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Abstract 

The majority of scheduling research considers a deterministic environment with pre-

known and fixed data. However, under the tools conditions and worker skill levels 

in assembly work stations, there is uncertainty in the assembling times of the 

products. This study aims to address a two-stage assembly flow shop scheduling 

problem with uncertain assembling times of the products which is assumed to follow 

a normal distribution. The problem is formulated as an MIP model in general form 

and under deterministic condition. Since the problem is strongly NP-hard, genetic 

algorithm is adopted with a new solution structure and fitness function to solve the 

problem on the practical scales. The presented robust procedure aims to maximize 

the probability of ensuring that makespan will not exceed the expected completion 

time. In addition, Johnson’s rule is extended and simulated annealing algorithm is 

tuned for the problem at hand. The computational results indicate that the obtained 

robust schedules hedge effectively against uncertain assembling times. The results 

also show that the proposed genetic algorithm gets better robust schedules than 

Johnson’s rule and outperforms simulated annealing algorithm in terms of deviation 

percentage (%𝐷) of the expected makespan from the optimal schedule. 

Keyword: Scheduling, two-stage assembly flow shop, uncertainty, robustness, 

genetic algorithm 

 

1-Introduction 
   A two-stage assembly flow shop is a special manufacturing environment, which consists of a fabrication 

stage followed by an assembly stage. Required components are processed at the first stage which consists 

of several parallel machines (Kazemi et al., 2017). After preparing a set of required components, they are 

assembled into the final product in the assembly stage. This type of production system has many 

applications especially in manufacturing industries wherein, complex products are produced through a 

combination of processing and assembly structures.  
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   For instance, we can point out fire engine assembly plant (Lee et al., 1993), database distribution 

(Allahverdi & Al-Anzi, 2006), and bedroom furniture manufacturing (Navaei et al., 2013).  

   The majority of the methods have been proposed under the traditional assumptions especially that the 

data are perfectly known and fixed. However, in real-world condition, different kinds of uncertain events 

may occur in processing an assembling operation. These events make especially the assembling time of 

products uncertain, which lead to makespan variations. These makespan variations cause the products to 

accomplish after the expected completion time. When makespan exceeds the expected completion time of 

products, it may alter the delivery schedule of products and leads to late delivery of products and increasing 

operational costs. 

   Whenever processing and assembling time can be modeled as a random variable, we can tackle the 

uncertainty using stochastic approaches. A proper scheduling system for a stochastic environment should 

not only be able to handle the uncertain events once they have happened but also be able to generate 

schedules that are prepared for these events. To this end, historical experiences and data are useful to obtain 

the probability distribution of uncertain factors. In some other cases, scenario-based approaches are applied, 

in which the uncertainty is modeled through the use of a number of scenarios. The scenario-based 

approaches use either discrete probability distributions or the discretization of continuous probability 

distribution functions, and the expectation of a certain performance criterion, such as the expected profit 

which is optimized concerning the scheduling decision variables (Ziaei & Jabbarzadeh, 2021). 

   One important way to deal with uncertainty in scheduling is robust scheduling. Li et al. introduced robust 

scheduling as a schedule whose performance does not significantly degrade in the face of disruption (Li & 

Ierapetritou, 2008). Therefore, robust scheduling is currently used in a variety of applications where the 

aim is to control the performance degradation of schedules due to uncertainties. Some of the practical 

applications of robust scheduling are in project scheduling (Herroelen & Leus, 2004), manufacturing 

industries (Tang & Wang, 2008), and airline crew scheduling (Lan et al., 2006). Robust scheduling 

approaches in the existing literature can be categorized into reactive scheduling and proactive scheduling 

(Ghezail et al., 2010; Liu et al., 2011). Reactive scheduling techniques include all methods of robust 

scheduling that do not directly consider the uncertainty in generating schedules. These models tackle the 

uncertainty issue with revising the schedule when unexpected events occur (Sabuncuoglu & Goren, 2009). 

Proactive scheduling techniques that most of the current research is focused on, take potential disruptions 

into consideration during the generation of the initial schedule (Goren & Sabuncuoglu, 2008).  

   Given the importance of tackling the issue of uncertainty in assembly-type scheduling problems, this 

study aims to address a two-stage assembly flow shop scheduling problem wherein, the assembling times 

of products are uncertain in the assembly stage. Therefore, after definition the problem with all considered 

features, an improved genetic algorithm is proposed to get the robust schedule for the problem at hand. The 

main idea of the proposed approach is to maximize the probability of ensuring that makespan will not 

exceed the expected completion time.  

   The outline of the paper is as follows. After presenting an introduction to the considered problem in 

section 1, section 2 is devoted to the survey of studies related to this work. The problem is described and 

formulated in section 3. In Section 4, we present solution approaches including an improved genetic 

algorithm, simulated annealing, and a procedure based on the main idea of Johnson’s rule.  Result analysis 

has been provided in section 5. Finally, the conclusion and some suggestions for future studies are discussed 

in section 6. 

 

2-Literature review 
   The literature related to this work is categorized into two subsections. First, the studies dealing with the 

two-stage assembly flow shop scheduling problem are presented. After that, the efforts focusing on the 

uncertainty issue in processing or assembling time of scheduling problems are investigated. Finally, the 

research gap is discussed to clear this paper's novelty. 
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2-1-Literature review on the two-stage assembly flow shop scheduling problem 

   Two-stage production environments that consider both the processing and assembly operation 

concurrently are one of the most lalupop gniluuphcs problems in manufacturing industries. The two-stage 

assembly flow shop scheduling problem (TAFP) as an especial form of two-stage production systems was 

introduced by Lee et al. for the first time in 1993 (Lee et al., 1993). After that, many researchers deal with 

this problem considering makespan as the dominating objective function; for instance, we can cite (Sung 

& Kim, 2008), (Sung & Juhn, 2009), and (Navaei et al., 2013).  

   Some new research have investigated the problem considering other objective functions. For example, 

Allahverdi and Al-Anzi tackle this problem to minimize makespan and mean completion time of products 

simultaneously using a bi-objective model. The authors proposed three algorithms including simulated 

annealing (SA), ant colony optimization (ACO), and self-adaptive differential evolution (SDE) for the 

problem (Allahverdi & Al-Anzi, 2008). Torabzadeh and Zandieh dealt with the TAFP considering the same 

objective functions as (Allahverdi & Al-Anzi, 2008) and used the cloud theory-based simulated annealing 

(CSA) algorithm which was indicated to perform better than the SA (Torabzadeh & Zandieh, 2010). 

Allahverdi and Aydilek investigated the TAFP to minimize total tardiness for the first time. They proposed 

an insertion algorithm, a genetic algorithm, two versions of the simulated annealing (SA) algorithm, and 

two versions of cloud theory-based SA to solve the problem (Allahverdi & Aydilek, 2015).  

   Some studies extended the TAFP to the three-stage assembly flow shop by considering a supplementary 

stage between the processing and assembly stage wherein, the parts are collected and prepared. Koulamas 

and Kyparisis considered an intermediate operation after the machining stage devoted to collecting and 

transporting the fabricated parts from the processing areas to the assembly area. They analyzed the worst-

case ratio bound for several heuristics to the problem on the large scales (Koulamas & Kyparisis, 2001). 

Similarly, Komaki et al. investigated a three-stage assembly flow shop scheduling problem wherein, the 

first stage includes several identical parallel machines followed by the second and the third stages that each 

of them has a single machine. They proposed an improved Cuckoo Optimization Algorithm (COA) which 

incorporates new adjustments such as clustering and immigration of the cuckoos based on a discrete 

representation scheme (Komaki et al., 2017). Some studies have dealt with two-stage production systems 

using exact methods just for special cases. We can refer to (Wu et al., 2020) and (Daneshamooz et al., 2021) 

who developed a branch and bound algorithm with some tight lower bounds for this problem. 

   Recently efforts have considered practical features in TAFP to close it to real-world condition. For 

example, Lei et al. proposed a cooperated teaching-learning-based optimisation (CTLBO) to minimise 

makespan in a distributed two-stage assembly flow shop (Lei et al., 2020). Zhang and Tang incorporated 

flexible preventive maintenance (PM) operation into a two-stage assembly flow shop with 𝑚 dedicated 

machines in the first (fabrication) stage and one machine in the second (assembly) stage. They formulated 

the problem using an MIP model considering maintenance level constraints with the aim of minimising the 

total completion time and maintenance time (Zhang & Tang, 2021b). The authors performed a similar study 

by incorporating preventive maintenance (PM) operation into TAFP where there are 𝑚1 dedicated machines 

in fabrication stage and 𝑚2 machines in the assembly stage. The main idea in their study is to find a fit 

product sequence along with PM execution time points. They proposed two heuristics and a PM-based 

iterated greedy algorithm for the problem (Zhang & Tang, 2021a). 

 

2-2-Literature review on scheduling problems under uncertainty 
   In the real case, however, the processing times of jobs on each stage are often uncertain due to the 

assembly machine conditions, tool accuracy, worker skill levels, and some other accidental factors 

(Allahverdi & Aydilek, 2010). These uncertain environments required proper solution approaches to tackle 

different kinds of uncertainty. Despite the notable effects of uncertainty on the obtained result for 

production planning and scheduling problems, this issue has received relatively little attention in the 

literature of scheduling. In the literature, we can see some efforts that have assumed independent and known 

processing time distributions for individual jobs and proposed stochastic methods (Kouvelis et al., 2000). 

Furthermore, some other studies have followed the scenario-oriented framework, in which the uncertainty 
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is modeled through the use of a number of scenarios, using either discrete probability distributions or the 

discretization of continuous probability distribution functions (Freeman et al., 2016). In this section, we 

present the related works that have tackled the uncertainty in scheduling problems. The term robust is often 

defined as a phrase describing a solution that does not change its performance much if uncertain parameters 

or unexpected events occur. Billaut et al. (2008) state that a schedule is robust if its performance is relatively 

insensitive to the data uncertainty. In this article, we consider the latter definition of robust scheduling. 

   Balasubramanian and Grossmann (2002) addressed a multi-period flow shop scheduling problem with 

uncertain processing times. They formulated the problem as an MIP model with the aim of minimising the 

expected makespan. In addition, the authors developed a branch and bound algorithm with an aggregated 

probability model to solve a special case of the problem. Li and Ierapetritou (2008) emphasized that 

uncertainty is a very important issue in scheduling since it can cause infeasibilities and production 

disturbances. Therefore, they performed a comprehensive review on the main methodologies that have 

tackled the issue of uncertainty in scheduling problems until 2007 as well as identified the main challenges 

in this area. Similarly, Verderameet al. (2010) provided an overview of the key contributions within the 

planning and scheduling communities with specific emphasis on uncertainty analysis until 2009. 

   Kasperski et al. (2012) discussed the two-stage permutation flow shop problem with uncertain job 

processing times. They assumed that processing times are specified as a discrete scenario set and applied 

the min–max and min–max regret criteria to tackle the problem. They also approved that the min–max and 

min–max regret versions of the problem are strongly NP-hard even for two scenarios. González-Neira et 

al. (2017) surveyed papers about flow shop and flexible flow shop scheduling problems under uncertainty 

published from 2001 to October 2016 and drew up interesting topic further research in this area. Zheng et 

al. (2020) investigated a scheduling problem in assembly manufacturing systems under uncertainty in 

processing time and random machine breakdown. They proposed some robust methods to minimise 

makespan and the deviation of the actual schedule from the baseline schedule simultaneously. 

   Liao and Fu (2020) studied the permutation flow shop scheduling problem with interval production time. 

They developed a min–max regret criterion-based robust method to minimize the total completion time and 

the tardiness of production simultaneously. Moreover, a genetic algorithm was adopted and implemented 

to solve this robust scheduling model on the large sizes. Recently, Wang et al. (2021) conducted the job-

shop scheduling problem with uncertain processing times using a discrete scenarios approach. Their 

objective functions were to minimize the mean makespan and the worst-scenario makespan across all the 

scenarios. The authors proposed two hybrid algorithms by combining the elitist nondominated sorting 

genetic algorithm (NSGA-II) and Tabu search (TS) operators to solve the problem. 

   Literature review indicates that the two-stage production systems including a processing stage followed 

by an assembly stage are receiving increasing attention in the field of academic research and manufacturing 

enterprise. .In practice, however, the exact assembling times of products are often uncertain due to the 

machine conditions, worker skill levels, and some other accidental factors. Robust approach, which is often 

concerned by risk-averse decision-makers, is focused on hedging against the worst-case performance rather 

than optimizing expected performance under all potential scenarios. As is evident in the existing literature, 

there is a lack of solution procedures for the assembly flow shop under uncertainty. There are two kinds of 

methods in robust scheduling to describe the set of all the possible scenarios: discrete processing time 

scenarios and continuous processing time intervals. The latter is applied in this paper. In this way, we 

improve genetic algorithm to tackle the problem wherein, there is uncertainty in the assembling times of 

the products which are assumed to follow a normal distribution. Moreover, two other methods are tuned 

and implemented based on simulated annealing and Johnson’s rule to evaluate the robustness of the 

obtained solutions. 
 

3-Problem statement 
   The considered two-stage assembly flow shop scheduling problem in this study has 𝑚 ≥ 2 identical 

parallel machines at the first stage and one assembly station at the second stage. A number of products of 

different kinds are ordered to produce. Each product is assembled with a set of specific parts. All parts are 

processed and ready in the first stage by the parallel machines and then, they are assembled into the final 

https://scholar.google.com/citations?user=synCOCIAAAAJ&hl=en&oi=sra
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product at the second stage. According to the conditions of the assembly machine, different worker skill 

levels, and operational factors, there is uncertainty in the assembling times of the products which are 

assumed to follow a Truncated Normal distribution. We consider minimizing the maximum completion 

time of all products (makespan) as the objective function for this study. Figure 1 demonstrates a schematic 

view of the considered problem in this study. 

   Despite the huge number of works devoted to flow shop scheduling problems, there are just a few studies 

concerning assembly flow shop versions of these problems. These few efforts have dealt with the assembly 

flow shop assuming deterministic processing times of components and assembling times of products. 

The main assumptions of the considered problem are as follows:  

 All parts are available for processing at time zero. 

 There is no idle time on all processing machines at the first stage. 

 Setup times are included in the processing time of parts. 

 The processing machines are always available all times. 

 Transportation time between the two stages is negligible 

 All machines can process all kinds of parts in the processing stage but each machine can process only 

one part at the same time  

 Each part can process on a machine at once. 

 Parts can wait in an unlimited buffer space between two stages. 

 The assembling operation of every product starts after preparing all the relevant parts and if the 

assembly stage is idle. 

 The assembling times of the products are uncertain and follow a Truncated Normal distribution. 

 

 

Fig 1. A schematic view of the considered problem 

To clarify the problem at hand, we first formulate it under deterministic condition by proposing an MIP and 

then, the problem will be discussed under uncertainty in assembling times. To this end, first, the complete 

notation and the mathematical model are presented as below. 

3-1-Sets and indices 

ℎ, ℎ′ = {1, 2, … , 𝐻} Indices for products 

𝑗, 𝑗′ = {1, 2, … , 𝑛} Indices for parts 

𝐽ℎ ⊂ 𝑛 Set of parts for product ℎ 

𝑙 = {1, 2} Set of production stages 

𝑖 = {1, 2, … , 𝑚} Set of parallel machines at the first stage 
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3-2- Parameters 

𝑃𝑗 Processing time of part 𝑗 at the first stage 

𝐴ℎ Assembling time of product ℎ 

𝐿 A large number 

 

3-3-Decision variables 

𝐴𝑆ℎ,ℎ′ Binary variable taking value 1 if product ℎ is an immediate predecessor of product ℎ′ and 0 

otherwise 

𝑌𝑖𝑗 Binary variable taking value 1 if part𝑗 is processed on machine 𝑖; 0, otherwise 

𝑋𝑖𝑗𝑗′  
Binary variable taking value 1 if part 𝑗′ is assigned to machine 𝑖 immediately after part 𝑗 ; 0, 

otherwise 

𝐹ℎ Start time for assembly of product ℎ  

𝐶ℎ Completion time of assembling the product ℎ  

𝐶𝑃𝑗 Completion time of part 𝑗 at the processing stage 

𝐶𝑚𝑎𝑥 Maximum completion time of all products that is a continuous positive variable 

 

3-4-Mathematical model 

 

Min  𝑍 = 𝐶𝑚𝑎𝑥  (1) 

Subject to:   

∑ 𝑌𝑖𝑗

𝑚

𝑖=1

= 1 ∀ 𝑗 (2) 

∑ ∑ 𝑋𝑖𝑗𝑗′ ≤ 1

𝑚

𝑖=1

𝑛

𝑗=0

(𝑗≠𝑗′)

 
∀ 𝑗′ (3) 

∑ (𝑋𝑖𝑗𝑗′ + 𝑋𝑖𝑗′𝑗)

𝑛

𝑗=1

(𝑗≠𝑗′)

≤ 2𝑌𝑖𝑗′  
∀ 𝑖, 𝑗′ (4) 

∑ ∑ 𝑋𝑖𝑗𝑗′ ≤ 1

𝑚

𝑖=1

𝑛

𝑗′=1

(𝑗′≠𝑗)

                          
∀ 𝑗 (5) 
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   In the mathematical model, equation (1) minimize the maximum completion time of products (makespan) 

as the objective function. Relation set (2) assures that every part must be exactly assigned to one machine. 

Relation set (3) enforces that every part must be exactly at one position and only by one machine. 

Constraints (4) state that every part can be either a successor or predecessor on the processing machine to 

which it is assigned. Constraints (5) guarantee that every part has at most one succeeding part whereas 

relation set (6) controls that dummy part 0 has exactly one successor on each machine. Constraints (7) avoid 

the occurrence of cross-precedence, meaning that a part cannot be at the same time both a predecessor and 

a successor of another part. Constraints (8) and (9) calculate the completion time of parts. It is necessary to 

point out that constraint set (9) enforces that a machine can process at most one part at a time. Constraints 

(10) – (13) guarantee sequencing rules related to products assembly. According to constraints (10) every 

product has at most one preceding product including the dummy product. We need constraint (11) to ensure 

∑ 𝑋𝑖0𝑗′

𝑛

𝑗′=1

= 1 ∀ 𝑖 (6) 

∑(𝑋𝑖𝑗𝑗′ + 𝑋𝑖𝑗′𝑗)

𝑚

𝑖=1

≤ 1 ∀ 𝑗 = 1, 2, … , 𝑛 − 1; 𝑗′ > 𝑗 (7) 

𝐶𝑃𝑗 ≥ 𝑃𝑗 ∀𝑗 (8) 

𝐶𝑃𝑗 ≥ 𝐶𝑃𝑗′ + 𝑃𝑗 + (∑ 𝑋𝑖𝑗′𝑗

𝑚

𝑖=1

− 1) . 𝐿 ∀ 𝑗, 𝑗′, ;  𝑗 ≠ 𝑗′ (9) 

∑ 𝐴𝑆ℎℎ′

𝐻

ℎ=0
(ℎ≠ℎ′)

= 1 ∀ ℎ′ (10) 

∑ 𝐴𝑆0ℎ′

𝐻

ℎ′=1

= 1  (11) 

∑ 𝐴𝑆ℎℎ′

𝐻

ℎ′=1
(ℎ′≠ℎ)

≤ 1 ∀ ℎ (12) 

𝐴𝑆ℎℎ′ + 𝐴𝑆ℎ′ℎ ≤ 1 ∀ ℎ = 1, 2, … , 𝐻 − 1; ℎ′ > ℎ (13) 

𝐹ℎ ≥ 𝐶𝑃𝑗 ∀ℎ;  𝑗 ∈  {𝐽ℎ} (14) 

𝐹ℎ ≥ 𝐶ℎ′ + (𝐴𝑆ℎ′ℎ − 1). 𝐿 ∀ ℎ, ℎ′(ℎ ≠ ℎ′) (15) 

𝐶ℎ ≥ 𝐹ℎ + 𝐴ℎ ∀ ℎ (16) 

𝐶𝑚𝑎𝑥 ≥ 𝐶ℎ ∀ ℎ (17) 

𝑋𝑖𝑗𝑗′ , 𝑌𝑖𝑗 ,  𝐴𝑆ℎ′ℎ  ∈ {0,1} ∀ 𝑖, 𝑗, 𝑗′, ℎ, ℎ′ (𝑗 ≠ 𝑗′;  ℎ ≠ ℎ′) (18) 

𝐶𝑃𝑗, 𝐶ℎ , 𝐹ℎ , 𝐶𝑚𝑎𝑥 ≥ 0 ∀𝑗, ℎ (19) 
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that just one product is assembled as the first product. Constraints (12) indicate that every product has at 

most one succeeding product. Constraints (13) avoid the occurrence of cross-precedencies, meaning that a 

product cannot be at the same time both a predecessor and a successor of another product. Constraints (14) 

and (15) calculate the assembly start time for each product. Constraints (16) determine the completion time 

of each product. Constraints (17) defines the makespan. Finally, constraints (18) and (19) define the domain 

of the decision variables. 

   It should be pointed out that we introduced a dummy part 0 with zero processing time, which precedes 

the first part for processing on each parallel machine. Similarly, a dummy product was considered with zero 

assembling time that precedes the first product at the assembly stage. 

For the majority of deterministic scheduling problems in the literature, the processing and assembling times 

are considered deterministic and constant. However, there is uncertainty in processing times and/or 

assembling times in various real-life systems due to the machine conditions, worker skill levels, or some 

other accidental factors (Allahverdi & Aydilek, 2010). These uncertain environments can often be solved 

by some stochastic models if the probability distribution of processing time is determined. Historical data 

and experience are useful to obtain the probability distribution. 

   As is evident in the existing literature, the probabilistic technique is significant to represent processing 

and assembling time uncertainties. The processing time uncertainty is described by its distribution. The 

distribution of processing and assembling time can be obtained by collecting and analyzing the actual data 

of job processing times in every shop scheduling such as two-stage assembly flow shops or by assumptions. 

To get the assembling time distribution, a large quantity of assembling time data of repeat production in a 

case study in the automotive manufacturing industry was considered. The result indicated that the uncertain 

assembling time of products is an independent random variable that follows a Truncated Normal 

distribution. Therefore, an objective to maximize the probability that the maximum completion time 

(makespan) will be less than the expected makespan is introduced as (20) for the problem at hand instead 

of (1) in the deterministic model. 

 

Max [𝑃(𝐶𝑚𝑎𝑥 ≤ expected makespan)] (20) 

 

   Uncertain assembling time of products is an independent random variable and so, due to the central limit 

theorem, the completion time of all products will follow normal distribution. It is well-known that the sum 

of two or more independent normally distributed numbers is also normally distributed. This fact can be 

shown for two random variables A and B with normally distributed as bellow: 

 

𝐴~𝑁(𝜇𝐴 , 𝜎𝐴
2)

𝐵~𝑁(𝜇𝐵 , 𝜎𝐵
2)

 
 

𝐴 + 𝐵~𝑁(𝜇𝐴 + 𝜇𝐵 , 𝜎𝐴
2 + 𝜎𝐵

2) 

 

   For a two-stage assembly flow shop scheduling of 𝐻 products where the assembling time of products are 

uncertain, the robust schedule is defined as a schedule that gives the maximum probability that the 

makespan of the schedule will not exceed the expected completion time 𝑋. Mathematically, Probability 

(makespan ≤ 𝑋) is the maximum for a robust schedule. 

   We define the makespan with a normal distribution as 𝐶𝑚𝑎𝑥~(𝜇𝐶𝑚, 𝜎𝐶𝑚
2 ) and so, the probability that 

makespan will not exceed the real maximum completion time limit 𝑋, is calculated as (21). 

 

𝑃(𝐶𝑚𝑎𝑥 ≤ 𝑋) = 0.5 + 𝜑(𝑍) (21) 

Where 𝑍 =
𝑋−𝜇𝐶𝑚

𝜎𝐶𝑚
, and 𝜑(𝑍) =

1

√2𝜋
∫ 𝑒

−(
𝑡2

2
)
𝑑𝑡

𝑍

−∞
. 

   Since the function 𝜑(𝑍) is difficult to get its exact solution, the mathematical relation provided by (Liu 

et al., 2011) is used as (22) to obtain its approximate solution as (22). 
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𝜙(𝑍) ≈ 𝜑(𝑍) = {
0.1𝑍(4.4 − 𝑍)  (0 ≤ 𝑍 ≤ 2.2)

0.49                 (2.2 < 𝑍 < 2.6)

0.5                 (𝑍 ≥ 2.6)            
   (22) 

 

4-Solution approach 
4-1-Genetic algorithm 

   In view of the fact that the problem at hand is strongly NP-hard and so, we need heuristic or metaheuristic 

algorithms to provide near solutions in a reasonable time. Genetic algorithm (GA) is one of the 

approximation optimization methods that utilize theories of evolution and natural selection to solve 

problems in a complex solution space and it is widely used for flow shop scheduling problems (Liu et al., 

2011; Hasani & Hosseini, 2020). Therefore, an improved GA is tuned and used in this section to provide 

near-optimal solution for the problem at hand considering all aforementioned features. 

 

Solution representation 

   The proposed algorithm uses permutation encoding, which is a common technique for solution 

representation in sequencing problems. Since the job-based representation provides a direct feasible 

solution in the presence of precedence constraints, this procedure is used for the considered problem. To 

this end, a population of main chromosomes is generated for sequencing the products and several sub-

chromosomes are generated for parts assigning to the parallel machines. The best sub-chromosome for the 

main chromosome is selected based on the value obtained for the objective function. To simplify, it is 

assumed that if product ℎ is precedes the product ℎ′, then, process operation of all parts of the product ℎ′ 
doesn't start before processing of all parts of the product ℎ. For instance, suppose that four products are 

need to produce. The required part set of these products is as table 1. A sample of the encoding structure 

has been demonstrated in figure 2.  

 

Table 1. The required part set of the instance 

Product No. 1 2 3 4 

Part No. 1,2 3,4,5 6,7 8,9 

 

 

 

 

 

 
Fig 2. A sample of the proposed encoding structure 

Initial population generation 

   Due to the notable importance of the initial solutions and their effect on the final result, it is better to some 

of the initial solutions are identified as suitable rules. Accordingly, we use two solutions provided by well-

known heuristic schedules for flow shop. The first algorithm is NEH introduced by Nawaz, Enscore, and 

Ham in 1983 for scheduling of m-machine permutation flow shop (Nawaz et al., 1983)(Kalczynski & 

2 2 2 1 1 4 4 3 3 

3 4 5 2 1 8 9 7 6 

5 4 3 1 2 8 9 7 6 

3 4 5 2 1 9 8 6 7 

 

Main chromosome 

Sub-chromosomes 

Chromosomes 
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Kamburowski, 2007). The second procedure is called JAF proposed by Hosseini et al. in 2021 for a two-

stage assembly flow shop (Hosseini et al., 2021). Moreover, additional required initial solutions are 

generated randomly. These procedures are used for sequencing the products as the main chromosomes. 

After that, the set of parts sequencing is determined randomly for each product as the required sub-

chromosomes. 

 

Fitness function 

   In the problem at hand, due to the issue of uncertainty in assembling times, the fitness value of each 

chromosome 𝑖 is evaluated as (23). 

 

𝑓(𝑖) = 𝑃(𝐶𝑚𝑎𝑥
𝑖 ≤ 𝑋)                                (23) 

 

This function is calculated by considering (21) and (22). Obviously, the higher the fitness function value of 

an individual, the better the individual is to select. 

 

Parent selection 

   Then, parents are selected by tournament selection method wherein, a tournament among all 

chromosomes is held to determine the selective pressure. This pressure forces the algorithm to select 

required parents with a large fitness value. The winner of the tournament is regarded as the best individual 

with the highest fitness value and is inserted into a mating pool of new offspring. The procedure is repeated 

until the mating pool of offspring is filled. 
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C1: C2: 

 

2 2 2 1 1 3 3 4 4 

3 4 5 2 1 6 7 9 8 

5 4 3 1 2 7 6 9 8 

3 4 5 2 1 7 6 8 9 
 

1 1 2 2 2 4 4 3 3 

1 2 4 3 5 8 9 7 6 

1 2 4 5 3 8 9 7 6 

2 1 3 5 4 9 8 6 7 

  

C1: C2: 

 

2 2 2 1 1 3 3 4 4 

3 4 5 2 1 6 7 9 8 

4 5 3 1 2 7 6 9 8 

3 4 5 2 1 7 6 8 9 
 

1 1 2 2 2 4 4 3 3 

1 2 5 3 4 8 9 7 6 

1 2 4 5 3 8 9 7 6 

2 1 3 5 4 9 8 6 7 

 

Fig 3. The proposed recombination operators 

 

Crossover and mutation operators 

   The crossover operator is executed only on the main chromosome (the first string) that indicated products 

sequencing. Some different methods were tested for the crossover, and finally, the one-point crossover 

(1PX) was recognized well than the others. It should be noted that the cut point is determined randomly at 

the first of a product position on one of two chromosomes. Then the sub-chromosomes (the rest strings) 

that demonstrate the part sequencing are mutated according to the sequence of products and their 

assignment to the machines in the first stage. Based on test results, the swap operator is applied randomly 

on genes as the proper mutation. Figure 3 presents a sample of the one-point crossover and swap operator 

on parts sequencing used for the considered algorithm. 

Replacement 

   For the problem at hand, the new generation Pt+1 is selected from both parents and offspring based on the 

fitness values. In this way, the new generation is formed by replacing the second 50% of the current 

population with the first 50% of the new population (offspring). Based on this procedure, there is no 

guarantee that the inserted best solutions are always better than the worst solutions in the current population. 

This approach makes the algorithm towards searching the various regions and avoids forming a premature 

convergence during the progress of the algorithm. 

Termination condition 

   Several termination conditions, such as a maximum number of generations, elapsed time, no change in 

fitness, and stall time limits were tested and finally applying two criteria of the maximum number of 

iterations and the number of successive iterations with no change in fitness simultaneously provided the 

best result. Figure 4 demonstrates the pseudo-code of the proposed genetic algorithm for the considered 

problem. 

 

4-2-Simulated annealing 

   The simulated annealing (SA) algorithm as another well-known metaheuristic is tuned and used for result 

comparison. The same encoding structure explained for the proposed GA is used for the proposed SA. 

Moreover, three neighborhood structures including swapping, reversion, and insertion are applied randomly 

in each iteration to enhance the performance of the algorithm. Figure 5 represents a schematic view of the 

proposed SA. 

New solutions 
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Start: (Initialization) 

Step 1: Create initial population 

Step 2: Evaluate fitness of individuals 

Step 3: Select parents (Tournament selection) 

Step 4: Crossover (1PX) 

Step 5: Mutation (swapping) 

Step 6: Replacement (Both parent replacement) 

Step 7: Create new generation with new generation scheme 

            If termination condition occurs (maximum number of iterations or the number of successive 

                iterations with no change in fitness) proceed to the next step 

            Else, go to step 2 

Step 8: Report the final result and stop 

Fig 4. Main steps of the proposed GA 

 
Fig 5. Flow chart of the used SA 
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4-3-Parameter calibration 

   Parameters tuning has a significant impact on the performance of approximation methods. Due to the 

number of required parameters, we should perform the parameter tuning using a proper design of 

experiments. The Taguchi method is a well-known experimental methodology that indicates the best values 

of required parameters with the minimum possible number of experiments. This method is one of the 

famous statistical analysis methods that can improve the robustness of an algorithm by obtaining a better 

parameter configuration (Yepes-Borrero et al., 2020). Therefore, this method is used in this section to 

determine the best combination of required parameters for the two abovementioned algorithms. Three levels 

are tested for each parameter and evaluation is performed by following the signal-to-noise (S/N) ratio 

concerning the independent variables. For simplicity, the procedure is handled under deterministic 

condition of the problem at hand. Since the objective in this study is to minimize the makespan, the smaller-

the-better principle is considered as (24). 

 

𝑠

𝑛
= −10 log

1

𝑛
(∑ 𝑥2)                                                                  (24) 

 

   Where 𝑥 is the experimental data of the dependent variable (i.e., makespan); 𝑛 is the number of 

experimental observations. The main factors considered in this paper, parameter tuning data, and the results 

of the Taguchi method for each level of factors are shown in table 2. 

 

Table 2. Tested and final values of parameters provided by Taguchi method 

Algorithm Parameters Tested values Final values 

GA Max iterations 250 400 550 400 

 Population size (N) 50 70 100 100 

 Crossover rates (𝑃𝑐) 0.6 0.75 0.9 0.9 

 Mutation rates (𝑃𝑚) 0.05 0.15 0.2 0.15 

SA Initial temperature (𝑇0) 100 150 200 100 

 Final temperature (𝑇𝑓) 1 × 10−14 1 × 10−9 2 × 10−5 1 × 10−14 

 Maximum inner iterations 5 10 15 10 

 Temperature damping rate (𝛼) 0.85 0.9 0.95 0.85 

 

5-Computational experimentation 
   This section provides test instances and evaluation results of the performance of the proposed GA. In 

order to evaluate the robustness of proposed schedules, the Probability (makespan≤X) of schedules 

provided by the proposed algorithm is compared with another method and with the optimal solutions 

obtained from the mathematical model on the small scales. 

   To use the proposed algorithm for solving the problem at hand, first, some test instances are customized 

with inspiration from the standard data in the existing literature. To this end, data of test examples given by 

(Fattahi et al., 2013) for a two-stage hybrid flow shop scheduling problem with assembly operation are 

modified for the considered problem in this study and analyzed. Since, the available data in (Fattahi et al., 

2013) only provides deterministic processing time of parts and assembling time of products, the 

deterministic assembling time of each product ℎ is considered as the mean assembling times of that product 

(𝜇𝐴ℎ). The variance of assembling time corresponding to each product at the second stage is randomly taken 

from an assumed interval of [1 , 0.1𝜇𝐴ℎ]. Table 3 demonstrates all characteristics of test examples. 
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Table 3. Characteristics of test instances 

Instance name 𝐻 𝑛𝐻 𝑚 𝑃𝑗 𝜇𝐴ℎ 𝜎𝐴ℎ
2  

AF1 10 5 2 50 200 [1 , 20] 

AF2 10 5 3 50 200 [1 , 20] 

AF3 10 5 4 50 200 [1 , 20] 

AF4 10 7 2 50 200 [1 , 20] 

AF5 10 7 3 50 200 [1 , 20] 

AF6 10 7 4 50 200 [1 , 20] 

AF7 10 10 2 50 200 [1 , 20] 

AF8 10 10 3 50 200 [1 , 20] 

AF9 10 10 4 50 200 [1 , 20] 

AF10 50 5 2 50 200 [1 , 20] 

AF11 50 5 3 50 200 [1 , 20] 

AF12 50 5 4 50 200 [1 , 20] 

AF13 50 7 2 50 200 [1 , 20] 

AF14 50 7 3 50 200 [1 , 20] 

AF15 50 7 4 50 200 [1 , 20] 

AF16 50 10 2 50 200 [1 , 20] 

AF17 50 10 3 50 200 [1 , 20] 

AF18 50 10 4 50 200 [1 , 20] 

AF19 100 5 2 50 200 [1 , 20] 

AF20 100 5 3 50 200 [1 , 20] 

AF21 100 5 4 50 200 [1 , 20] 

AF22 100 7 2 50 200 [1 , 20] 

AF23 100 7 3 50 200 [1 , 20] 

AF24 100 7 4 50 200 [1 , 20] 

AF25 100 10 2 50 200 [1 , 20] 

AF26 100 10 3 50 200 [1 , 20] 

AF27 100 10 4 50 200 [1 , 20] 

AF28 150 5 2 50 200 [1 , 20] 

AF29 150 5 3 50 200 [1 , 20] 

AF30 150 5 4 50 200 [1 , 20] 

AF33 150 7 2 50 200 [1 , 20] 

AF34 150 7 3 50 200 [1 , 20] 

AF35 150 7 4 50 200 [1 , 20] 

AF36 150 10 2 50 200 [1 , 20] 

AF37 150 10 3 50 200 [1 , 20] 

AF38 150 10 4 50 200 [1 , 20] 

 

   To compare result of the proposed algorithms, we use Johnson’s rule that has proven its superiority for 

two-stage flow shop scheduling problems. This idea was introduced in 1954 as an exact method for job 
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sequencing in two-stage flow shop scheduling problems with minimizing makespan as the objective 

function. 

  Procedure of the Johnson’s idea can be summarized as below: 

Suppose that 𝑝𝑖1 and 𝑝𝑖2 are the processing time of job 𝑖 at the first and second stage respectively. Similarly, 

𝑝𝑗1 and 𝑝𝑗2 are considered as processing time of job 𝑗. In the optimal schedule, job 𝑖 precedes job 𝑗 if the 

following condition is met: 

 

min{𝑝𝑖1 , 𝑝𝑗2} < min{𝑝𝑖2 , 𝑝𝑗1} 

   Several studies have extended this rule to the two-stage assembly flow shop sequencing problem; for 

instance, we can cite, (Fattahi et al., 2013), (Hosseini, 2016), and (Hosseini et al., 2021). So, we use the 

extended Johnson’s rule to solve the problem at hand and to calculate the Probability (makespan≤X) of the 

proposed algorithm based on solutions provided by this technique. In order to compare Probability 

(makespan≤X), the expected completion time is needed. In this way, Probability (makespan≤X) for 

Johnson’s rule schedules is assumed and the corresponding 𝑍 value is then calculated from equations (21) 

and (22). 

   The expected completion time of products is calculated based on the 𝑍 value. After that, the expected 

completion time is used to calculate the Probability (Makespan≤X) of the schedules provided by the 

proposed algorithm. Finally, this Probability of GA schedules is compared with the assumed Probability 

(Makespan≤X) of Johnson’s idea. 

   First, we need to adopt the problem at hand for using Johnson’s algorithm. In this way, the parallel 

machines at the processing stage are considered as the first stage and the assembly stage is considered as 

the second stage. The mean assembling time of each product ℎ is considered as 𝑝ℎ2. Moreover, the total 

time for processing and completing the set of parts for each product (𝑛ℎ) can be computed as 𝑝ℎ1. This time 

depends on some factors in addition to the processing times such as the number of the parts and the number 

of the parallel machines. So, the maximum amount of two below phrases is considered as the processing 

time of the parts for each product as below (Hosseini et al., 2021). 

 

max
𝑗∈𝑛ℎ

(𝑃𝑗) ∀ ℎ 

∑ (𝑃𝑗)𝑗∈𝑛ℎ

𝑚
 ∀ ℎ 

   The maximum amount of two above phrases is considered as 𝑝ℎ1 and the assembling time of each 

production ℎ indicates the 𝑝ℎ2. Now, the sequencing of the products is done using Johnson’s idea as below 

steps: 

 Suppose 𝑈 = {ℎ ∈ 𝐻|𝑝ℎ1 < 𝑝ℎ2}  and 𝑉 = {ℎ ∈ 𝐻|𝑝ℎ1 ≥ 𝑝ℎ2} 

 Sort the set of U in non-decreasing order of 𝑝ℎ1 and set of V in non-increasing order of 𝑝ℎ2 

 Determine the sequence of products according to the set of U and V after that 

   After sequencing the products, the parts of each product are sorted in non-increasing processing time to 

process by the parallel machines. 

 

 

 

 

https://en.wikipedia.org/wiki/Makespan
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Table 4. Result of solving test instances 

Problem 
Johnson’s Idea GA %Increase 

Probability 

%Decrease 

Risk 𝐶𝑚𝑎𝑥 X 𝜑(𝑍) Probability 𝐶𝑚𝑎𝑥 

AF1 2004 2031.1 0.5 1 1997 25 20 

AF2 1829 1859.3 0.5 1 1829 25 20 

AF3 1905 1945.4 0.492 0.992 1905 23 18.11 

AF4 2183 2186.9 0.447 0.947 2174 11.75 8.5 

AF5 2062 2106.5 0.5 1 2062 25 20 

AF6 2036 2079.8 0.5 1 2036 25 20 

AF7 2678 2694 0.455 0.955 2664 13.75 10.09 

AF8 2651 2707.7 0.468 0.968 2651 17 12.78 

AF9 2629 2685 0.465 0.965 2629 16.25 12.15 

AF10 8615 8793.1 0.495 0.995 8568 23.75 18.81 

AF11 8616 8800.4 0.49 0.990 8532 22.5 17.65 

AF12 8636 8821.3 0.435 0.935 8571 8.75 6.19 

AF13 9027 9220.5 0.459 0.959 8918 14.75 10.91 

AF14 8847 9036.7 0.498 0.998 8768 24.5 19.52 

AF15 8998 9180.7 0.419 0.919 8983 4.75 3.27 

AF16 12062 12320.2 0.405 0.905 12016 1.25 0.84 

AF17 12086 12345.1 0.468 0.968 12059 17 12.78 

AF18 12042 12300 0.47 0.970 11934 17.5 13.21 

AF19 8904 9094.5 0.459 0.959 8823 14.75 10.91 

AF20 12077 12325.5 0.417 0.917 12009 4.25 2.92 

AF21 12059 12317.5 0.301 0.801 11957 -24.75 -14.16 

AF22 12093 12351.9 0.487 0.987 11926 21.75 16.96 

AF23 16819 17179 0.439 0.939 16832 9.75 6.95 

AF24 16862 17223.4 0.425 0.925 16763 6.25 4.35 

AF25 16999 17363.2 0.498 0.998 16878 24.5 19.52 

AF26 17995 18381 0.415 0.915 17889 3.75 2.56 

AF27 17604 17981 0.428 0.928 17559 7 4.9 

AF28 17495 17869.5 0.5 1 17261 25 20 

AF29 23925 24437.3 0.496 0.996 23857 24 19.05 

AF30 23355 23855.5 0.375 0.875 23343 -6.25 -4 

AF31 23382 23883.1 0.481 0.981 23362 20.25 15.61 

AF32 25570 26117.4 0.425 0.925 25554 6.25 4.35 

AF33 25502 26048.8 0.5 1 25295 25 20 

AF34 25465 26010.6 0.438 0.938 25399 9.5 6.76 

AF35 26264 26796.5 0.392 0.892 26068 -2 -1.32 

AF36 26188 26749.4 0.412 0.912 26027 3 2.04 

 

    All procedures are coded MATLAB (R2019b). Then experiments are executed on a PC with a 2.0GHz 

Intel Core 2 Duo processor and 2GB of RAM. Each problem is considered to have a probability value of 

0.8 for schedules provided by Johnson’s idea. The 𝑍 value relevant to this probability level is taken from 

the standard normal distribution table which is 1.209. 

   Every example, is first solved by the Johnson’s idea to get average and variance makespan of schedule. 

Then, for each example the corresponding expected completion time is calculated as below and represented 

by X in table 4. 
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𝑍 =
𝑋 − 𝜇𝐶𝑚

𝜎𝐶𝑚
 

 

   Furthermore, the mean and variance makespan for each instance is calculated for the schedules obtained 

from the proposed algorithm. In this way, the X values obtained from Johnson’s idea of each instance are 

taken as such to represent the expected completion time for each instance of the schedule. The probability 

value of each instance is also determined for their corresponding schedules using (22). Finally, the 

percentage increase in probability values and percentage decrease in risk of each instance is computed as 

(25) and (26) respectively (Liu et al., 2011).  

%𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝜑(𝑍)𝑎𝑙𝑔.−𝜑(𝑍)𝐽𝐼

𝜑(𝑍)𝐽𝐼
× 100          (25) 

%𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑅𝑖𝑠𝑘 =
(1 − 𝜑(𝑍)𝐽𝐼) − (1 − 𝜑(𝑍)𝑎𝑙𝑔.)

(1 − 𝜑(𝑍)𝑎𝑙𝑔.)
× 100      (26) 

   Results shown in table 4 indicate that the proposed genetic algorithm gets better robust schedules for most 

examples except three instances (i.e., instances AF21, AF30, and AF35) than Johnson’s procedure 

schedules. Results of six instances give 100% probability of ensuring that makespan will not cross the 

expected completion time limit. Minimum percentage increase in the probability of 3% is obtained with 

2.04% decrease in risk from GA excluding three examples AF21, AF30, and AF35 that Johnson’s method 

outperformed the proposed GA. Maximum percentage increase in the probability of 25% with a maximum 

decrease in risk of 20% is observed from the proposed GA. 

   To better evaluate the performance of the proposed genetic algorithm, the nine first examples are solved 

ten times by GA and SA and the result is compared with the optimal solutions provided by the mathematical 

model. In this way, the deviation percentage of the expected makespan from the optimal schedule is 

presented for two algorithms. This index is calculated as (27) in two cases as the average and maximum 

percentage increase over the optimal solution for the algorithms. 

%𝐷 =
𝑍𝐴𝑙𝑔. − 𝑍𝑜𝑝𝑡

𝑍𝑜𝑝𝑡
× 100                (27) 

    Figures 6 and 7 demonstrate %D in the mean and maximum cases respectively. As it is depicted in these 

figures, GA has better performance in solving the problems in terms of both mean and maximum deviation 

from the optimal schedule. However, the result denotes that both of the two proposed algorithms provide 

the expected makespan of the robust schedule closely approximates the schedule with the optimal expected 

makespan. Genetic algorithm shows the mean deviation 3.2% to 14.9% from the optimal solutions in 

solving the problem on the small scales. However, simulated annealing has solved the problem with the 

average approximation errors of 5.6% to 28.7%. 
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Fig 6. The average of %D 

 

 

 
Fig 7. The maximum of %D 

 

    Figure 8 indicates the CPU time of two algorithms for solving the problem on different sizes. As 

expected, the CPU time of both two algorithms rises as the problem size increases. However, it can be 

concluded that simulated annealing consumes less CPU time than GA. The reason could be more power of 

GA in explore the solution space. 
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Fig 8. The CPU times of two algorithms 

 

6-Conclusions 
   This study discussed the makespan minimisation-scheduling problem in a two-stage assembly flow shop 

under uncertainty in the assembling times. The first stage has 𝑚 identical parallel machines to process 

components and the second stage is a workstation to assemble the components into the final products. Due 

to the conditions of the assembly machine and tools, different worker skill levels, and operational factors, 

it was assumed that there is uncertainty in assembling time to close the problem to the real-world condition. 

To this end, the assembling time distribution of products was considered as normally distributed and the 

main objective was to propose a robust schedule to maximize the probability of ensuring that makespan 

would not exceed the expected completion time. 

   The two-stage assembly flow shop scheduling problem has received more attention in recent years due to 

its applications in manufacturing enterprises. The majority of the existing studies in the literature consider 

the processing and assembling times as deterministic parameters. However, there are usually different 

factors that managers have to schedule the jobs under uncertainty in the processing and assembling times. 

Therefore, it is vital for managers to consider all practical features of the problem to find out practical 

solutions. To the best of our knowledge, this paper is the first attempt to deal with uncertainty in assembling 

times as a practical feature of the aforementioned problem. 

    The problem was described carefully and formulated using an MIP model and an improved genetic 

algorithm was proposed and adopted to get the robust schedule. In this way, a new solution representation 

in accordance with the problem features was proposed. Moreover, the value of Probability (Cmax≤X) for 

each chromosome was defined as a new fitness function of chromosomes. A proper procedure was 

developed based on Johnson’s idea as a valid reference to evaluate the performance of the proposed 

algorithm. Furthermore, the schedules obtained from the proposed algorithm were compared with modified 

simulated annealing in different condition.   

    Some experiment analyses were performed on 36 test examples taken from the existing literature. The 

computational result indicated that robust schedules obtained by the proposed algorithm hedge effectively 

against uncertain assembling times while maintaining excellent expected makespan performance. The result 

showed that the proposed genetic algorithm gets better robust schedules than Johnson’s rule for 33 test 

examples of 36 instances. Comparison the performance of two algorithms GA and SA demonstrated that 

the proposed improved GA outperforms SA in terms of optimality that was evaluated as deviation 
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percentage (%𝐷) of the expected makespan from the optimal schedule for the small-sized scales. 

Conversely, GA is more computationally expensive due to its exploration procedure. 

The result of this study can be valuable for managers of two-stage or distributed manufacturing industries 

under uncertainty in the assembling times. Solution approaches proposed in this research help these 

managers provide robust schedule in the face of time changes during product assembly. It should be noted 

that providing robust schedule that hedge effectively against uncertain assembling times, help managers to 

reduce many operational costs such as deviation from due date and customer unsatisfying. 

   Future research can extend the proposed methods for other scheduling problems such as three-stage 

assembly flow shop or flow shop with assembly stage. Other possible extensions of this work include 

considering setup times or uncertainty in processing times in addition to assembling times. In real-world 

condition, the due date of products might be different. So, future research can be extended to consider robust 

scheduling when all products have different due dates. 
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