,811 20,850 20,090  161,310 8,409 8,197 

21 201 887,824 30,763 30,067  229,510 13,372 13,154 

22 256 1,271,020 42,745 41,849  332,927 18,135 17,862 

23 256 1,578,490 40,862 39,845  402,360 17,018 16,745 

24 300 1,823,562 55,655 54,574  463,092 22,954 22,637 

* Total Number of Operations 

 

It can be inferred from Table 2 that our basic model has more than 70% fewer constraints and also, 

more than 55% fewer variables than Model-4. For example, for Problem 24, the number of discrete 

variables of the proposed model is less than half of Model-4. Comparing the two models shows the 

significant efficiency of the proposed model than previous models. Since the number of constraints and 

variable augmentation in the enhanced model is not considerable, it is expected to be faster than the 

basic model because of faster convergence. 

The results of the three discussed models with corresponding computational times and the gap 

reported by the solver are listed in Table 3. Gap% indicates the quality of a solution. It is calculated as 

(BF-BP)/BF, where BF and BP are the best-found value and the best possible value of the objective 

function, respectively. Obviously, a solution with a gap of 0% is the optimum solution. The lower 

bound (LB) is achieved for 14 of 24 problems using the basic proposed model. Furthermore, the 

enhanced model can find the optimum solution for 16 problems in a given time. In comparison, Model-

4 cannot obtain even a feasible solution for 10 problems where there are more than 9 jobs. 
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Table 3. Computational results of Kim’s benchmark 

No. 

Model-4  Basic model  Enhanced model 

LB 
Cmax 

Gap 

(%) 

Time 

(s) 
 Cmax 

Gap 

(%) 

Time 

(s) 
 Cmax 

Gap 

(%) 

Time 

(s) 

1 427 46.10 3600  427a) 32.32 3600  427b) 0 1.67 427 

2 346 42.80 3600  343a) 28.86 3600  343b) 0 52.22 343 

3 408 82.40 3600  346 35.26 3600  344b) 0 321.23 344 

4 313 26.30 3600  306a) 0 577  306b) 0 51.23 306 

5 326 39.30 3600  318a) 28.3 3600  318b) 0 94.05 318 

6 438 63.70 3600  427a) 36.3 3600  427b) 0 165.16 427 

7 373 34.60 3600  372a) 31.45 3600  372b) 0 26.58 372 

8 346 51.40 3600  343a) 35.57 3600  343b) 0 143.8 343 

9 433 54.30 3600  427a) 34.19 3600  427b) 0 33.84 427 

10 445 42.70 3600  427a) 40.28 3600  427b) 0 911.41 427 

11 - - 3600  347 29.68 3600  345 0.29 3600 344 

12 406 45.70 3600  318a) 19.81 3600  318b) 0 3567 318 

13 684 76.80 3600  427a) 50.59 3600  427b) 0 415.23 427 

14 469 49.80 3600  372a) 31.45 3600  372b) 0 1018.14 372 

15 456 56.60 3600  427a) 42.15 3600  427b) 0 287.31 427 

16 - - 3600  427a) 40.28 3600  427b) 0 382.05 427 

17 - - 3600  401 39.15 3600  390 12.05 3600 344 

18 - - 3600  332 23.19 3600  327 2.75 3600 318 

19 - - 3600  442 49.77 3600  439 2.73 3600 427 

20 - - 3600  390 34.62 3600  382 2.62 3600 372 

21 - - 3600  430 59.77 3600  427b) 0 2516.67 427 

22 - - 3600  528 58.9 3600  517 17.41 3600 427 

23 - - 3600  509 49.9 3600  471 21.02 3600 372 

24 - - 3600  630 59.52 3600  534 20.04 3600 427 

        - a feasible solution is not available after 3600 s. 

        a) LB achieved. 

        b) an optimum solution 

 

6-2-Algorithm evaluation 
Various benchmark problems have been generated in previous research to illustrate the performance 

of the methods proposed for IPPS problems. However, there is neither process nor sequence flexibility 

in most cases. In this situation, the benchmark problems were presented for the flexible job shop 

problem (FJSP), which can be regarded as the IPPS problem without multiple routings. Also, in some 

other test problems, flexibilities and complexity are low, so they cannot compare the corresponding 

algorithms’ performance. 

Two more challenging benchmark problems are used to evaluate the performance of PBHA II. 

Experiment 1 is one of the most used FJSP instances with no process and sequence flexibilities, while 

experiment 2 contains the problems with all three kinds of flexibility on different levels. The parameters 

of PBHA II for all runs are set: Npop=20, maximum iterations=50, and r=2. 

Experiment 1 

The data of this experiment is presented by Chryssolouris et al. (1992), constructed with 10 jobs, 9 

machines, and a total number of operations of 35. It has been applied by Jain and Elmaraghy (1997), 

Wong et al. (2006c), Lihong and Shengping (2012), and Ausaf et al. (2015). Using PBHA II, an 

improved makespan of 5102 is achieved. Table 4 shows the results of the solution methods. Figure 4 

presents the Gantt chart for the problem obtained by PBHA II. 

Table 4. Experimental results of experiment 1 

Solution 

Methods 

GA (Jain and 

Elmaraghy, 1997) 

oHAN (Wong 

et al., 2006c) 

IGA (Lihong and 

Shengping, 2012) 

PBHA (Ausaf 

et al., 2015) 
PBHA II 

Makespan 6456 6574 5998 5388 5102 
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Fig 4. The Gantt chart for experiment 1 

Experiment 2 

For the second experiment, the benchmark problems used for model evaluation are applied again to 

evaluate PBHA II performance. Due to the different complexity and flexibility levels of 24 test-bed 

instances, it has been a popular basis for assessing solution methods in the IPPS domain. PBHA II is 

run for each test problem 10 times, and the best and average makespan are recorded. 

The results are compared with the most significant state-of-the-art algorithms used for the 

experiment: the symbiotic evolutionary algorithm (SEA) (Kim et al., 2003), the hybrid algorithm (HA) 

(Li et al., 2010c), the improved genetic algorithm (IGA) (Lihong and Shengping, 2012), the imperialist 

competitive algorithm (ICA) (Lian et al., 2012), the active learning genetic algorithm (ALGA) (Li et 

al., 2012b), the enhanced ant colony optimization heuristic (E-ACO) (Zhang and Wong, 2014), the 

object-coding genetic algorithm (OCGA) (Zhang and Wong, 2015), honey bee mating optimization 

algorithm (HBMO) (Jin et al., 2015), the priority-based heuristic algorithm (PBHA) (Ausaf et al., 

2015), and ant colony optimization algorithm (ACO) (Zhang and Wong, 2016). 

The best makespan of each test problem obtained by PBHA II and the comparison with other 

algorithms are listed in table 5. Table 6 indicates that the algorithms presented the best results. As 

shown in Table 6, PBHA II can reach the lower bound (LB) for 18 problems, i.e., optimum solutions 

for these problems are found by PBHA II. Also, improved results are obtained for 7 problems, including 

problem 11, in which its optimum solutions are yielded. To sum up, PBHA II can improve the results 

or reach their lower bounds for all problems. The Gantt charts for problems 11, 17, and 24 are presented 

in figures 5-7. It should be noted that makespan values reported for IGA are less than the corresponding 

lower bounds for some test problems (No. 5, 8, and 12). In these cases, the reported results are ignored. 

The average makespan and the required CPU time are presented in Table 7 and Table 8, respectively. 

Since the corresponding values of HA, ICA, and ALGA are unavailable, these algorithms are omitted 

from Table 6. As it reveals, PBHA II achieved improvements in 10 out of 24 problems, while the lower 

bound was achieved for all runs of the other 14 problems. In terms of CPU time, similar to PBHA, 

since the proposed heuristic algorithm is designed based on the inherent characteristics of the IPPS 

problem, PBHA II requires significantly less computational time than other metaheuristic algorithms. 

Even compared to PBHA, our algorithm needs less time because fewer dispatching rules are used to 

select processing machines or different specifications of the computers on which the algorithms are 

run. However, the CPU time of small-size and less complex problems is slightly longer than HBMO. 

The corresponding results for large-scale and more complex instances are significantly less than other 

metaheuristic algorithms. 

However, the main advantage of PBHA II as a type-2 algorithm in terms of the solution time is that 

contrary to type-1 methods, it requires no list of process plans prior to initiating. It is sometimes 

considerably time-consuming to determine the list of all available process plans while it is plainly 

depicted by an AND/OR graph. For example, as a simple job, job 11 in the final experiment has several 

process plans that should be generated initially. This preparation phase is not included in PBHA II. 
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Table 5. Comparison of algorithms according to the best-achieved makespan 

No. SEA HA IGA ICA ALGA E-ACO OCGA HBMO PBHA ACO PBHA II 

1 428 427 427 427 427 427 427 427 427 427 427 

2 343 343 343 343 343 343 343 343 343 343 343 

3 347 345 344 345 344 344 344 345 344 344 344 

4 306 306 306 306 306 306 306 306 306 307 306 

5 319 322 - 319 321 318 318 319 318 318 318 

6 438 429 427 435 427 427 427 427 427 427 427 

7 372 372 372 372 372 372 372 372 372 372 372 

8 343 343 - 343 347 343 343 343 343 343 343 

9 428 427 427 427 427 427 427 427 427 427 427 

10 443 430 427 440 427 427 427 427 427 427 427 

11 369 369 368 367 369 348 348 347 347 364 344* 

12 328 327 - 327 327 322 318 326 318 332 318 

13 452 436 429 457 436 427 427 427 427 427 427 

14 381 380 386 390 380 373 372 372 376 382 372 

15 434 427 427 432 427 427 427 427 427 427 427 

16 454 446 433 466 446 429 427 427 427 438 427 

17 431 423 415 443 423 377 370 377 394 398 360* 

18 379 377 364 384 377 357 351 326 352 378 323* 

19 490 476 450 490 474 431 427 427 445 451 427 

20 447 432 429 440 438 386 384 377 426 412 375* 

21 477 446 433 466 447 428 427 427 427 430 427 

22 534 518 491 529 513 444 446 432 475 480 431* 

23 498 470 465 495 470 413 394 391 455 453 390* 

24 587 544 532 577 548 460 458 441 526 525 440* 

       * An improved result. 

 

Table 6. The best algorithms, according to the best-achieved makespan 

No. LB Best 

1 427 HA, IGA, ICA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

2 343 SEA, HA, IGA, ICA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

3 344 IGA, ALGA, E-ACO, OCGA, PBHA, ACO, PBHA II* 

4 306 SEA, HA, IGA, ICA, ALGA, E-ACO, OCGA, HBMO, PBHA, PBHA II* 

5 318 E-ACO, OCGA, PBHA, ACO, PBHA II* 

6 427 IGA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

7 372 SEA, HA, IGA, ICA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

8 343 SEA, HA, ICA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

9 427 HA, IGA, ICA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

10 427 IGA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

11 344 PBHA II* 

12 318 OCGA, PBHA, PBHA II* 

13 427 E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

14 372 OCGA, HBMO, PBHA II* 

15 427 HA, IGA, ALGA, E-ACO, OCGA, HBMO, PBHA, ACO, PBHA II* 

16 427 OCGA, HBMO, PBHA, PBHA II* 

17 344 PBHA II 

18 318 PBHA II 

19 427 OCGA, HBMO, PBHA II* 

20 372 PBHA II 

21 427 OCGA, HBMO, PBHA, PBHA II* 

22 427 PBHA II 

23 372 PBHA II 

24 427 PBHA II 

       * LB achieved. 
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Table 7. Comparison of average makespan values 

No. Average Makespan 

SEA IGA E-ACO OCGA HBMO PBHA ACO PBHA II 

1 437.6 427 427.1 427 427 427 427.1 427 

2 349.7 344.5 343.1 343.5 345.5 343 343.2 343 

3 355.2 351 345 346.4 346.8 344 347.1 344 

4 306.2 307.4 307.6 310.1 307.6 306 309.4 306 

5 323.7 - 319.6 323 323.3 318 320.4 318 

6 443.8 427 427.1 427 427 427 427.5 427 

7 372.4 372.7 372 373.3 372 372 372 372 

8 348.3 357 343.3 343.5 344.7 343 344.4 343 

9 434.9 427 427.1 427 427 427 427 427 

10 456.5 431.6 427.6 427.1 427 427 429.2 427 

11 378.9 379.7 350.2 350.6 348.3 354.8 368.3 345.7 

12 332.8 323.7 323.4 324.7 326 318 337.7 318 

13 469 442.8 427.6 427.2 427 428.3 433.2 427 

14 402.4 415.3 374.3 377.4 372.3 384.8 385.1 372 

15 445.2 427.4 427.3 427 427 427 427.3 427 

16 478.8 449.4 430.9 428.1 427.3 442.1 442.2 427 

17 448.9 426 381.2 383.1 384.4 408.1 414.3 367.4 

18 389.6 373.6 361.5 354.5 332.9 358.1 383.7 327.9 

19 508.1 471.3 434.9 433.7 430.7 459 460.4 429.7 

20 453.8 446.6 392.4 390.5 391.4 433.8 421.6 378.8 

21 483.2 447.8 429.4 427 427.6 427 435.7 427 

22 548.3 508.1 447.2 452.9 439.7 490.6 484.2 438.7 

23 507.5 477.8 420.3 410 403.8 468.6 462.8 394.1 

24 602.2 548.5 479.3 471.2 455.7 548 531.1 451.4 

 

Table 8. Comparison of CPU times 

No. CPU time (sec) 

SEA IGA E-ACO OCGA HBMO PBHA ACO PBHA II 

1 60.5 11 17 4.5 0.1 1.77 4.1 0.53 

2 68.9 11 15 6.5 0.7 2.11 4 0.92 

3 81.7 11 14 7.9 1.4 2.02 4.9 1.02 

4 65.6 8 14 4.4 0.3 2.09 3 0.83 

5 63.5 8 11 6 0.9 1.75 3 0.58 

6 73.3 13 20 7.4 0.4 2.28 7 0.75 

7 69 9 11 4.1 0.3 1.88 3 0.42 

8 67.3 17 13 6.2 1.3 1.86 4 0.51 

9 73.2 9 21 5.7 0.1 1.89 6 0.38 

10 136 17 34 10.9 0.6 3.09 10 1.28 

11 165.8 16 31 12.2 1.9 3.16 9.4 1.43 

12 143.4 13 24 8.7 1.6 2.7 6.8 1.59 

13 161.2 19 39 15.3 4.7 3.42 13 1.12 

14 150.8 16 26 11.2 3.9 3.06 8 1.65 

15 156 14 33 10.7 0.5 3.06 12 0.9 

16 333.6 23 50 27.8 5.6 4.17 16.5 1.16 

17 435.2 23 64 27.5 337.3 4.34 18.7 1.74 

18 357 20 53 26.4 35.4 4.01 15.3 2.08 

19 417.8 28 78 30.5 17.5 4.58 21 1.97 

20 384 26 55 25.9 464.2 4.28 15.1 2.13 

21 392.4 24 67 26.5 3 4.38 20.1 1.81 

22 1033.3 27 121 33.5 53.7 6.06 30.1 2.73 

23 1016.6 26 93 31.5 259.7 5.96 26 2.28 

24 1622.7 39 186 48.5 343 7.45 40 3.17 
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Fig 5. The Gantt chart for experiment 2, problem 11 

 

 

Fig 6. The Gantt chart for experiment 2, problem 17 

 

 

Fig 7. The Gantt chart for the last problem of experiment 2 
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7-Conclusions 
Considering type-2 IPPS problems, an efficient combination-based MILP model has been presented. 

The lower bound of the IPPS problems has been linearized and incorporated into the model to speed 

up the convergence when the solver executes it. Furthermore, a type-2 constructive heuristic algorithm, 

named type-2 priority-based heuristic algorithm (PBHA II), has been presented to solve the IPPS 

problem. According to the defined scores for jobs and combinations, this algorithm utilizes priority 

assignment mechanisms. It is based on the weights calculated by the ranked positional weight (RPW) 

method for operations. 

Most complex benchmark problems have been selected to evaluate the proposed model and 

algorithm. Experimental results indicate the efficiency and effectiveness of the MILP model compared 

to those of the state-of-the-art mathematical models in the literature. Moreover, encouraging results 

have been obtained for PBHA II. It can achieve either optimal solutions or improved results for all 

experiments under consideration. Due to the simplicity of the proposed method, the outstanding results 

are yielded in less computational time than other methods. Further research directions involve the 

consideration of sequence-dependent setup times. PBHA II also can be extended to cope with a multi-

objective IPPS problem. 
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