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Abstract 

Nowadays, due to the environmental issues, governmental regulations and economic 

benefits, focus on collecting and recovery of products has increased. Recovered products 

can be reused or sold in secondary markets. In this paper, we consider a given structure 

for a closed loop supply chain, including a manufacturer, distributer and retailer in the 

forward logistic; the original products are given to the primary market. In the reverse 

logistic of the given structure, the returned products are disassembled and some obtained 

parts are used in the manufacturer. We assume that the produced products from returned 

parts can be given to a secondary market. A minimum quality level is considered for the 

returned parts. A collection site, and a repair site is added to the initial structure and it is 

assumed that the disassembled parts to be categorized into end-of-use, end-of-life and 

disposals. Some products called commercial returns are not assembled and can be given 

to the secondary market after a simple repair. Furthermore, uncertainty on the demand 

and return rates are considered and the operational decision variables of the models 

which are mainly the flow values in the chain and opening some facilities are determined. 

Electronic devices such as mobile phones and printers are suitable examples for the 

studied supply chain. The robust counterpart of the model is developed and a solution 

approach based on the Lagrangian relaxation is developed for solving the problem. Two 

heuristics based on partial derivations are developed to solve the sub problems and results 

are analyzed. 

Keywords: Closed loop supply chain, end-of-use, end-of-life, robust optimization, 

quality level, Lagrangian relaxation 

 

1- Introduction 
   Nowadays, closed loop supply chain (CLSC) has attracted the attentions of many researchers. In the 

CLSC, both forward and reverse supply chains are considered jointly. In the forward supply chain, material 

and product flow is from suppliers to manufacturers, distributors, retailers and customers, while in many 

industries there is another flow in supply chains formed in the reverse side. In this flow, products are 

returned from customers to the higher echelons of the chain. In this paper, we study a CLSC structure, 

including a manufacturer, distributer, retailer and customers in the primary and secondary markets, a 

collection site, a repair site, a disassembly site, a parts warehouse, external suppliers, recycling sites and a 

disposal site. Returned products in the CLSC can be remanufactured and sold in the secondary market. 
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   The full descriptions of the supply chain structure and constraints of the model will be given in the nest 

sections. Fleischmann et al. (2001) presented a generic facility location model for recovery network 

configuration. They analyzed product return flows impact on logistic networks. Beamon and Fernandes 

(2004) proposed a multi-period integer programming model for CLSC design. Jayaraman (2006) presented 

an analytical approach for production planning and control of CLSC considering product recovery and 

reuse. Meade et al. (2007) mentioned two reasons for the increased interest and investment in the reverse 

supply chains: environmental factors and business factors. Environmental factors include environmental 

impacts of used products, environmental legislations and growing environmental consciousness of 

customers. Business factors include returned product's benefits and liberal return policies for customer 

satisfaction attraction. Chung et al. (2008) proposed a multi-echelon inventory system considering 

remanufacturing capability; then, they developed a CLSC inventory model to maximize profit of the 

retailer, the third party recycle dealer, the manufacturer and the supplier jointly.  

   Guang-zhi et al. (2009) formulated a mathematical model for a CLSC design problem supposing normal 

distribution for demand and return. Gong et al. (2009) studied CLSC problem considering demands as fuzzy 

variable and returns as stochastic variables; then, they presented a fuzzy chance constraint programming 

model. Salema et al. (2009) developed a strategic and tactical location-allocation model for CLSC. They 

also developed formulations in order to integrate strategic and tactical decisions together. They solved their 

problem using standard branch and bound technique. 

   Pishvaee et al. (2011) developed a deterministic mixed integer linear programming model for CLSC 

network design; then, they used robust optimization theory to consider the uncertainty of demand, returns, 

and shipping costs between facilities. Their results showed that the robust model dominates the 

deterministic one. Fazel Zarandi et al. (2011) studied CLSC distribution network design problem to 

emphasize the role of incorporating reverse parameters. Hassanzadeh Amin and Zhang (2012a) proposed a 

mathematical model for supplier selection and CLSC configuration with two phases. In the first phase, they 

proposed a framework for supplier selection and then used a fuzzy method to evaluate suppliers. In the 

second phase, they proposed a multi-objective mixed integer linear programming to maximize total profit, 

minimize defect rates and maximize the importance of external suppliers that earned in the first phase. 

   Mehrbod et al. (2012) presented a multi-objective mixed integer nonlinear programming model for closed 

loop logistics network. Model objectives are minimization of total cost, delivery time of new products and 

collection time of used products. They applied interactive fuzzy goal programming to solve the model. 

Wang and Hsu (2012) considered a closed loop supply chain with shortage and surplus arising from the 

uncertainty of demand, recovery and landfilling. Joochim (2012) developed a dynamic mathematical model 

to determine strategic decisions for the capacitated facility location problem in CLSC. The uncertainty is 

described by fuzzy sets. Hasanzadeh Amin and Zhang (2013) proposed a model for CLSC design to 

minimize total cost. They extended the model to consider environmental objective. They also developed 

their model by stochastic programming to examine effects of uncertainty on demand and return. Diabat et 

al. (2013) considered closed loop location inventory problem. In this problem, returns are remanufactured 

as spare parts. Also, demand and return are considered as uncertain parameters with normal distribution. 

They proposed a mixed integer nonlinear location-allocation model and an exact two-phase Lagrangian 

relaxation algorithm to solve it. Ramezani et al. (2013) considered a multi-echelon and multi-product closed 

loop logistic network under uncertainty and presented a robust design for that. Soleimani et al. (2013) 

developed a multi-echelon, multi-period and multi-product mathematical model for designing and planning 

a comprehensive closed loop supply chain network. Cardoso et al. (2013) developed a mixed integer linear 

programming model for closed loop supply chain design. They considered the uncertainty of demand using 

scenario tree approach. They showed that reverse logistics incorporation has economic benefits, although 

costly. Özkır and Başlıgil (2013) examined CLSC design problem. They supposed price and demands as 

uncertain parameters using fuzzy logic. They proposed a fuzzy multi-objective model to maximize the 

satisfaction level of trade, satisfaction degrees of customers and total CLSC profit.  

   Altmann and Bogaschewsky (2014) presented a multi-objective model based on robust optimization for 

CLSC design to minimize total costs and carbon dioxide equivalents. They considered demand and used 

product return ratio as uncertain parameters. Mirakhorli (2014) proposed an interactive fuzzy bi-objective 

https://www.sciencedirect.com/science/article/abs/pii/S0959652612005458#!
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model to design CLSC by minimizing total cost and total delivery time of the system. In this problem, 

demand and return are considered as uncertain parameters. Litvinchev et al. (2014) proposed two 

mathematical programming models to determine pricing strategy and optimal network design. The first 

model is proposed for multi-period case while the second one for stochastic demand. Govindan et al. (2015) 

presented a review of papers which published recently in reverse and CLSC. Jindal et al. (2015) proposed 

a fuzzy mixed integer linear programming model for CLSC design problem under uncertain environment. 

In this problem, demand, return, fraction of the recovered parts in different recovery processes and costs 

related to purchasing, transportation, inventory, processing and setup are considered as uncertain 

parameters and handled with fuzzy numbers. Garg et al. (2015) presented a bi-objective integer nonlinear 

programming model for CLSC network design to maximize total profit and minimize the transporting 

vehicles in forward direction.  

   Kaya and Urek (2016) presented a mixed integer nonlinear facility location-inventory-pricing model for 

a CLSC network design to decide on the optimal locations of the facilities, inventory amounts, prices for 

new products and incentive values for the collection of right amount of used products in order to maximize 

the total supply chain profit. They developed heuristics for the solution of this model. Ahmadzadeh and 

Vahdani (2017) considered a three-level location-inventory-pricing problem in a CLSC where demand 

across the customer zones was correlated, the inventory control at distribution centers followed a periodic 

review inventory policy, and shortage was allowed. They proposed a mathematical model for the mentioned 

network structure. Jangali et al. (2021) developed a CLSC network for engine oil in an uncertain 

environment. In this model, adverse environmental effects are also considered as well as the supply chain 

regular costs. The goal programming approach was deployed to solve the problem. The demand recyclable 

materials values were assumed to be of uncertainty, and a robust optimization approach was applied to 

tackle with the given uncertainty. Biçe and Batun (2021) studied the problem of CLSC network design with 

uncertainty in demand quantities, return rates, and quality of the returned items. They formulate the problem 

as a two-stage stochastic mixed-integer program which maximizes the total expected profit.  

   Regarding returns in CLSC which are collected in collection centers with different qualities, Guide and 

Van Wassenhove (2009) categorized returns, according to product life cycle as follows: a- Commercial 

returns, which are products that returned by customers during a certain period of time (for example, 30 days 

after purchasing); b- End-of-use returns, which are products that returned due to technological upgrade; c- 

End of life returns, which are products that returned due to obsolete technology. Hence, proper action with 

confronting each category is repairing, remanufacturing and recycling, respectively. Hassanzadeh Amin 

and Zhang (2012b) presented a mixed integer linear programming model to design CLSC network 

considering the product life cycle. 

   Due to inexact demand forecasting, demand variation around the time (Synder, 2006), and the ambiguity 

nature of quality and quantity of returns, demand and return are recognized as important source of 

uncertainty in CLSC. Hence, considering this issue CLSC network design is profitable. Researchers used 

different approaches to consider uncertainty including stochastic, scenario based, fuzzy based and robust 

optimization approaches. In this paper, we use robust optimization technique to describe the uncertainty of 

parameters. Also, considering the closed loop network structure, the manufacturer may use recycled, end-

of-use and new parts to produce his products. This in turn affects quality of parts and correspondingly 

quality of products to be different. For this reason a quality index for parts is defined. This index obliges 

the manufacturer to reserve the mean quality of used parts higher than a certain limit. “The major novelties 

of this paper are as following: 

- Closed loop network is designed with respect to the product life cycle by considering end-of-use 

and end-of-life modes 

- Returns and demands are considered as uncertain parameters and robust optimization technique is 

used to tackle their uncertainty 

- A quality index is considered to control used parts quality 

- A heuristic solution approach based on the Lagrangian relaxation is proposed to solve the problem 

for large instances by converting it to two sub-problems.” 

https://www.sciencedirect.com/science/article/abs/pii/S0360835220307518#!
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   The rest of the paper is organized as follows: In section 2, notations are presented. In section 3, the 

problem is defined and the proposed deterministic model is described. Then the used robust optimization 

technique is described and the developed robust counterpart model is presented. In section 4, we propose a 

heuristic solution approach based on the Lagrangian relaxation for solving the large instances of problem. 

In section 5, sensitivity analysis is done with respect to different parameters, the robust model is validated 

and the heuristic solution approach is evaluated. Finally, we give concluding remarks and some possible 

future researches in Section 6.   

 

2- Notation  
   In this section the indices, parameters and decision variables of the model are given. 

The indices are as follows: 

𝑖: Index of parts, 𝑖 = 1, … . , 𝐼 

𝑗: Index of products, 𝑗 = 1, … . , 𝐽 

𝑘: Index of suppliers, 𝑘 = 1, … . , 𝐾 

𝑙: Index of recycling sites, 𝑙 = 1, … . , 𝐿 

 

The parameters are as follows: 

𝛼𝑖: Quality index for end-of-use part 𝑖, 0 ≤ 𝛼𝑖 ≤ 1 

𝛽𝑖: Quality index for recycled part 𝑖, 0 ≤ 𝛽𝑖 ≤ 1. 

𝛾𝑖: Acceptable quality index for part 𝑖, 0 ≤ 𝛾𝑖 ≤ 1. 

𝑀1𝑖: Percentage of end-of-use returns of part 𝑖 after disassembly of returned products 

𝑀2𝑖: Percentage of end-of-life returns of part 𝑖 after disassembly of returned products 

𝑁𝑗: Percentage of the demand of product 𝑗 returned to the collection site 

𝑧𝑗: Percentage of commercial returns of product 𝑗 

𝐴: Maximum capacity of the manufacturer plant 

𝑡: Maximum number of recycling sites to be opened 

𝑆𝐴𝑗: Unit selling price of product 𝑗 at the primary market 

𝑆𝐸𝑗: Unit selling price of product 𝑗 at the secondary market 

ℎ𝑎𝑗: Unit inventory holding cost of product 𝑗 at the primary market 

ℎ𝑒𝑗: Unit inventory holding cost of product 𝑗 at the secondary market 

𝑎𝑗: Resource usage to produce one unit of product 𝑗 in the manufacturer plant 

𝐻𝑗: Unit inventory holding cost of product 𝑗 at collection site 

𝑦𝑗: Unit direct manufacturing cost of product 𝑗 

𝑒𝑗: Resource usage to repair one unit of product 𝑗 in the repair site 

𝐶𝑗: Maximum capacity of repair site for product 𝑗 

𝐷𝐴𝑗: Demand of product 𝑗 at the primary market 

𝐷𝐸𝑗: Demand of product 𝑗 at the secondary market 

𝑐𝑗: Unit collection cost of product 𝑗 

𝑑𝑗: Unit repair cost of product 𝑗 

𝑓𝑗: Set-up cost of disassembly site for product 𝑗 

𝑔𝑗: Set-up cost of repair site for product 𝑗 

𝐵𝑖: Maximum capacity of disassembly site assigned to part 𝑖 

ℎ𝑖: Unit disassembly cost of part 𝑖 

𝑚𝑖: Unit disposing cost of part 𝑖 

𝑟𝑖: Resource usage to disassemble one unit of part 𝑖 at the disassembly site 
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𝑛𝑖𝑙: Unit recycling cost of part 𝑖 at recycling site 𝑙 

𝑜𝑖𝑙: Set-up cost of recycling site 𝑙 for part𝑖 

𝑠𝑖𝑙: Resource usage to recycle one unit of part 𝑖 at recyclingsite 𝑙 

𝑂𝑖𝑙: Maximum capacity of recycling site𝑙 to recycle part 𝑖 

𝑞𝑖𝑗: Consumption rate of part 𝑖 in one unit of product 𝑗 

𝑝𝑖𝑘: The cost of purchasing part 𝑖 from external supplier 𝑘 

𝑏𝑖𝑘: Resource usage of supplier 𝑘 to produce one unit of part 𝑖 

𝑇𝑘: Maximum capacity reserved from external supplier 𝑘 

𝑀: A very big positive number 

 

Decision variables are as follows: 

𝑋𝑗: The amount of repaired commercial returns of product 𝑗 

𝑃𝐴𝑗: The amount of product 𝑗 produced for the primary market 

𝑃𝐸𝑗: The amount of product 𝑗 produced for the secondary market 

𝑍𝑗: The amount of product 𝑗 to be disassembled after collection  

𝑌𝑗: The amount of product 𝑗 imported at collection site 

𝑄𝐴𝑖𝑘: The amount of part 𝑖 purchased from external supplier 𝑘 for the products of primary market 

𝑄𝐸𝑖𝑘: The amount of part 𝑖 purchased from external supplier 𝑘 for the products of secondary market 

𝐸𝑖: The amount of part 𝑖 obtained from disassembly site 

𝐹𝑖𝑙: The amount of end-of-life returns of part 𝑖 to be recycled at recycling site 𝑙 

𝐺𝑖: The amount of part 𝑖 to be disposed after disassembly of products 

𝑅𝑖: The amount of end-of-use returns of part 𝑖 to be imported to the warehouse 

𝑈𝑖𝑙: Binary variable for installation of recycling site 𝑙 for part 𝑖 

𝑉𝑗: Binary variable which is 1 if the disassembly site is set up for processing product 𝑗; otherwise, is 0 

𝑊𝑗: Binary variable which is 1 if the repair site is set up for processing product 𝑗; otherwise, is 0 

To give better understanding, we have shown decision variables on figure 1. 

 

3- Problem description and formulation 
   In this section, we will give the under study supply chain structure, problem description, and robust 

counterpart of the problem. 

 

3-1- The supply chain structure  
   In figure 1, the CLSC network is given. It includes a manufacturer, distributer, retailer and finally 

customers in primary market. We add a secondary markets to this structure in which the products which 

are produced using returned parts, are sold. There is a collection site which is added to the initial structure. 

The collected products are divided into two groups. The first group are those products that are usually 

returned from retailer’s shelves or returned by customers because of some minor quality problems. The 

products in group one which are called commercial products are usually repaired and given to the 

secondary market by the manufacturer. The second group of returned products are disassembled. 

Disassembled products are converted into their initial parts. The addressed parts are assumed to be end-

of-use, end-of-life or disposal items. End-of-use parts in this research are those parts which can’t be used 

in the original products but can be used in the products that are supposed to be distributed to the secondary 

market. End-of-life parts should be processed according to the legislative obligations; in this chain, we 

have assumed to be recycled. The remaining parts are those which can’t be recycled and must be disposed 

because of the environmental effects or other managerial reasons. All the returned parts and purchased 

parts from the external suppliers which are used for the secondary market products are collected in the 

part warehouse. The manufacturer uses new parts purchased from the suppliers in order to produce 
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products for the primary market. Furthermore, the secondary market customer demands can be satisfied 

by products which are produced using returned parts or purchased ones. The cell phone industry is a good 

example for this network.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

3-2- Deterministic model 

    The structure of the CLSC network was described in the previous section. Since quality of returned parts 

are of importance for the supply chain owner, we consider a minimum quality level for the returned parts. 

This affects the quality of products given to the secondary market. Therefore, we define a quality index for 

returned parts. This index makes the manufacturer to reserve the quality of products higher than an 

acceptable level. The deterministic model considering the quality constraint can be stated as:  

(1a)      𝑀𝑎𝑥𝑍 =  ∑(𝑆𝐴𝑗 . 𝐷𝐴𝑗 + 𝑆𝐸𝑗 . 𝐷𝐸𝑗)

𝐽

𝑗=1

 

(1b)  −(∑ ∑ 𝑝𝑖𝑘(𝑄𝐴𝑖𝑘 + 𝑄𝐸𝑖𝑘)𝐾
𝑘=1

𝐼
𝑖=1   

(1c)  + ∑ ℎ𝑖𝐸𝑖

𝐼

𝑖=1

 

(1d) + ∑ ∑ 𝑛𝑖𝑙𝐹𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

 

𝐹𝑖𝑙 

𝑊𝑗  

𝑃𝐴𝑗 

𝑋𝑗  

𝑉𝑗  

𝑌𝑗  
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parts 
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Fig 1. The closed loop supply chain network structure (highlighted area)  
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(1e) + ∑ 𝑚𝑖𝐺𝑖

𝐼

𝑖=1

 

(1f) + ∑ 𝑦𝑗(𝑃𝐴𝑗 + 𝑃𝐸𝑗)

𝐽

𝑗=1

 

(1g) + ∑(𝑐𝑗 + 𝐻𝑗)𝑌𝑗

𝐽

𝑗=1

 

(1h) + ∑ 𝑑𝑗𝑋𝑗

𝐽

𝑗=1

 

(1i) + ∑ ∑ 𝑜𝑖𝑙𝑈𝑖𝑙

𝐼

𝑖=1

+ ∑ 𝑓𝑗𝑉𝑗

𝐽

𝑗=1

+ ∑ 𝑔𝑗𝑊𝑗

𝐽

𝑗=1

𝐿

𝑙=1

 

(1j) + ∑ ℎ𝑎𝑗 . (𝑃𝐴𝑗 − 𝐷𝐴𝑗)

𝐽

𝑗=1

+ ∑ ℎ𝑒𝑗 . (𝑃𝐸𝑗 + 𝑋𝑗 − 𝐷𝐸𝑗)

𝐽

𝑗=1

) 

 𝑠. 𝑡: 

(2)  𝛽𝑖 ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ ∑ 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

+  𝛼𝑖𝑅𝑖  ≥  𝛾𝑖 ∑ 𝑞𝑖𝑗𝑃𝐸𝑗

𝐽

𝑗=1

   ∀𝑖 ∈ {1, … , 𝐼} 

(3) ∑ 𝑄𝐴𝑖𝑘

𝐾

𝑘=1

= ∑ 𝑞𝑖𝑗𝑃𝐴𝑗

𝐽

𝑗=1

            ∀𝑖 ∈ {1, … , 𝐼} 

(4) ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ ∑ 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

+ 𝑅𝑖 = ∑ 𝑞𝑖𝑗𝑃𝐸𝑗

𝐽

𝑗=1

 ∀𝑖 ∈ {1, … , 𝐼} 

(5) 𝑅𝑖 + ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ 𝐺𝑖 = 𝐸𝑖          ∀𝑖 ∈ {1, … , 𝐼} 

(6) 𝐸𝑖 = ∑ 𝑞𝑖𝑗𝑍𝑗

𝐽

𝑗=1

       ∀𝑖 ∈ {1, … , 𝐼} 

(7) 𝑋𝑗 + 𝑍𝑗 = 𝑌𝑗         ∀𝑗 ∈ {1, … , 𝐽} 

(8) ∑ 𝑎𝑗(𝑃𝐴𝑗 + 𝑃𝐸𝑗)

𝐽

𝑗=1

≤ 𝐴 

(9) ∑ 𝑏𝑖𝑘(𝑄𝐴𝑖𝑘 + 𝑄𝐸𝑖𝑘)

𝐼

𝑖=1

≤ 𝑇𝑘        ∀𝑘 ∈ {1, … , 𝐾} 

(10) 𝑟𝑖𝐸𝑖 ≤ 𝐵𝑖     ∀𝑖 ∈ {1, … , 𝐼} 
(11) 𝑠𝑖𝑙𝐹𝑖𝑙 ≤ 𝑂𝑖𝑙𝑈𝑖𝑙     ∀𝑖 ∈ {1, … , 𝐼}, ∀𝑙 ∈ {1, … , 𝐿} 
(12) 𝑒𝑗𝑋𝑗 ≤ 𝐶𝑗      ∀𝑗 ∈ {1, … , 𝐽} 
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(13) 𝑃𝐴𝑗 ≥ 𝐷𝐴𝑗    ∀𝑗 ∈ {1, … , 𝐽} 
(14) 𝑃𝐸𝑗 + 𝑋𝑗 ≥ 𝐷𝐸𝑗    ∀𝑗 ∈ {1, … , 𝐽} 
(15) 𝑋𝑗 = 𝑧𝑗𝑌𝑗       ∀𝑗 ∈ {1, … , 𝐽} 
(16) 𝑍𝑗 = (1 − 𝑧𝑗)𝑌𝑗       ∀𝑗 ∈ {1, … , 𝐽} 
(17) 𝑅𝑖 = 𝑀1𝑖𝐸𝑖    ∀𝑖 ∈ {1, … , 𝐼} 

(18) ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

= 𝑀2𝑖𝐸𝑖     ∀𝑖 ∈ {1, … , 𝐼} 

(19) 𝐺𝑖 = (1 − 𝑀1𝑖 − 𝑀2𝑖)𝐸𝑖    ∀𝑖 ∈ {1, … , 𝐼} 
(20) 𝑌𝑗 = 𝑁𝑗𝐷𝐴𝑗       ∀𝑗 ∈ {1, … , 𝐽} 

(21) ∑ ∑ 𝑈𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

≤ 𝑡 

(22) 𝑍𝑗 ≤ 𝑀𝑉𝑗      ∀𝑗 ∈ {1, … , 𝐽} 
(23) 𝑋𝑗 ≤ 𝑀𝑊𝑗     ∀𝑗 ∈ {1, … , 𝐽} 

(24) 
𝑈𝑖𝑙, 𝑉𝑗 , 𝑊𝑗 ∈ {0,1}        ∀𝑖 ∈ {1, … , 𝐼},  

∀𝑗 ∈ {1, … , 𝐽}, ∀𝑙 ∈ {1, … , 𝐿} 

(25) 
𝑃𝐴𝑗 , 𝑃𝐸𝑗 , 𝑍𝑗 , 𝑄𝐴𝑖𝑘, 𝑄𝐸𝑖𝑘, 𝐸𝑖 , 𝐹𝑖𝑙 , 𝐺𝑖, 𝑅𝑖 , 𝑌𝑗 , 𝑋𝑗 ≥ 0     ∀𝑖 ∈ {1, … , 𝐼}, ∀𝑗 ∈ {1, … , 𝐽}, 
 ∀𝑘 ∈ {1, … , 𝐾}, ∀𝑙 ∈ {1, … , 𝐿} 

 

   The objective function 𝑍 represents the total profit. Term (1a) gives the revenue from selling products in 

the primary and secondary markets. Terms (1b)-(1e) represent the total cost of purchasing parts from 

suppliers, disassembly costs of all parts, the costs of recycling and disposal costs, respectively. Terms (1f)-

(1h) give the manufacturing cost, operation and holding cost in collection site and the cost of repairing, 

respectively. Term (1i) gives the set up costs of recycling sites, disassembly and repair costs of products. 

Finally, Term (1j) represents the product holding costs for the primary and secondary markets. 

Constraint (2) guarantees that the quality of used parts for the secondary market products to be equal to or 

higher than an acceptable quality level. Constraint (3) shows that the required parts for producing primary 

market products equals to the original purchased parts from suppliers. Constraint (4) ensures that the 

required parts for producing the secondary market products to be equal to the number of recycled parts, end 

of use parts and purchased parts from the suppliers. Constraint (5) shows the equality between disassembled 

parts and the summation of end of use, end of life and disposed parts. Constraint (6) gives the relationship 

between parts and products in the disassembly site. Constraint (7) makes sure that the collected products in 

collection site are dispatched to disassembly or repair sites. Constraints (8)-(12) are related to the maximum 

capacity of the manufacturer, suppliers, disassembly site, recycling sites and repair site, respectively. 

Constraint (13) represents that the demand of the primary market should be satisfied with manufactured 

products. Constraint (14) shows that the demand of the secondary market is satisfied with manufactured or 

repaired products. Constraint (15) gives the amount of commercial returns of each product sent to the repair 

sites. Constraint (16) gives the amount of returns sent to the disassembly site. 

Constrains (17)-(19) give the amount of wastes, end of use and end of life returns for each part, respectively. 

Constraint (20) gives the amount of total returns for each product. Constraint (21) shows the restriction of 

the number of recycling sites. Constraints (22)-(23) are control constraints for opening disassembly and 

repair sites for different products. Constraints (24)-(25) give the status of the decision variables. 

 

3-3- Robust optimization 
   Robust optimization approach was initially introduced by Soyster (1973). In the robust optimization, the 

decision maker is looking for a solution which remains optimal or near to optimal and also feasible for all 

or majority of uncertain values in a given interval. Alem and Morabito (2012) mentioned two following 
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reasons for using robust optimization: 

1. The uncertainty described based on interval sets is interesting. 

2. The model obtained from robust optimization is comfortable to solve. 

On the other hand, in the robust optimization, having clear knowledge about the probability distribution of 

non-deterministic data is not required. Historical data and decision maker experiences could be used for 

determining the non-deterministic intervals. In this paper, we use robust optimization technique based on 

Ben-tal and Nemirovski (2009) in which, it is assumed that all non-deterministic parameters vary in a 

specified closed bounded box. The general form of this box is given as in equation (26) (Ben-tal et al., 2005 

and 2009, Pishvaee et al., 2011):   

         

(26) 
𝑈𝐵𝑜𝑥 = {𝜉 ∈ 𝑅𝑛 ∶ |𝜉𝑡 − 𝜉𝑡̅| ≤ 𝜌𝐺𝑡 , 𝑡 = 1, … , 𝑛}, 

   In which, 𝜉𝑡̅ is the nominal value of 𝜉𝑡 as 𝑡th parameter of vector 𝜉 which is an n-dimension vector and 

the positive parameters 𝐺𝑡 and 𝜌 represent uncertainty scale and uncertainty level, respectively. A special 

case of interest is 𝐺𝑡 = 𝜉𝑡̅ where relative deviation from the nominal value is up to a coefficient of 𝜌 

multiplied by the nominal value. With respect to the nature of the given deterministic model in this paper, 

consider the basic model as in equation (27). 

        

(27) 

 

𝑚𝑎𝑥 𝑠𝑑 − 𝑐𝑥 − 𝑓𝑦 − ℎ𝑑 

𝑆. 𝑡: 
𝐴𝑥 ≥ 𝑑  
𝐵𝑥 = 𝑟𝑥  
𝑀𝑥 ≥ 0 

𝑁𝑥 = 0 

𝑂𝑥 ≤ 𝑏 

𝑃𝑥 ≤ 𝐶𝑦 

𝑦 ≤ 𝑒 

𝑥 ≥ 0 , y ∈ {0,1} 

 
   In the aforementioned model, s, c, f, h and d represent the sale prices, unit operational costs in different 

parts of the supply chain, opening cost of facilities, unit inventory holding costs and the demand. In the 

constraints r represents the return rate. It should be noted that A, B, M, N, O, P, C represent the coefficient 

matrices of the constraints and e and b are right hand side values in the given constraints.  

   We will assume that the demand and return rate will be uncertain parameters; because of this 𝑈𝐵𝑂𝑋
𝑑  and 

𝑈𝐵𝑂𝑋
𝑟  are defined. According to the above descriptions, the robust counterpart of model (27) can be stated 

as in (28) - (37). 

 

𝑚𝑎𝑥 𝑧                                                                                                                                        (28)                                      

𝑆. 𝑡: 

𝑠𝑑 − 𝑐𝑥 − 𝑓𝑦 − ℎ𝑑 ≥ 𝑧     ∀𝑑 ∈ 𝑈𝐵𝑂𝑋
𝑑                                                                                                   (29) 

𝐴𝑥 ≥ 𝑑     ∀𝑑 ∈ 𝑈𝐵𝑂𝑋
𝑑                                                                                                                             (30) 

𝐵𝑥 = 𝑟𝑥     ∀𝑟 ∈ 𝑈𝐵𝑂𝑋
𝑟                                                                                                                            (31) 

𝑀𝑥 ≥ 0                                                                                                                                                  (32) 

𝑁𝑥 = 0                                                                                                                                                   (33)  

𝑂𝑥 ≤ 𝑏                                                                                                                                                   (34) 

𝑃𝑥 ≤ 𝐶𝑦                                                                                                                                                 (35) 

𝑦 ≤ 𝑒                                                                                                                                                      (36) 

𝑥 ≥ 0 , y ∈ {0,1}                                                                                                                                    (37) 
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   In the given model, 𝑧 represents the objective function which should be maximized. The robust 

counterpart of the basic model is written considering the uncertainty of demand and return rate. Ben-tal et 

al. (2005) indicate that in a closed bounded box, the robust counterpart model can be converted into a 

tractable equivalent model. To indicate the tractable form of the robust model, equations. (29)-(31) should 

be converted to their equivalent tractable ones. For constraint (29) we have:  

 

 

(38) 

𝑠𝑑 − ℎ𝑑 ≥ 𝑧 + 𝑐𝑥 + 𝑓𝑦,      ∀𝑑 ∈ 𝑈𝐵𝑜𝑥
𝑑 |𝑈𝐵𝑜𝑥

𝑑

= {𝑑 ∈ 𝑅𝑛𝑑 ∶ |𝑑𝑗 − 𝑑̅𝑗| ≤ 𝜌𝑑𝐺𝑗
𝑑 , 𝑗 = 1, … , 𝑛𝑑}. 

 

    In the given inequality, 𝑑̅𝑗represents the nominal value of 𝑑𝑗; 𝑑𝑗 represents the jth value of demand 

considering 𝑛𝑑 as the number of demand values. 𝜌𝑑 and 𝐺𝑗
𝑑 represent the uncertainty level and scale of jth 

demand. The left hand side of inequality (38) contains the vector of uncertain parameters. The tractable 

form of inequality (38) can be written as in (39): 

 

(39) 

∑(𝑠𝑑̅𝑗 − ℎ𝑑̅𝑗 + 𝜂𝑗)

𝑗

≥ 𝑍 + 𝑐𝑥 + 𝑓𝑦, 

𝑠𝜌𝑑𝐺𝑗
𝑑  ≤  𝜂𝑗 ,    ∀ 𝑗 = 1, … , 𝑛𝑑 , 

𝑠𝜌𝑑𝐺𝑗
𝑑  ≥  −𝜂𝑗 ,    ∀ 𝑗 = 1, … , 𝑛𝑑. 

In this paper, since we have considered the pessimistic robust approach, we will consider the least value for 

the demand in the objective function of the model as 𝑑̅𝑗 − 𝜌𝑑𝐺𝑗
𝑑.  

As Pishvaee et al. (2011) for constraints (31), we have :  

 

           

(40) 

𝐵𝑥 = 𝑟𝑘𝑥, ∀𝑘 ∈ {1, … , 𝑛𝑟}, ∀𝑟 ∈ 𝑈𝐵𝑜𝑥
𝑟 |𝑈𝐵𝑜𝑥

𝑟

= {𝑟 ∈ 𝑅𝑛𝑟 ∶ |𝑟𝑘 − 𝑟𝑘̅| ≤ 𝜌𝑟𝐺𝑘
𝑟, 𝑘 = 1, … , 𝑛𝑟}. 

Using the extreme points of 𝑈𝐵𝑜𝑥, equation (40) can be converted into inequalities (41)-(43): 

           (41) 
𝐵𝑥 ≥ 𝑟𝑘̅𝑥 − 𝜂𝑘

𝑟      ∀𝑘 ∈ {1, … , 𝑛𝑟},                 

           (42) 
𝐵𝑥 ≤ 𝑟𝑘̅𝑥 + 𝜂𝑘

𝑟      ∀𝑘 ∈ {1, … , 𝑛𝑟}, 

(43) 
|𝜌𝑟𝐺𝑘

𝑟𝑥| ≥ 𝜂𝑘
𝑟 . 

 

Where, 𝜂𝑘
𝑟 ≥ 0 is an auxiliary variable. Inequalities (41)-(43) can be rewritten as (44) and (45).  

           (44) 
       𝐵𝑥 ≥ 𝑟𝑘̅𝑥 − |𝜌𝑟𝐺𝑘

𝑟𝑥|     ∀𝑘 ∈ {1, … , 𝑛𝑟},                  

           (45) 
       𝐵𝑥 ≤ 𝑟𝑘̅𝑥 + |𝜌𝑟𝐺𝑘

𝑟𝑥|     ∀𝑘 ∈ {1, … , 𝑛𝑟}.                                                                                  

Noting that 𝜌𝑟𝐺𝑘
𝑟𝑥 ≥ 0, equations (44)-(45) are converted into (46)-(47). 

           (46) 𝐵𝑥 ≥ 𝑟𝑘̅𝑥 − 𝜌𝑟𝐺𝑘
𝑟𝑥     ∀𝑘 ∈ {1, … , 𝑛𝑟},          

(47) 𝐵𝑥 ≤ 𝑟𝑘̅𝑥 + 𝜌𝑟𝐺𝑘
𝑟𝑥     ∀𝑘 ∈ {1, … , 𝑛𝑟}. 

 

Similarly, for Constraint (30) we have: 

         

(48) 

𝐴𝑥 ≥ 𝑑     , ∀𝑑 ∈ 𝑈𝑏𝑜𝑥
𝑑 |𝑈𝑏𝑜𝑥

𝑑 = {𝑑 ∈ 𝑅𝑛𝑑 ∶ |𝑑𝑗 − 𝑑̅𝑗| ≤ 𝜌𝑑𝐺𝑗
𝑑, 𝑗 = 1, … , 𝑛𝑑}.                    
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Thus, Constraint (48) can be rewritten as (49): 

                     (49)        𝐴𝑥 ≥ 𝑑̅𝑗 + 𝜌𝑑𝐺𝑗
𝑑  ,     ∀𝑗 ∈ {1, … , 𝑛𝑑}.                                                             

 

3-4- Robust counterpart of the problem 

   In this section, we consider the proposed CLSC structure with uncertain parameters of percentage of 

return, percentage of commercial returns, percentage of end-of-use return and percentage of end-of-life 

returns, and demand of the primary and secondary markets. These parameters are considered to vary in 

some intervals independently. The addressed uncertain parameters are given in Constraints (13)-(20) and 

the objective function; the addressed constrains are replaced with their robust counterparts. Thus, according 

to the above descriptions, the robust counterpart of the deterministic model is as follows defining some new 

parameters: 

𝐷𝐴̅̅ ̅̅
𝑗: Nominal value of 𝐷𝐴𝑗 

𝜌𝐷𝐴: Uncertainty level of 𝐷𝐴𝑗 for all 𝑗 

𝐺𝑗
𝐷𝐴: Uncertainty scale of 𝐷𝐴𝑗 

𝐷𝐸̅̅ ̅̅
𝑗: Nominal value of 𝐷𝐸𝑗 

𝜌𝐷𝐸: Uncertainty level of 𝐷𝐸𝑗 for all 𝑗 

𝐺𝑗
𝐷𝐸: Uncertainty scale of 𝐷𝐸𝑗 

𝑧𝑗̅: Nominal value of 𝑧𝑗 

𝜌𝑧: Uncertainty level of 𝑧𝑗 for all 𝑗 

𝐺𝑗
𝑧: Uncertainty scale of 𝑧𝑗 

𝑀̅1𝑖: Nominal value of𝑀1𝑖 

𝜌𝑀1
: Uncertainty level of𝑀1𝑖 for all 𝑗 

𝐺𝑖
𝑀1: Uncertainty scale of 𝑀1𝑖 

𝑀̅2𝑖: Nominal value of𝑀2𝑖 

𝜌𝑀2
: Uncertainty level of𝑀2𝑖 for all 𝑗  

𝐺𝑖
𝑀2: Uncertainty scale of 𝑀2𝑖 

𝑁̅𝑗: Nominal value of 𝑁𝑗 

𝜌𝑁: Uncertainty level of 𝑁𝑗 for all 𝑗 

𝐺𝑗
𝑁: Uncertainty scale of 𝑁𝑗  
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(50) 

𝑀𝑎𝑥 𝑍 =  ∑(𝑆𝐴𝑗 . 𝐷𝐴̅̅ ̅̅
𝑗 − 𝑆𝐴𝑗 . 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴 + 𝑆𝐸𝑗 . 𝐷𝐸̅̅ ̅̅
𝑗 − 𝑆𝐸𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

− ∑ ∑ 𝑝𝑖𝑘(𝑄𝐴𝑖𝑘 + 𝑄𝐸𝑖𝑘)

𝐾

𝑘=1

𝐼

𝑖=1

− ∑ ℎ𝑖𝐸𝑖

𝐼

𝑖=1

− ∑ ∑ 𝑛𝑖𝑙𝐹𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

− ∑ 𝑚𝑖𝐺𝑖

𝐼

𝑖=1

− ∑ 𝑦𝑗(𝑃𝐴𝑗 + 𝑃𝐸𝑗)

𝐽

𝑗=1

− ∑(𝑐𝑗 + 𝐻𝑗)𝑌𝑗

𝐽

𝑗=1

− ∑ 𝑑𝑗𝑋𝑗

𝐽

𝑗=1

− ∑ ∑ 𝑜𝑖𝑙𝑈𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

− ∑ 𝑓𝑗𝑉𝑗

𝐽

𝑗=1

− ∑ 𝑔𝑗𝑊𝑗

𝐽

𝑗=1

− ∑(ℎ𝑎𝑗 . (𝑃𝐴𝑗 − 𝐷𝐴̅̅ ̅̅
𝑗) + ℎ𝑎𝑗 . 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴)

𝐽

𝑗=1

− ∑(ℎ𝑒𝑗 . (𝑃𝐸𝑗 + 𝑋𝑗 − 𝐷𝐸̅̅ ̅̅
𝑗) + ℎ𝑒𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

 

 𝑠. 𝑡: 

 (2)-(12) 

(51) 𝑃𝐴𝑗 ≥ 𝐷𝐴̅̅ ̅̅
𝑗 + 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴   ∀𝑗 ∈ {1, … , 𝐽} 

(52) 𝑃𝐸𝑗 + 𝑋𝑗 ≥ 𝐷𝐸̅̅ ̅̅
𝑗 + 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸     ∀𝑗 ∈ {1, … , 𝐽} 

(53) 𝑋𝑗 ≤ (𝑧𝑗̅ + 𝜌𝑧𝐺𝑗
𝑧)𝑌𝑗      ∀𝑗 ∈ {1, … , 𝐽} 

(54) 𝑋𝑗 ≥ (𝑧𝑗̅ − 𝜌𝑧𝐺𝑗
𝑧)𝑌𝑗      ∀𝑗 ∈ {1, … , 𝐽} 

(55) 𝑍𝑗 ≥ [1 − (𝑧𝑗̅ + 𝜌𝑧𝐺𝑗
𝑧)]𝑌𝑗      ∀𝑗 ∈ {1, … , 𝐽} 

(56) 𝑍𝑗 ≤ [1 − (𝑧𝑗̅ − 𝜌𝑧𝐺𝑗
𝑧)]𝑌𝑗      ∀𝑗 ∈ {1, … , 𝐽} 

(57) 𝑅𝑖 ≤ (𝑀̅1𝑖 + 𝜌𝑀1
𝐺𝑖

𝑀1)𝐸𝑖    ∀𝑖 ∈ {1, … , 𝐼} 

(58) 𝑅𝑖 ≥ (𝑀̅1𝑖 − 𝜌𝑀1
𝐺𝑖

𝑀1)𝐸𝑖    ∀𝑖 ∈ {1, … , 𝐼} 

(59) ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

≤ (𝑀̅2𝑖 + 𝜌𝑀2
𝐺𝑖

𝑀2)𝐸𝑖     ∀𝑖 ∈ {1, … , 𝐼} 

(60) ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

≥ (𝑀̅2𝑖 − 𝜌𝑀2
𝐺𝑖

𝑀2)𝐸𝑖     ∀𝑖 ∈ {1, … , 𝐼} 

(61) 
𝐺𝑖 ≥ [1 − (𝑀̅1𝑖 + 𝜌𝑀1

𝐺𝑖
𝑀1) − (𝑀̅2𝑖 + 𝜌𝑀2

𝐺𝑖
𝑀2)]𝐸𝑖 

    ∀𝑖 ∈ {1, … , 𝐼} 

(62) 
𝐺𝑖 ≤ [1 − (𝑀̅1𝑖 − 𝜌𝑀1

𝐺𝑖
𝑀1) − (𝑀̅2𝑖 − 𝜌𝑀2

𝐺𝑖
𝑀2)]𝐸𝑖 

   ∀𝑖 ∈ {1, … , 𝐼} 
(63) 𝑌𝑗 ≤ (𝑁̅𝑗 + 𝜌𝑁𝐺𝑗

𝑁)(𝐷𝐴̅̅ ̅̅
𝑗 + 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴)      ∀𝑗 ∈ {1, … , 𝐽} 

(64) 𝑌𝑗 ≥ (𝑁̅𝑗 − 𝜌𝑁𝐺𝑗
𝑁)(𝐷𝐴̅̅ ̅̅

𝑗 − 𝜌𝐷𝐴𝐺𝑗
𝐷𝐴)      ∀𝑗 ∈ {1, … , 𝐽} 

 (21)-(25) 

In this model, the objective function is as in (50). Constraints (51)-(64) are the robust counterpart of 

constraints (13)-(20), respectively. 
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4- Proposed heuristic solution  
   With regard to the NP-hard nature of the problem, the problem can’t be solved for large instances by 

regular optimization packages; thus, we propose a solution approach based on the Lagrangian relaxation 

technique. Considering the given robust approach, we relax constraints (8) and (9) using coefficients of 

𝜆1, 𝜆2𝑘 ≥ 0; thus, the model can be stated as follows: 

  (65) 𝑀𝑎𝑥𝑍′ =  𝑍 − 𝜆1(∑ 𝑎𝑗(𝑃𝐴𝑗 + 𝑃𝐸𝑗) − 𝐴)

𝐽

𝑗=1

− ∑ 𝜆2𝑘. (∑ 𝑏𝑖𝑘(𝑄𝐴𝑖𝑘 + 𝑄𝐸𝑖𝑘) − 𝑇𝑘

𝐼

𝑖=1

)

𝐾

𝑘=1

 

 𝑠. 𝑡: 

  (2)-(12) except for (8) and (9) 

  (21)-(25) 

  (51)-(64) 

 
   Term (65) represents objective function of the new problem. With these relaxations, the problem is 

converted into two sub problems; Sub problem 1 is for the forward supply chain to satisfy the primary 

market demands. Sub problem 2 is for the reverse supply chain for collecting and recovery of returns to 

satisfy the secondary market demands. 

 

4-1- Sub problem 1 
   This sub problem represents the forward supply chain to satisfy the primary market demands. It can be 

stated as follows: 

    (66) 

𝑀𝑎𝑥 𝑧1 =  ∑(𝑆𝐴𝑗 . 𝐷𝐴̅̅ ̅̅
𝑗 − 𝑆𝐴𝑗 . 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴)

𝐽

𝑗=1

− ∑ ∑ 𝑝𝑖𝑘. 𝑄𝐴𝑖𝑘

𝐾

𝑘=1

𝐼

𝑖=1

− ∑ 𝑦𝑗 . 𝑃𝐴𝑗

𝐽

𝑗=1

− ∑(ℎ𝑎𝑗 . (𝑃𝐴𝑗 − 𝐷𝐴̅̅ ̅̅
𝑗) + ℎ𝑎𝑗 . 𝜌𝐷𝐴𝐺𝑗

𝐷𝐴)

𝐽

𝑗=1

− 𝜆1(∑ 𝑎𝑗 . 𝑃𝐴𝑗

𝐽

𝑗=1

− 𝐴)

− ∑ 𝜆2𝑘 . (∑ 𝑏𝑖𝑘. 𝑄𝐴𝑖𝑘

𝐼

𝑖=1

− 𝑇𝑘)

𝐾

𝑘=1

 

 𝑠. 𝑡: 

 (3) and (51) 
    (67) 𝑃𝐴𝑗 , 𝑄𝐴𝑖𝑘 ≥ 0      ∀𝑖 ∈ {1, … , 𝐼}, ∀𝑗 ∈ {1, … , 𝐽}, ∀𝑘 ∈ {1, … , 𝐾} 
  

   Term (66) represents the objective function of sub problem 1 pertinent to the involved costs and 

incomes regarding the forward supply chain. Constraint (67) represents the non-negativity of decision 

variables. For solving this sub problem, we find optimum value of 𝑃𝐴𝑗 using first-order derivation with 

respect to 𝑃𝐴𝑗 as in (68): 

    (68) 
𝑑𝑧1

𝑑𝑃𝐴𝑗
= −𝑦𝑗 − ℎ𝑎𝑗 − 𝜆1𝑎𝑗 < 0 

With regard to Term (68) and maximization type of the objective function, the optimum value of 𝑃𝐴𝑗is 

the least possible value with respect to Constraint (51). So, 𝑃𝐴𝑗
∗ can be given as in (69): 

       (69) 𝑃𝐴𝑗
∗ = 𝐷𝐴̅̅ ̅̅

𝑗 + 𝜌𝐷𝐴𝐺𝑗
𝐷𝐴∀𝑗 ∈ {1, … , 𝐽} 
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On the other hand considering Constraint (3), the amount of parts to be purchased is as in (70): 

 

        (70) ∑ 𝑄𝐴𝑖𝑘
𝐾
𝑘=1

∗
= ∑ 𝑞𝑖𝑗𝑃𝐴𝑗

∗  
𝐽
𝑗=1 ∀𝑖 ∈ {1, … , 𝐼}  

 

General scheme of the solution algorithm for sub problem 1 is illustrated as in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

4-2- Sub problem 2 
   This sub problem represents the reverse supply chain for collecting and recovery of returns to satisfy the 

secondary market demands. It can be stated as follows: 

Set:𝑗 = 1 

Yes  

Yes  

No  

Start 

Calculate the amount of parts 

to be purchased. 

Update capacity of manufacturer. 

Calculate 𝑃𝐴𝑗
∗. 

Allocate required parts to suppliers and 

update their capacities. 

End 

Is there enough 
capacity for least 

amount of 
manufacturing? 

No feasible 

solution. 

𝑗 = 𝐽? 
Set: 

𝑗 = 𝑗 + 1 

No  

Fig. 2.General scheme of solution algorithm of sub problem 1 
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(71) 𝑀𝑎𝑥 𝑍2 =  ∑(𝑆𝐸𝑗 . 𝐷𝐸̅̅ ̅̅
𝑗 − 𝑆𝐸𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

− ∑ ∑ 𝑝𝑖𝑘. 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

𝐼

𝑖=1

− ∑ ℎ𝑖𝐸𝑖

𝐼

𝑖=1

 

 

                           − ∑ ∑ 𝑜𝑖𝑙𝑈𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

− ∑ 𝑓𝑗𝑉𝑗

𝐽

𝑗=1

− ∑ 𝑔𝑗𝑊𝑗

𝐽

𝑗=1

− ∑(ℎ𝑒𝑗 . (𝑃𝐸𝑗 + 𝑋𝑗 − 𝐷𝐸̅̅ ̅̅
𝑗) + ℎ𝑒𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

− 𝜆1(∑ 𝑎𝑗 . 𝑃𝐸𝑗

𝐽

𝑗=1

)

− ∑ 𝜆2𝑘 . (∑ 𝑏𝑖𝑘. 𝑄𝐸𝑖𝑘

𝐼

𝑖=1

)

𝐾

𝑘=1

 

 𝑠. 𝑡: 

 (2) 
 (4)-(12) except for (8) and (9) 

 (52)-(64) 

(21)-(25) 
  

Terms (71) represents the objective function of sub problem 2. For solving this sub problem, first we 

relax Constrains (2) and (4) using positive coefficients 𝜆3𝑖and 𝜆4𝑖. Then, we add Constraint (73) to 

reinforce the model. So, the new objective function is given as in (72): 

(72) 

𝑀𝑎𝑥 𝑍2 =  ∑(𝑆𝐸𝑗 . 𝐷𝐸̅̅ ̅̅
𝑗 − 𝑆𝐸𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

− ∑ ∑ 𝑝𝑖𝑘. 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

𝐼

𝑖=1

− ∑ ℎ𝑖𝐸𝑖

𝐼

𝑖=1

)

− ∑ ∑ 𝑛𝑖𝑙𝐹𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

− ∑ 𝑚𝑖𝐺𝑖

𝐼

𝑖=1

− ∑ 𝑦𝑗 . 𝑃𝐸𝑗

𝐽

𝑗=1

− ∑(𝑐𝑗 + 𝐻𝑗)𝑌𝑗

𝐽

𝑗=1

− ∑ 𝑑𝑗𝑋𝑗

𝐽

𝑗=1

− ∑ ∑ 𝑜𝑖𝑙𝑈𝑖𝑙

𝐼

𝑖=1

𝐿

𝑙=1

− ∑ 𝑓𝑗𝑉𝑗

𝐽

𝑗=1

− ∑ 𝑔𝑗𝑊𝑗

𝐽

𝑗=1

− ∑(ℎ𝑒𝑗 . (𝑃𝐸𝑗 + 𝑋𝑗 − 𝐷𝐸̅̅ ̅̅
𝑗) + ℎ𝑒𝑗 . 𝜌𝐷𝐸𝐺𝑗

𝐷𝐸)

𝐽

𝑗=1

− 𝜆1(∑ 𝑎𝑗 . 𝑃𝐸𝑗

𝐽

𝑗=1

)

− ∑ 𝜆2𝑘 . (∑ 𝑏𝑖𝑘. 𝑄𝐸𝑖𝑘

𝐼

𝑖=1

)

𝐾

𝑘=1

− ∑ 𝜆3𝑖 . (∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ ∑ 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

+ 𝑅𝑖 − ∑ 𝑞𝑖𝑗𝑃𝐸𝑗

𝐽

𝑗=1

)

𝐼

𝑖=1

 

                            − ∑ 𝜆4𝑖 . ( 𝛽𝑖 ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ ∑ 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

+  𝛼𝑖𝑅𝑖 −  𝛾𝑖 ∑ 𝑞𝑖𝑗𝑃𝐸𝑗

𝐽

𝑗=1

)

𝐼

𝑖=1

 

 𝑆. 𝑡: 
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 (5)-(12) except for (8) and (9) 

 
(52)-(64) 

(21)-(25) 
  

(73) ∑ 𝐹𝑖𝑙

𝐿

𝑙=1

+ ∑ 𝑄𝐸𝑖𝑘

𝐾

𝑘=1

+ 𝑅𝑖 ≥ ∑ 𝑞𝑖𝑗𝑃𝐸𝑗

𝐽

𝑗=1

 ∀𝑖 ∈ {1, … , 𝐼} 

 
   It is clear that for satisfying the secondary market demands, repairing is more economic than 

manufacturing and disassembly. We propose an algorithm based on partial derivations for solving sub 

problem 2. This algorithm is illustrated in figure 3.  

   By implementing the algorithm of sub problem 1, as well as the decision variables 𝑃𝐴𝑗 and 𝑄𝐴𝑖𝑘, the 

reminder capacity of manufacturer and suppliers (𝐴 and 𝑇𝑘 ) are specified. By substituting this values in 

the algorithm of sub problem 2, we can obtain other decision variables 

including𝑃𝐸𝑗,𝑌𝑗,𝑋𝑗,𝑍𝑗,𝑄𝐸𝑖𝑘,𝐸𝑖,𝐹𝑖𝑙,𝐺𝑖,𝑅𝑖,𝑈𝑖𝑙 ,𝑉𝑗and 𝑊𝑗. We update the capacity of the manufacturer and 

suppliers in each stage of manufacturing which causes the solution to be feasible for the problem. Robust 

model solution algorithm is illustrated in figure 4. 
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Calculate𝑃𝐸𝑗
∗ considering demand constraint. 

No 

Set: 𝑗 = 1 

Yes 

Yes 

No 

Start 

Calculate the amount of parts to be purchased. 

Update capacity of manufacturer. 

Is enough capacity 

for least amount of 

manufacturing? 
 

No feasible 

solution. 

𝑗 = 𝐽? 
Set: 

𝑗 = 𝑗 + 1 

No 

Calculate 𝑋𝑗
∗,𝑌𝑗

∗,𝑍𝑗
∗,𝐸𝑖

∗,𝑅𝑖
∗,𝐺𝑖

∗ and ∑ 𝐹𝑖𝑙
𝐿
𝑙=1

∗
with respect to 

each robust constraint pair and partial derivation. 
 

Are capacity constraints of 

repair sites satisfied for 

all products? 

 

Are capacity constraints 

of disassembly site 

satisfied for all parts? 

Reduce 𝑋𝑗
∗to satisfy repair site 

capacity. Be care that robust 

constraints are not violated. Then, 

calculate 𝑌𝑗
∗,𝑍𝑗

∗,𝐸𝑖
∗,𝑅𝑖

∗,𝐺𝑖
∗ and 

∑ 𝐹𝑖𝑙
𝐿
𝑙=1

∗
.  

Reduce 𝐸𝑖
∗to satisfy disassembly 

site capacity. Be care that repair 

site capacity and robust constraints 

are not violated. Then, calculate 

𝑌𝑗
∗,𝑍𝑗

∗,𝑋𝑗
∗,𝑅𝑖

∗,𝐺𝑖
∗ and ∑ 𝐹𝑖𝑙

𝐿
𝑙=1

∗
.  

Yes 

No 

Yes 

A 
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Yes 

No 

Yes 

No 

Yes 

No 

 

Set:𝑗 = 1 

𝑋𝑗
∗ ≠ 0? Set: 

𝑊𝑗
∗ = 0 

Set: 𝑊𝑗
∗ = 1 

Set: 𝑉𝑗
∗ = 1 

Allocate 

∑ 𝐹𝑖𝑙
𝐿
𝑙=1

∗
to 

recycling sites. 

End 

𝑍𝑗
∗ ≠ 0? 

𝑗 = 𝐽? 
Set: 

𝑗 = 𝑗 + 1 

Set: 

𝑉𝑗
∗ = 0 

Yes 

Yes 

No 

Yes 

No 

No 

Reduce ∑ 𝐹𝑖𝑙
𝐿
𝑙=1

∗
+

𝑅𝑖
∗to satisfy the 

constraint of 

equality between 

required and 

available parts. 

Then, calculate 

𝑌𝑗
∗,𝑍𝑗

∗,𝑋𝑗
∗,𝐺𝑖

∗ and 

𝐸𝑖
∗.  

Reduce 𝑅𝑖
∗and 

∑ 𝐹𝑖𝑙
𝐿
𝑙=1

∗
to satisfy the 

quality constraint. Be 

care that repair site 

capacity and robust 

constraints are not 

violated. Then, 

calculate 𝑌𝑗
∗,𝑍𝑗

∗,𝑋𝑗
∗,𝐺𝑖

∗ 

and 𝐸𝑖
∗.  

Is the constraint of 

equality between 

required and available 

parts satisfied for all 

parts? 

Are quality constraint and 

constraint of equality between 

required and available parts 

satisfied for all types of parts?   

Add the summation of 𝑃𝐸𝑗
∗ to the manufacturer capacity. 

Is quality constraint 

satisfied for all 

parts? 

Calculate𝑃𝐸𝑗
∗ considering demand constraint. 

Set:𝑗 = 1 

Yes 

No 

Yes 

No 

Calculate the amount of parts to be purchased. 

Update capacity of manufacturer. 

 

enough capacity for 

least amount of 

manufacturing? 
 

No 

feasible 

solution. 

𝑗 = 𝐽? 
Set: 

𝑗 = 𝑗 + 1 

Allocate required 

parts to suppliers and 

update their capacity. 

A 

Fig. 3. General scheme of solution algorithm 

of sub problem 2  
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We set 𝜌𝐷𝐴 = 𝜌𝐷𝐸 = 𝜌𝑁 = 𝜌𝑧 = 𝜌𝑀1

= 𝜌𝑀2
= 0 to use the proposed algorithm for solving the 

deterministic model. 

 

5- Computational experiments 
   In this section, we have designed some numerical examples in order to assess the performance of the 

given models. Ten different problems are designed. The first five are for small size instances and the second 

five are for large size instances. Details of the problems are illustrated by table 1. 

Table 1. The characteristics of designed scenarios 

10 9 8 7 6 5 4 3 2 1 Problem No. 

300 250 200 150 100 20 15 10 5 5 Products 

Number of 
300 250 200 150 100 15 10 7 7 5 Parts 

300 250 200 150 100 20 15 10 10 5 Suppliers 

300 250 200 150 100 20 15 10 10 5 Recycling sites 
 

5-1- Sensitivity analysis 
   In this section, a sample sensitivity analysis of the robust model is performed considering Problem (1). 

Figure 5 shows the changes of the objective function with respect to the capacity of the disassembly site 

for part 1. It shows that the maximum objective function occurs in a certain capacity of the disassembly site 

(i.e. 3456) and after this value by increasing the capacity, the objective function remains stable (on the value 

of 377365).  

   Figure 6 indicates the effect of variations in the nominal value of total return’s percentage. It is obvious 

that the maximum amount of objective function occurs in 𝑁̅ ≅ 0.8. In other words, when the nominal value 

End 

Start  

Calculate the 

objective function. 

 

Solve sub problem 2 

using the given 

algorithm. 

 

Substitute remainder capacity of the 

manufacturer and suppliers in the 

algorithm of sub problem 2. 

Solve sub problem 1 

using the given 

algorithm. 

 

Fig. 4. General scheme of robust model solution algorithm 
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of total return’s percentage is higher than 0.8, the amount of returns is higher than the secondary market 

demand; thus, in this condition the costs increase and the objective function decreases.  

   Similar effects are observed in figure 7 for the nominal value of commercial return’s percentage, in figure 

8 for the nominal value of end-of-use part’s percentage and the nominal value of end-of-life part’s 

percentage. In Fig. 8 we observe that the effect of variations in the nominal value of end-of-use part’s 

percentage is higher than that of the end-of-life part’s percentage, because the end- of-life parts for 

remanufacturing are more expensive than the end-of-use parts.  

   Now we analyze the effects of the quality parameters in the robust model. Figure 9 shows the effect of 

variations in parameters 𝛼1 (i.e. quality index for end-of-use part 1), 𝛽1 (i.e. quality index for end-of-life 

part 1) and 𝛾1 (i.e. acceptable quality index for part 1). By increasing 𝛼1 and 𝛽1to 0.53 and 0.58, the 

objective function increases; but after reaching this amount, the objective function becomes stable at the 

value of 359624; furthermore, by increasing 𝛾1 to 0.84, the objective function does not change, but after 

that the objective function decreases.  

 

 
 

 

 
 

 

 

                 

 

 
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Sensitivity analysis of parameter 

𝑁 (nominal value of returns percentage) 
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Fig 7. Sensitivity analysis of parameter 
𝑍̅ (nominal value of commercial returns 

percentage) 

 

300000

320000

340000

360000

380000

400000

420000

440000

0 0.5

o
b

je
ct

iv
e 

fu
n

ct
io

n

0

100000

200000

300000

400000

500000

600000

0 0.5 1

o
b

je
ct

iv
e 

fu
n

ct
io

n

Fig 5. Sensitivity analysis of parameter  

𝐵1(capacity of disassembly site for part 1)  

Fig 8. Sensitivity analysis of parameter𝑀1
̅̅ ̅̅ and 𝑀2

̅̅ ̅̅  

(nominal value of EOU and EOL parts percentage) 
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5-2- Robust model validation 
   In this section, to assess the performance of the robust model, several numerical examples are 

implemented. To this aim, the deterministic and robust models are compared under nominal data and under 

random realization of uncertain parameters. Both the deterministic and robust models are solved by GAMS 

24.1.3 optimization software. Table 2 shows the results using nominal data. It is clear from table 3 that the 

objective function of the robust model is higher than the deterministic one for all problems 1-5. 

Table 2. Summary of results under uncertainty on returns and demands. 

Objective function values under nominal data 
𝝆𝑵 = 𝝆𝒛 = 𝝆𝑴𝟏

= 𝝆𝑴𝟐
 𝝆𝑫𝑨 = 𝝆𝑫𝑬 

Problem 

No. robust model deterministic model 

312788 277295 0.2 0.05 

1 372696 277295 0.5 0.1 

4408922 277295 0.8 0.15 

328667 290013 0.2 0.05 

2 402696 290013 0.5 0.1 

492468 290013 0.8 0.15 

455216 341999 0.2 0.05 

3 635141 341999 0.5 0.1 

833108 341999 0.8 0.15 

458306 244461 0.2 0.05 

4 844936 244461 0.5 0.1 

1306395 244461 0.8 0.15 

4108232 3803017 0.2 0.05 

5 4841126 3803017 0.5 0.1 

5768435 3803017 0.8 0.15 
 

   To validate the robust model, first uncertain parameters including primary and secondary market 

demands, percentage of total returns, percentage of commercial returns, percentage of end-of-use return 

and percentage of end-of-life returns are randomly generated in the related sets. The related set for each 

uncertain parameter is a symmetrical interval with a neighborhood radius around the nominal value of the 

parameter. To evaluate the models, we assume that the uncertainty level of demand parameters are equal 

together. The uncertainty level of return parameters are supposed to be equal. After generating uncertain 

parameters, we consider a penalty cost for unsatisfied constraints. Every test includes 100 iterations. 

Random generations and calculations of the Mean and the standard deviation of the objective function for 

each one in the deterministic and uncertain cases are programmed by MATLAB 8.5.0.197613.   
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Table 3. Test results for the designed problems 

Robust model Deterministic model 
𝝆𝑵 = 𝝆𝒛

= 𝝆𝑴𝟏
= 𝝆𝑴𝟐

 
𝝆𝑫𝑨

= 𝝆𝑫𝑬 
Problem 

No. CV 
Standard 

deviation 
mean CV 

Standard 

deviation 
mean 

0.040 12299 306893 0.042 11521 272938 0.2 0.05 

1 0.073 26093 357782 0.093 24714 264181 0.5 0.1 

0.082 35426 433203 0.124 33197 266719 0.8 0.15 

0.046 14892 320504 0.050 14220 284200 0.2 0.05 

2 0.077 29657 382606 0.101 28112 279426 0.5 0.1 

0.090 42500 473951 0.151 40576 268926 0.8 0.15 

0.054 23780 437300 0.068 22533 329138 0.2 0.05 

3 0.080 47545 599152 0.146 45235 309981 0.5 0.1 

0.088 70092 798975 0.226 66599 294836 0.8 0.15 

0.104 42392 409101 0.113 39840 353460 0.2 0.05 

4 0.098 75684 772699 0.221 72904 329666 0.5 0.1 

0.098 122696 1256255 0.375 119368 318207 0.8 0.15 

0.025 99026 4024596 0.026 97056 3788116 0.2 0.05 

5 0.036 169479 4703455 0.045 167574 3750788 0.5 0.1 

0.046 260279 5611124 0.069 255445 3700412 0.8 0.15 
 

   It is clear that with respect to the maximization type of the objective function, the desirable model has 

higher mean of the objective function value and lower standard deviation. Thus, to compare two models, 

we use the coefficient of variations criterion (CV). This criterion is a combination of centralization and 

disperse criteria (the standard deviation/the mean). Therefore, the desirable model has lower CV. Table 3 

shows the results of experiments under random realizations for the uncertain parameters. Since for all 

problems and uncertainty levels, the robust model has higher mean and lower CV than the deterministic 

model, the robust model dominates the deterministic one. 

5-3- Lagrangian heuristic solution approach validation 
   To assess the performance of the Lagrangian heuristic solution approach, by running the proposed 

heuristic utilizing MATLAB 8.5.0.197613 package, we compare the results obtained from GAMS 

optimization software and the proposed heuristic for all the ten problems.  

Table 4. Comparison of results from GAMS optimization software and the proposed heuristic 

Error 

percent 

Heuristic approach 

 

Optimization software (GAMS) 
Problem 

No. 
Time 

(second) 

Objective 

function 

Time 

(second) 

Objective 

function 

0.38% 0.397 247014  0.016 247968 1 

0.33% 0.704 250821  0.19 251647 2 

0.71% 1.039 286393  0.09 288446 3 

4.16% 2.567 104255  0.13 108786 4 

0.53% 15.450 3257113  0.2 3307712 5 

0.25% 21.445 1514559806  43.143 1518414394 6 

- 175.195 1982844389  - - 7 

- 211.831 2255913493  - - 8 

- 208.494 2181558271  - - 9 

- 395.004 1790208073  - - 10 
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   Results from the heuristic solution approach are close to the optimization software. On the other hand, 

running times of the heuristic solution approach are lower than the optimization software’s. Moreover for 

problems 7-10, the optimization software can’t solve the model; but the heuristic can give good solutions 

in acceptable times.  

6- Conclusions and future researches 
   In this paper, we considered a CLSC network design with respect to product life cycle. First, we presented 

a deterministic model with profit maximization objective function. In this model different qualities for parts 

used by the manufacturer including end-of-use and end-of-life parts were considered. Electronic devices 

such as mobile phones and printers are suitable examples for the studied supply chain. In the addressed 

example, there may be commercial returns; e.g., a returned mobile phone due to a minor defect in the 

apparent or functioning. End-of-use returns, may be due to technological upgrades which frequently happen 

and end of life returns due to obsolete technology. 

   We utilized robust optimization approach in order to tackle uncertainties of demand and return 

parameters. We designed ten problems to evaluate the proposed model performance. In order to validate 

the proposed model, sensitivity analysis for various parameters was done for the problems. Results showed 

that the maximum profit of the manufacturer occurred in a certain capacity of disassembly site. This can 

help managers to decrease the costs of investment. 

   When uncertainty parameters presented only in the equality constraints, the objective function of the 

robust model was higher than of the deterministic model; on the other hand, by increasing the uncertainty 

level of the return parameters, the objective function increased; but, by increasing the uncertainty level of 

demand parameters, the objective function decreased. The robust model validation showed that this model 

dominates the deterministic one. With regard to the NP-hard nature of the problem, it could not be solved 

for large instances by optimization software; thus, we proposed a heuristic approach based on the 

Lagrangian relaxation. We relaxed two constraints in order to simplify the problem. With these relaxations, 

the problem was converted into two sub problems. Sub problem 1 represented the forward supply chain to 

satisfy the primary market demands. Sub problem 2 represented the reverse supply chain for collecting and 

recovery of returns to satisfy the secondary market demands. We also proposed two algorithms based on 

partial derivations to solve the sub problems.  

   From managerial point of view, the results of this research shows the benefits of establishing reverse 

logistic structure and its integration with the forward logistics. Making such a structure, shows the 

organizational commitment to environmental issues as well as cost saving in the regular operations of the 

supply chain.  

   Several future research ideas can be given: other approaches can be used for tackling the uncertainty of 

parameters like probability theory and fuzzy approaches. Proposed models in this paper were single period 

and can be extended to multi-period. In addition, meta-heuristic approaches can be used for solving the 

problem for large sizes; furthermore, considering purchasing price for return products and defining other 

objective functions like environmental factors can be other research directions. 
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