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Abstract 
 In this paper, a new genetic algorithm is presented to plan and schedule operating 
rooms at the operational level to minimize completion time, surgeons’ free time 

window, and operating rooms’ overtime, idle time, and setup time costs. The 

duration of surgeries is calculated according to a predetermined time plus an 

allowance related to the uncertainty of the surgery time. Also, the operating 
rooms’ setup times depend on the sequence of surgeries. The time window 

constraint involves resource availability such as surgeons and operating rooms. 

First, a mixed-integer nonlinear mathematical model is proposed to solve the 
problem. Thereafter, a genetic algorithm is developed to solve the problem 

inspired from the role model concept in sociology using simulating and 

differentiating procedures, namely Role Model Genetic Algorithm (RMGA). The 
performance of the proposed algorithm is examined by comparing it with a 

conventional genetic algorithm and a hybrid genetic algorithm proposed for the 

nearest problem in the literature to the current problem. The results shows that 

RMGA prepares better results.  
Keywords: Genetic algorithm, scheduling, operating room scheduling, multiple 

operating rooms 
 

1-Introduction 
   The development of efficient health systems has become significant in recent decades due to the 

rapidly rising costs of healthcare in developed countries and the simultaneous growth in demand for 

healthcare and patient expectations of service quality. As a result, governments and health systems’ 

decision-makers are constantly seeking to develop more efficient health systems (Ahmadi-Javid, Jalali, 
& Klassen, 2017; Hulshof, Kortbeek, Boucherie, Hans, & Bakker, 2012).Operating rooms are estimated 

to account for more than 40% of a hospital's total revenue and a significant portion of its total costs, 

making it the largest hospital cost center as well as the largest source of revenue. Therefore, its 
management and efficiency is the subject of a wide range of studies (Denton, Miller, Balasubramanian, 

& Huschka, 2010; Van Oostrum, Bredenhoff, & Hans, 2010; Zhu, Fan, Yang, Pei, & Pardalos, 2019). 

Despite the dramatic increase in demand for surgery in recent years, the capacity of operating rooms 
has not been improved in many cases(Conforti, Guerriero, & Guido, 2010). Recent studies show that 

over 60% of patients in each hospital require surgery. For most hospitals, good performance and high 

operating room efficiency play a key role in improving the benefits and quality of hospital services to 

the patient (Zhu et al., 2019). The planning and scheduling process, according to the definitions 
presented by Tan, El Mekkawy, Peng, and Oppenheimer (2007) is the adaptation of the supply and 

demand process, and sequencing and timing activities (Denton et al., 2010). Poor planning may lead to 

idle time intervals, excessive overwork, and delays or cancellations of surgeries, which are reflected in 
the additional costs and loss of revenue (Conforti et al., 2010; Latorre-Núñez et al., 2016) and are 

increasingly studied to provide more efficient solution methods.  
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   In this study, a new genetic algorithm is proposed to solve a multi-objective operating room 
scheduling problem. The considered objective functions try to optimize the utilization of hospital 

resources and satisfy patient, and surgeon needs. The problem is addressed under the open schedule 

strategy, and the availability of different resources is also considered, including operating rooms and 

human resources such as surgeons. The problem assigns patients on the waiting list of surgical 
operations to operating rooms, determines the sequence of surgical operations and schedules the 

operations, simultaneously. Moreover, the sequence-dependent operating room preparation time and 

the time window constraint associated with each surgeon are considered in the problem. A genetic 
algorithm is developed to solve the problem inspired from the role model concept in sociology using 

simulating and differentiating procedures, namely Role Model Genetic Algorithm (RMGA). 

   In the next section, the literature on operating room planning and scheduling is reviewed. The problem 
assumptions and the mathematical model are presented in the third section. A new genetic algorithm is 

proposed in the fourth section to solve the problem. In the fifth section, the performance of RMGA is 

examined. Finally, the conclusions and suggestions for future studies are provided in the sixth section. 

 

2-Literature review 
   In recent years, several comprehensive and precise reviews presented in the field of operating room 
planning and scheduling by Zhu et al. (2019), Gartner and Padman (2017),Cardoen, Demeulemeester, 

and Beliën (2010). As stated by Cardoen et al. (2010) decisions related to operating room planning and 

scheduling from a managerial perspective can be divided into three levels: strategic levels for the long 
term, tactical level for the medium term, and the operational level for the short term. The focus of this 

article is on the operational level. According to (Mateus, Marques, & Captivo, 2018) the operational 

level can be divided into two problems: advance scheduling and allocation scheduling. Breuer, Lahrichi, 
Clark, and Benneyan (2020) and Lin and Chou (2020) only investigate allocation scheduling during 

horizon planning. While in the advanced scheduling, patient are assigned to a day or an operating room, 

in allocation scheduling, They are sequenced or assigned to a specific time during the day. In this paper, 

both advanced scheduling and allocation scheduling are examined simultaneously in the same problem, 
as opposed to the studies conducted by Fei, Meskens, and Chu (2010), Jebali, Alouane, and Ladet 

(2006), Saadouli, Jerbi, Dammak, Masmoudi, and Bouaziz (2015), Landa, Aringhieri, Soriano, Tànfani, 

and Testi (2016) in which the two problems have been studied hierarchically and in two sequential 
steps. Dividing the operational level into two steps reduces the complexity of the problem (Molina, 

Fernandez-Viagas, & Framinan, 2015; Riise & Burke, 2011).However, due to the interdependence 

between these two sub-problems, the quality of the obtained surgical schedule decreases (Cardoen et 

al., 2010; Dios, Molina-Pariente, Fernandez-Viagas, Andrade-Pineda, & Framinan, 2015). Investigating 
the operating room planning and scheduling problem in an integrated manner and considering the nature 

of uncertainty during surgery in the problem, which is important for having an efficient scheduling 

process, is considered in few studies such as Kamran, Karimi, and Dellaert (2020), Roshanaei, Booth, 
Aleman, Urbach, and Beck (2020), Zhu, Fan, Liu, Yang, and Pardalos (2020), Akbarzadeh, Moslehi, 

Reisi-Nafchi, and Maenhout (2020), Dios et al. (2015), Saremi, Jula, ElMekkawy, and Wang (2013), 

Moosavi and Ebrahimnejad (2018), Molina et al. (2015), Díaz-López et al. (2018), Batun, Denton, 
Huschka, and Schaefer (2011), Addis, Carello, Grosso, and Tànfani (2016). 

   Kamran et al. (2020) investigated the problem with a modified block scheduling policy. They 

presented a mixed-integer linear programming model with multiple functions. Their developed solution 

approach is included a column-generation-based heuristic algorithm and Bender’s decomposition 
technique. The proposed method is dynamically able to manage unanticipated arrivals of emergency 

patients and tackle the disruptions in certain time blocks. Roshanaei et al. (2020) addressed a novel 

branch-and-check method for multi-level operating room planning and scheduling that solves the 
problem by a combination of constraint programming and integer programming. Two objective 

functions are considered: maximizing OR utilization and the number of surgeries. ORs cannot be shared 

between specialties and surgery durations are deterministic. Zhu et al. (2020) solve the problem of 
assigning different OR days to each specialty, allocation of operating rooms to surgeons and, patient 

assignment and sequence problems simultaneously. A hybrid GWO-VNS algorithm is developed to 

construct a good solution. The efficiency of their algorithm is proved by computational results and 

comparison whit other mainstream algorithms. Akbarzadeh et al. (2020) apply a column generation and 
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driving heuristic to find a high-quality feasible solution at the operational level based on the expected 
demand. The problem is tested by a diverse artificial data and real data. The nurse re-rostering and nurse 

assignment to specific surgeries to maximize OR utilization is considered. Breuer et al. (2020) offer a 

robust optimization model. They considered the uncertainty of surgery duration, staff availability and 

anticipated of arrivals urgent and emergency patients in their model. Model performance is examined 
by real data. Díaz-López et al. (2018) developed a simulation-optimization technique to solve the 

surgical scheduling problem. Monte Carlo simulations were utilized for the probable duration of surgery 

and the meta-heuristic algorithm were used for optimization purposes. Moosavi and Ebrahimnejad 
(2018) presented a multi-objective mathematical model for scheduling elective patients, considering the 

intensive care unit and the patient's bed availability before and after surgery. A scenario was examined 

in the form of sustainable optimization in order to consider some probable parameters such as the 
duration of surgeries, the length of stay in the intensive care unit and the hospital room before and after 

surgery, and the demands of emergency patients. They proposed a new mixed-integer model based on 

the neighborhood search algorithm. Two sensitivity analyses were performed, one to determine the 

effect of the increase in the number of intervals on process time and the other to determine how 
increasing the limited resources of upstream and downstream units will affect scheduling. Addis et al. 

(2016) proposed a rotating horizon approach for patient selection and assignment. They considered 

scheduling and rescheduling steps simultaneously in their study. An integer linear programming model 
was repeatedly implemented to improve uncertainties between periods and minimize the waiting time 

and delays in patient allocation. Arranging patients to keep the number of cancellations caused by the 

arrival of new patients constrained and cancellation of patients were also considered. Moreover, to limit 
the number of cancellations due to the probabilistic duration of surgeries, they proposed a robust model 

for the linear integer problem. Batun et al. (2011) proposed a probabilistic two-stage mixed-integer 

model aiming to minimize operating room setup fixed costs, overtime costs, and surgeons' idle-time 

costs. Since their model was solved by standard probabilistic techniques at a reasonable time in real-
world examples, they utilized the structural features of the model for computational improvements. 

Moreover, a set of valid inequalities were used within the L-shaped algorithm. Also, the L-shaped 

algorithm was used in the framework of the branch and cut algorithm, which makes it possible to solve 
real-world problems. Certain requirements in the surgical process were also considered. The resources 

involved in an operating room have a variety of synchronous characteristics and limitations. A complete 

surgery usually requires several resources. Time window constraints mainly affect resource allocation 

(Xiang, Yin, & Lim, 2015). Riise, Mannino, and Burke (2016) proposed a new generalized model for 
surgical scheduling problems. They showed how this model developed the project scheduling problem 

with multi-state resource constraints, multiple schemes, and typical time constraints. Then, they 

provided a search method to solve the proposed model. Xiang et al. (2015) presented the problem of 
surgical scheduling as an extension of the flexible job-shop scheduling problem with multiple resource 

constraints, which was then solved using an ant colony optimization algorithm with a two-tier sequential 

graph to integrate sequencing and resource allocation. Dios et al. (2015)proposed a decision support 
system for operating room scheduling. The system is capable of providing a short-term schedule, a 

medium-term evaluation, and manual modifications. They formulated their problem as a complex 

integer programming model and then solved it by approximate methods. Hashemi Doulabi, Rousseau, 

and Pesant (2016) and Doulabi, Rousseau, and Pesant (2014) developed an efficient column generation 
method for planning and scheduling operating rooms. Marques, Captivo, and Pato (2012) proposed a 

mixed-integer mathematical model to maximize the effective use of available resources. Non-optimal 

solutions are enhanced using improvement heuristics. In 2015, Marques et al. specifically designed 
improvement and constructive heuristics for the same problem. The heuristics presented in (Marques et 

al., 2015) were adapted for being employed in the genetic algorithm proposed in 2014 by Marques et 

al. They considered two inconsistent optimization criteria: 1) maximizing the use of the operating room 
2) maximizing the number of scheduled surgeries, and they achieved better results than the ones 

obtained in their previous studies on the same problem. Marques, Captivo, and Pato (2015) used the 

minimization of a weighted Chebyshev distance from a return point to find efficient solutions to the 

multivariate optimization problem. Improvement and constructive heuristics are specifically designed 
to represent the objectives of the developed problem. Marques and Captivo (2015) continued their 

previous research by stating that their method (Marques et al., 2015) could only obtain one solution per 

time according to the weights assigned to each criterion which depends on decision-makers’ priorities. 
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Then, they presented an evolutionary algorithm for the elective patients scheduling problem considering 
both tactical and operational levels. When a surgical operation is completed, the operating room 

preparation procedure must be performed before the next surgery is started, including operating room 

cleaning, providing the proper equipment, refilling disinfection supplies, and preparing the required 

staff (surgeons, nurses, and anesthesiologists) (Zhao & Li, 2014). Preparation times usually depend on 
the type of the two consecutive surgeries and are therefore sequence-dependent (Arnaout, 2010).When 

two consecutive surgeries belong to different types, more preparation time is required than when both 

consecutive surgeries are of the same type (Ciavotta, Dellino, Meloni, & Pranzo, 2010). Few studies 
have included sequence-dependent preparation times in their studies. Zhao and Li (2014) discussed 

three aspects of daily scheduling decisions in an outpatient surgery center, including the number of 

operating rooms to be opened, the allocation of surgeries to the operating rooms, and the sequence of 
surgeries in each operating room. They provided a nonlinear mixed-integer programming model and a 

constraint programming model to solve the problem aiming to minimize operating rooms’ fixed costs 

overtime costs. They examined their problem under definite circumstances without considering the 

surgeon's time window constraint. Latorre-Núñez et al. (2016) proposed an integer linear programming 
model and converted it to constraint programming to solve the allocation sub-problem at the operational 

level. In order to solve large problems, they developed a metaheuristic based on a genetic algorithm and 

a constructive heuristic. Only in the studies conducted by Saremi et al. (2013) and Molina et al. (2015) 
both time window constraints and surgery duration uncertainty were simultaneously considered. 

However, the preparation time was not sequence-dependent in their study.  

    Molina et al. (2015) addressed operating room planning and scheduling considering surgical teams 
composed of one or two surgeons (house surgeon and assistant surgeon), in which the duration of 

surgeries depends on the surgical team’s experience. They proposed a mixed-integer programming 

model and an extension of the multi-state block construction job-shop model (Pham & Klinkert, 2008) 

to solve it. Saremi et al. (2013) proposed three simulation methods based on optimization. Each patient 
moves along the preoperative, intraoperative, and postoperative stages. The process times of all three 

stages are uncertain. They examined different time distributions for different patients. The first method 

combines event-based simulation with tabu search to schedule surgeries. The second method is the 
integer program added to tabu search. The third method uses a 0-1 planning model combined with a 

heuristic and a simulation, based on tabu search to solve the problem.  

   Various solutions and methods have been presented for solving operating room planning and 

scheduling problems according to the nature of the problem (size and complexity). Zhao and Li (2014) 
describes them as exact algorithms and innovative algorithms such as genetic algorithms (Ala et al., 

2020; Conforti et al., 2010; Fei et al., 2010; Guido & Conforti, 2017; Latorre-Núñez et al., 2016; Lin & 

Chou, 2020; Marques et al., 2014; Benoit Roland, Di Martinelly, & Riane, 2006; Benoît Roland et al., 
2010), approximate methods (Dios et al., 2015), simulation (Díaz-López et al., 2018; Marques et al., 

2012; Saadouli et al., 2015; Saremi et al., 2013) and Marco's decision-making process. Lin and Chou 

(2020) studied an operating room scheduling problem whit considering multifunctional operating 
rooms. They introduced heuristics to obtain feasible solutions and mentioned four local search 

procedures to improve their solutions. Finally, a hybrid genetic algorithm consisting of initial solutions, 

local search procedures ,and elite search procedure is used to the reported problem. Conforti et al. (2010) 

presented a multi-objective mathematical planning model by which the allocation of time intervals to 
surgical teams and the schedule of hospitalized patients are determined, aiming to maximize the use of 

operating rooms, maximize the number of scheduled patients, preferences of surgical teams and 

minimize the surgeons’ idle time. In order to find the Pareto front, they proposed a metaheuristic 
approach based on the efficient execution of genetic algorithms. Ala et al. (2020)  addressed a hybrid 

genetic algorithm to the appointment scheduling in the health care system to reduce the examination 

and preparation time of patients in rooms. Guido and Conforti (2017) defined a multi-objective integer 
linear programming model to integrate executive and operational decision-making levels. They 

extended the research conducted by Conforti et al. (2010) by defining schedules which are trade-offs 

between operating rooms’ idle time, balanced distribution of operating rooms’ active time between 

surgical teams, waiting time for surgeries, and overtime hours. The Pareto front guarantees that no 
criterion may be improved without the deterioration of another. To find non-dominant Pareto solutions, 

they proposed a hybrid approach based on the genetic algorithm. The proposed approach focuses on a 

method of initiation, which aims to build an initial population with an appropriate set of feasible 
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chromosomes, which are the seeds for the evolution of the computational process. Benoît Roland et al. 
(2010) and Benoit Roland et al. (2006) developed a resource-constrained project scheduling model with 

emphasizing on the availability of human resources to address planning over several days and 

scheduling in one day with aims to minimize operating rooms’ setup and overtime costs and proposed 

a genetic algorithm to solve it. Researchers such as Lin and Chou (2020), Benoît Roland et al. (2010), 
Benoit Roland et al. (2006) and Conforti et al. (2010) investigated their problem under definite 

conditions without considering the time window constraints and sequence-dependent preparation times. 

In this paper, a nonlinear mixed-integer mathematical model and a new genetic algorithm are proposed 
to solve a different combination of operating room planning and scheduling problems at the operational 

level, considering the sequence-dependent preparation times and time window constraints. Table (1) 

and table (2) summarize the studies conducted in the field of scheduling and planning of operating 
rooms from different aspects. In table 1, there are 5 patient types as follows: 1:outpatient , 2: inpatient, 

3: emergency patient, 4: necessary patient, and 5 :unspecified. 

   More over, there are 15 Objective functions in this table as follows: 1: patient waiting time, 2: surgery 

cancellations, 3: OR utilization, 4: completion time, 5: surgeon idle time, 6: cost, 7: operating room 
overtime, 8: OR idle time, 9: operating room setup, 10: hospitalization, 11: number of scheduled 

patients, 12: number of beds, 13: surgeon overtime, 14: delay, 15: other. 

   Additionally 19 solution methods are considered in this table as follows: 1: mathematical 
programming model, 2: constraint programming, 3: goal programming, 4: column generation, 5: robust 

optimization, 6: genetic algorithm, 7: discrete event simulation, 8: branch and price, 9: tabu search, 10: 

neighborhood search technique, 11: quadratic programming, 12: Monto Carlo, 13: greedy algorithm, 
14: branch and price and cut, 15: evolutionary algorithm, 16: constructive and improving heuristics, 17: 

approximate Methods, 18: metaheuristic, 19: other heuristics. 
    Finally, 10 source types are presented in table 1 as follows: 1: surgeon, 2: operating room, 3: nurse, 

4: anesthesiologist, 5: recovery beds, 6: ICU beds, 7: ward beds, 8: equipment, 9: instruments, 10: other. 
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Table 1. Research classifications in the literature  

Authors 

 

Type of 

patient  
Objective function  Solution method  Resources type  

Kamran et al. (2020) 1-2-3 1-2-5-7-14 1-4-19 1-2-5-7 

Roshanaei et al. (2020) 1-2 3-11 1-19 1-2 

Lin and Chou (2020) 1-2 3-6-7-8 1-6-10-19 1-2 

Zhu et al. (2020) 1-2 1-6-7 1-10-18-19 1-2 

Breuer et al. (2020) 1-2-3-4 1-3-7-15 1-5 1-2-3-4 

Akbarzadeh et al. (2020) 1-2 6-15 1-4-19 2 

Ala, Torkayesh, Torkayesh, and 

Iranizad (2020) 
1-2 15 1-6 1 

Molina-Pariente, Hans, and 
Framinan (2018) 

1-2-3 2-6-7-8 12-13-17 1-2 

Moosavi and Ebrahimnejad 

(2018) 
1-2-3 1-6-7-8-12-15 1-5-10 2-6-7 

Mateus et al. (2018) 1-2 11-15 1-10-19 1-2 

Latorre-Núñez et al. (2016) 1-2-3 4 6-16 1-3-4-5-8-9-10 

Díaz-López et al. (2018) 5 3-14 1-12-13 2 

Dios et al. (2015) 1-2 5-11-14 1-17 1-2 

Landa et al. (2016) 1-2 2-3 1-10-12-13 2-7 

Conforti et al. (2010) 2 3-11-15 1-6 1-2 

Van Huele and Vanhoucke 

(2014) 
1-2 6-7 1 1-2-5-6 

Hashemi Doulabi et al. (2016) 1-2 15 1-2-4-14 1-2 

Doulabi et al. (2014) 1-2 15 1-2-4 1-2 

Batun et al. (2011) 5 5-6-7-9 1 1-2 

Marques et al. (2015)  1-2 3-11 1-16 1-2 

Marques, Captivo, and Pato 

(2014) 
1-2 3-11 1-6 1-2 

Marques et al. (2012) 1-2 3 1 1 

Marques et al. (2015) 1-2 3-11 15 1-2 

Addis et al. (2016) 1-2-3 1-14 1-5 --- 

Aringhieri, Landa, Soriano, 

Tànfani, and Testi (2015) 
2 1-6-12 1-18 1-2-7 

Vijayakumar, Parikh, Scott, 

Barnes, and Gallimore (2013) 
1-2 11 1-19 1-2-3-8 

Riise and Burke (2011) 1-2 1-13-15 1-18 1-2 

Durán, Rey, and Wolff (2017) 5 15 1-16 1-2 

Riise et al. (2016) 1-2 1-6-15 1-18 1-2-3-4-5-6-7-8 

Benoît Roland, Di Martinelly, 

Riane, and Pochet (2010) 
1-2 6-7-9 1-6 1-2-3-4-10 

Zhao and Li (2014) 1 6-7-9 1-2 --- 

Saadouli et al. (2015) 1-2 1-4-7-8 1-7 2-5 

Guido and Conforti (2017) 1-2 6-7-8-11-15 1-6 1-2 

Xiang et al. (2015) 1-2 4 1-7-18 1-2-3-4-5-6-7 

Ghazalbash, Sepehri, Shadpour, 

and Atighehchian (2012) 
1-2 4-8 1 1-2-3-4-7-8-9-10 

Saremi et al. (2013) 1 1-2-4 1-7-9 1-2-3-5-7 

Agnetis et al. (2014) 1-2 6-15 1 1-2 

Dios et al. (2015) 1-2 15 1-17 1-2 

Current research 1-2 5-6-7-8-9 1-6 1-2 
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Table 2. Problem specifications in the literature 

Authors 

Type of 
scheduling 

Decision 
levels 
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(Kamran et al., 2020)                                        

(Roshanaei et al., 2020)                                 

(Zhu et al., 2020)                                

(Lin & Chou, 2020)                              

(Breuer et al., 2020)                                   

(Akbarzadeh et al., 2020)                                 

(Ala et al., 2020)                              

(Moosavi & Ebrahimnejad, 2018)                                   

(Díaz-López et al., 2018)                              

(Mateus et al., 2018)                                

(Saadouli et al., 2015)                                 

(Guido & Conforti, 2017)                                 

(Molina, Hans, & Framinan, 2018)                                 

(Molina et al., 2015)                                 

(Latorre-Núñez et al., 2016)                                

(Hashemi Doulabi et al., 2016)                                

(Doulabi et al., 2014)                                

(Zhao & Li, 2014)                               

(Landa et al., 2016)                                 

(Batun et al., 2011)                                   
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(Marques et al., 2012)                                 

(Marques et al., 2014)                                 

(Marques et al., 2015)                                 

(Marques & Captivo, 2015)                                  

(Van Huele & Vanhoucke, 2014)                                 

(Aringhieri et al., 2015)                               

(Fei et al., 2010)                               

(Xiang et al., 2015)                                

(Vijayakumar et al., 2013)                                

(Durán et al., 2017)                               

(Pham & Klinkert, 2008)                                 

(Dios et al., 2015)                                 

(Riise & Burke, 2011)                                

(Ghazalbash et al., 2012)                                

(Conforti et al., 2010)                                

(Riise et al., 2016)                               

(Addis et al., 2016)                                   

(Benoît Roland et al., 2010)                               

(Saremi et al., 2013)                                 

(Agnetis et al., 2014)                               

Current research                                 

 

Table 2. Continued 
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3-Problem definition 
   In this section the problem specifications is described. It is assumed that there is a waiting list of 

elective patients, in which the type of each surgery and the surgeon of each patient are specified. Patients 
and surgeons should be scheduled and planned so that they are available at the hospital at the specified 

time. Therefore, when allocating a surgery to a time and an operating room, the surgeon's availability 

and the time availability in the allowed operating room should be considered to perform the surgery. 

The integration of the allocation of surgeries to operating rooms and their sequence in each operating 
room is reviewed on a daily short-term horizon. In this problem, it is intended to determine the following 

decisions: 

 The assignment of surgeries to operating rooms; 

 The priority of surgeries assigned to each operating room; 

 The starting time of each surgery; 

 The state of each operating room (active or inactive). 

 

3-1- Problem assumptions 

The assumptions of the problem in this study are as follows: 

 All resources are always available except operating rooms and surgeons. 

 The time required for cleaning and the preparation of operating rooms is calculated separately 

and is added to the duration of the operation. 

 The duration of operating rooms’ cleaning and preparation depends on the sequence of 

surgeries in each operating room. 

 Operating rooms are not identical. Therefore, some types of surgeries are not allowed to be 
performed in some operating rooms. 

 Emergency patients are not considered in the problem because patients admitted to the 

emergency department usually undergo surgery immediately. Hence, only elective patients are 

considered in this study. 

 Surgeries cannot be stopped once they are started. 

 Two surgeries can't overlap in an operating room. 

 A surgeon cannot be present in two operating rooms at the same time. 

 The time horizon for the operating rooms’ planning and scheduling is daily. 

 The duration of surgery is a random variable. 

 Each operating room has a certain amount of overtime, which is applied as a penalty in the 
objective function. 

 There is a time window constraint for each surgeon, which indicates the surgeon's presence 

time in the hospital. 

Figure (1) shows an example, in which 7 surgeries are scheduled in 3 operating rooms. Note that in 

operating room 3 (OR3) after surgery 5 is done (P5) and the operating room is cleaned and prepared for 
the next surgery, surgery 3 (P3) is delayed because surgeon 1 (S1) is unavailable, being busy performing 

surgery 2 (P2) in operation room 2 (OR2), making the operating room idle. 

   Surgeon 3 (S3) should wait for the surgery on patient 6 to end (P6) as operating room 1 is unavailable 

(performing surgery 4 (P4) by surgeon 1 (S1) and cleaning and preparing the operating room) until time 
t' to for the next surgical procedure. This will cause the surgeon to become idle. Also, surgeon 2 (S2) 

should wait after completing their initial surgery in operation room 3 (OR3) as operation 2 is occupied. 

There is no need for a surgeon to be present in the operating room when preparing and cleaning the 
operating room. Each operating room is allowed a certain amount of overtime, and all surgeries 

performed by a surgeon must be performed during the surgeon's presence in the hospital. 
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Fig 1. Surgery scheduling process 

 

3-2- Mathematical model of the problem 
   In this section, a mixed-integer nonlinear mathematical model is presented, as an extension of the 

model proposed by Zhao and Li (2014). The parameters of the problem are described in table (3). 

 

Table 3. Sets, parameters, and variables for the mathematical model 

Sets and Indices: 
R: Total number of available operating rooms  

i: Operating rooms index 

P: Total number of surgeries which should be scheduled 
j: Surgeries index 

S: Set of Surgeons 

N: Total number of surgery types  
n: Index of surgery type 

Q: A large positive number 

K: Location of a surgery in an operating room 

Parameters: 

𝐬𝐣: surgeon of patient i 

𝐂𝐬
𝐦𝐚𝐱: Maximum surgery completion time performed by surgeon s 

𝐂 𝐬
𝐢𝐝𝐥𝐞𝐭𝐢𝐦𝐞 𝐬𝐮𝐫𝐠𝐞𝐨𝐧

: Cost of one idle time unit for surgeon s 

𝐒𝐃𝐣: Duration of surgery j 

𝐭𝐣𝐣′
𝐬𝐭 : Preparation Duration of for surgery j’ when the previous surgery was j 

𝐭𝐢
𝐭𝐨𝐭 : Normal availability time of operating room i 

 𝑪𝒊
𝒐𝒗𝒆𝒓𝒕𝒊𝒎𝒆: Overtime Cost of operating room i for each overtime unit 

𝑪𝒊
𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆: Idle cost of operating room i per unit of idle time 

𝑪𝑶𝒊: Setup cost of operating room i 

𝑴𝑨𝑿 𝑻𝒊
𝑶𝑹: Maximum time that operating room i can be open 

𝑪𝒋: Completion time of surgery j 

𝑻𝒎𝒂𝒙
𝒔 : Maximum time allowed for the surgeon to be available for performing surgeries 

Subsets: 

𝑷𝒔
𝑺: Set of surgeries performed by surgeon s 

decision and auxiliary variables: 
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𝑰𝒔
𝒎𝒊𝒏: Minimum start time of surgery s 

𝒁𝒔
𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆 𝒔𝒖𝒓𝒈𝒆𝒐𝒏

: Idle time between surgeries of surgeon s 

𝒍𝒋𝒏: Equals 1, if and only if surgery j is of type n, otherwise 0 

𝒉𝒊𝒏: Equals 1, If and only if surgery type n can be performed in operating room i, otherwise 0 

𝑿𝒊𝒋𝒌: Equals 1, If and only if surgery j is to be the kth surgery in operating room i, otherwise 0 

𝒁𝒊: Period in which operating room i is overloaded 

𝑭𝒊: Period in which operating room i is idle 

𝒚𝒊: Equals 1, If and only if operating room i is open, otherwise 0 

𝒚𝒋𝒋′: Equals 1, If and only if patient j is in the common source before patient j', otherwise 0 

 

The mathematical model of the problem is as follows: 

 

𝒐𝒑𝒕 𝒇(𝒙) =  𝑴𝑰𝑵 [𝒇𝟏(𝒙). 𝒇𝟐(𝒙). 𝒇𝟑(𝒙). 𝒇𝟒(𝒙)] 
 

(1) 

 

𝒇𝟏 = ∑ 𝒚𝒊(𝑪𝑶𝒊 + 𝑪𝒊
𝒐𝒗𝒆𝒓𝒕𝒊𝒎𝒆 𝒁𝒊 ) 

𝑷

𝒋=𝟏

 

 

(2) 

 

𝒇𝟐 =  ∑  𝒚𝒊 𝑪𝒊
𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆  𝑭𝒊

𝑷

𝒋=𝟏

 

 

(3) 

 

𝒇𝟑 = 𝑪𝒎𝒂𝒙 

(4) 

 
𝒇𝟒 = 𝑪 𝒔

𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆 𝒔𝒖𝒓𝒈𝒆𝒐𝒏
 ∑ 𝒁𝒔

𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆 𝒔𝒖𝒓𝒈𝒆𝒐𝒏
 

𝑺

𝒔=𝟏

 

 

(5) 

 
∑ 𝑿𝒊𝒋𝒌  ≤  ∑ 𝒉𝒊𝒏 𝒍𝒋𝒏   ∀𝒊. 𝒋 

𝑵

𝒏=𝟏

𝑷

𝒌=𝟏

  

 

(6) 

 
∑ ∑ 𝑿𝒊𝒋𝒌 = 𝟏    ∀𝒋 

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏

 

 

(7) 

 

∑ 𝑿𝒊𝒋(𝒌+𝟏) ≤ ∑ 𝑿𝒊𝒋𝒌      𝒌 = 𝟏 … 𝑷 − 𝟏. ∀𝒊 

𝑷

𝒋=𝟏

𝑷

𝒋=𝟏

 

 

(8) 

 

𝑪𝒋 + 𝑸 ∗ (𝟐 + 𝒚𝒋𝒋′ − ∑ 𝑿𝒊𝒋𝒌

𝑷

𝒌=𝟏

− ∑ 𝑿𝒊𝒋′𝒌

𝑷

𝒌=𝟏

) ≥ 𝑪𝒋′ + 𝑺𝑫𝒋  

𝑪𝒋′ + 𝑸 ∗ (𝟑 − 𝒚𝒋𝒋′ − ∑ 𝑿𝒊𝒋𝒌

𝑷

𝒌=𝟏

− ∑ 𝑿𝒊𝒋′𝒌

𝑷

𝒌=𝟏

) ≥ 𝑪𝒋 + 𝑺𝑫𝒋′   

 

 ∀𝒔 ∈ 𝑺. 𝒋 ∈ 𝑷𝒔
𝑺. 𝒋′ ∈ 𝑷𝒔

𝑺. 𝒋 ≠ 𝒋′. 𝒋 < 𝒋′  

(9) 

 
𝑪𝒋 + 𝑸 ∗ (𝟐 + 𝒚𝒋𝒋′ − ∑ ∑ 𝑿𝒊𝒋𝒌

𝑷

𝒌=𝟏𝒊∈𝑹

− ∑ ∑ 𝑿𝒊′𝒋′𝒌

𝑷

𝒌=𝟏𝒊′∈𝑹

) ≥ 𝑪𝒋′ + 𝑺𝑫𝒋  
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𝑪𝒋′ + 𝑸 ∗ (𝟑 − 𝒚𝒋𝒋′ − ∑ ∑ 𝑿𝒊𝒋𝒌

𝑷

𝒌=𝟏𝒊∈𝑹

− ∑ ∑ 𝑿𝒊′𝒋′𝒌

𝑷

𝒌=𝟏𝒊′∈𝑹

) ≥ 𝑪𝒋 + 𝑺𝑫𝒋′   

 

 ∀𝒔 ∈ 𝑺. 𝒋 ∈ 𝑷𝒔
𝑺. 𝒋′ ∈ 𝑷𝒔

𝑺. 𝒋 ≠ 𝒋′. 𝒋 < 𝒋′. 𝒔𝒋 = 𝒔𝒋′ = 𝟏 

 

(10) 

 
𝑪𝒋 ≥  ∑ ∑(𝒕𝒋′𝒋

𝒔𝒕 + 𝑺𝑫𝒋)𝑿𝒊𝒋𝒌     ∀𝒋 ∈ 𝑷

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏

  

 

(11) 

 

∑ ∑ ∑ 𝑺𝑫𝒋

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏𝒋𝝐𝑷𝒔
𝑺

 𝑿𝒊𝒋𝒌  ≤  𝑻𝒎𝒂𝒙
𝒔     ∀𝒔 ∈ 𝑺  

 

(12) 

 
𝑰𝒔

𝒎𝒊𝒏  ≤  𝑪𝒋 − ∑ ∑ 𝑺𝑫𝒋 𝑿𝒊𝒋𝒌

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏

    ∀𝒔 ∈ 𝑺. ∀𝒋 ∈ 𝑷𝒔
𝑺  

 

(13) 

 

𝑪𝒔
𝒎𝒂𝒙  ≥  𝑪𝒋        ∀𝒔 ∈ 𝑺. ∀𝒋 ∈ 𝑷𝒔

𝑺  

 

(14) 

 

𝒁𝒔
𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆 𝒔𝒖𝒓𝒈𝒆𝒐𝒏

 ≥  𝑪𝒔
𝒎𝒂𝒙  − 𝑰𝒔

𝒎𝒊𝒏 −  ∑ ∑ ∑ 𝑺𝑫𝒋 𝑿𝒊𝒋𝒌   ∀𝒔 ∈ 𝑺

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏𝒋∈𝑷𝒔
𝑺

  

 

(15) 

 
𝑪𝒋  ≤  ∑ ∑ 𝒕𝒊

𝒕𝒐𝒕  𝑿𝒊𝒋𝒌     ∀𝒋 ∈ 𝑷 

𝑷

𝒌=𝟏

𝑹

𝒊=𝟏

 

 
(16) 

 

𝑪𝒎𝒂𝒙  ≥  𝑪𝒋        ∀𝒋 ∈ 𝑷  

(17) 

 

∑ 𝑿𝒊𝒋𝟏

𝑷

𝒋=𝟏

 ≤  𝒚𝒊    ∀𝒊  

 

(18) 

 

∑ ∑ 𝑿𝒊𝒋𝒌 𝑺𝑫𝒋  + 

𝑷

𝒌=𝟏

∑ ∑ ∑ 𝑿𝒊𝒋𝒌 𝑿𝒊𝒋′(𝒌+𝟏) 𝒕𝒋𝒋′
𝒔𝒕 − 𝒕𝒊

𝒕𝒐𝒕  ≤  𝒁𝒊

𝑷

𝒋′=𝟏

𝑷−𝟏

𝒌=𝟏

𝑷

𝒋=𝟏

𝑷

𝒋=𝟏

   ∀𝒊  

 

(19) 

 

   𝒁𝒊 ≥ 𝟎     ∀𝒊  

 

(20) 

 

𝒕𝒊
𝒕𝒐𝒕 −  (∑ ∑ 𝑿𝒊𝒋𝒌 𝑺𝑫𝒋  + 

𝑷

𝒌=𝟏

∑ ∑ ∑ 𝑿𝒊𝒋𝒌 𝑿𝒊𝒋′(𝒌+𝟏) 𝒕𝒋𝒋′
𝒔𝒕

𝑷

𝒋′=𝟏

𝑷−𝟏

𝒌=𝟏

𝑷

𝒋=𝟏

𝑷

𝒋=𝟏

)  ≤  𝑭𝒊  ∀𝒊  

 

(21) 

 

𝑭𝒊 ≥ 𝟎     ∀𝒊  
 

(22) 

 
𝑴𝑨𝑿 𝑻𝒊

𝑶𝑹  ≥  𝒕𝒊
𝒕𝒐𝒕 + 𝒁𝒊   ∀𝒊  

(23) 

 

𝑿𝒊𝒋𝒌  ∈  {𝟎،𝟏}  ∀𝒊. 𝒋. 𝒌  

(24) 

 

𝒀𝒋𝒋′  ∈  {𝟎،𝟏}  ∀𝒋. 𝒋′ ∈ 𝑱 ; 𝒋 ≠ 𝒋′ 

(25)  
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 𝑾𝒋𝒋′𝒔 ∈  {𝟎،𝟏} ∀𝒔 ∈ 𝑺. ∀𝒋. 𝒋′ ∈ 𝑱 ; 𝒋 ≠ 𝒋′  

 

(26) 

 
𝒁𝒔

𝒊𝒅𝒍𝒆𝒕𝒊𝒎𝒆 𝒔𝒖𝒓𝒈𝒆𝒐𝒏
. 𝑪𝒔

𝒎𝒂𝒙. 𝑪𝒋. 𝑰𝒔
𝒎𝒊𝒏  ≥ 𝟎 𝑱 ; 𝒋 ≠ 𝒋′  

   Objective functions (1) and (2) minimize setup costs, operating room overtime costs, and operating 

room idle-time costs, respectively. Objective function (3) minimizes the closing time of the last 
operating room in use. Objective function (4) minimizes surgeons’ free time window. Constraint set 5 

ensures that surgeries are performed in allowed operating rooms. If n-type surgeries cannot be 

performed in operation i (hin = 0), then 𝑋𝑖𝑗𝑘 variables for all surgeries j with ljn=1 are equal to be zero. 

Constraint set 6 indicates that each surgery must be scheduled exactly once. Constraint set 7 states that 
surgery K + 1 can be scheduled only when the previous K surgeries are scheduled in that operating 

room. Constraint set 8 states that each operating room cannot accommodate more than one patient at a 

time. Constraint set 9 defines the surgery priorities for surgeon s to prevent them from overlapping. 
constraint set 10 ensures that the completion time of each surgery in each operating room, is greater 

than the sum of the time of surgery and its preparation time. Constraint set 11 applies the limitation of 

surgeons’ daily working time. Constraint sets 12 and 13 define the earliest start time and the latest 
completion time for each surgeon during the day, respectively. Constraint set 14 limits each surgeon’s 

waiting time per day. Constraint set 15 states that the time required for completing surgery should be 

less than or equal to the normal available time in the operating room. Constraint set 16 specifies that 

the maximum completion time is greater than or equal to the closing time of all operating rooms. 
Constraint set 17 states that surgeries can only be assigned to open operating rooms. Constraint sets 18 

and 19 define the amount of overtime in each operating room. Since the goal is to minimize the costs 

of operating rooms’ overtime, if operating room i is not open longer than normal, then Zi equals zero. 
If the operating room is open longer than normal, then Zi equals the overtime. Constraint sets of 20 and 

21 define the idle time of the operating room. Constraint set 22 defines the maximum time available for 

the operating room. Constraint sets 23, 24, and 25 indicate that the decision variables 𝒘𝒋𝒋′𝒔. 𝑿𝒊𝒋𝒌. 𝒀𝒋𝒋′ 

are binary. Constraint set 26 defines the ranges of variables. 

4-Solution method 
    Due to the NP-hard nature of the problem, exact methods are not capable of finding the optimal 

solution in a reasonable time, and heuristic or meta-heuristic methods must be used to solve the problem 

to find the best possible (near-optimal) solution in a reasonable time. In this section, a new genetic 
algorithm based on the role model concept in sociology is presented to solve the operating rooms' 

planning and scheduling problem. The genetic algorithm deals with a population consisting of a large 

number of individuals and evolves the population using a set of specific selection rules to maximize the 

fitness value (in other words, minimize the cost function). In the genetic algorithm, each potential 
solution is considered as a chromosome in the initial population and the corresponding fitness function 

is assigned to it. In each generation, new chromosomes are produced by different genetic operators, 

namely mutation and crossover. The chromosomes of the next generation are selected from the previous 
generation using a criterion according to their fitness function. This procedure is repeated until the 

termination condition is satisfied. 

   RMGA it is inspired from the role model concept proposed by sociologist Robert K. Merton (Merton, 
1957). In RMGA two sets of good and bad role models are considered. The good role model set consists 

of a number chromosomes having better fitness values than other chromosomes. On the other hand, the 

bad role model set consists of a number chromosomes having worse fitness values than other 

chromosomes. People in the society try to imitate from the good role models and be different from bad 
role models. In the mutation operator of RMGA, a randomly selected chromosome from the population 

tries to imitate some properties from a randomly selected good role model and be different from a 

randomly selected bad role model. Details of RMGA is described as follows: 

 

4-1- Chromosome structure 
   The chromosome structure in RMGA is two dimensional. The vertical dimension represents the 

operating rooms and the horizontal dimension represents the surgeries assigned to each operating room. 
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For each operating room, there is an array whose length and arrangement of elements indicate the 
number and order of surgeries assigned to that operating room. If the number of surgeries assigned to 

operating rooms increases or decreases, the length of the corresponding string will also increase or 

decrease. In RMGA, the structure of the chromosome is two-dimensional and the strings’ lengths are 

variable. For further elaboration, suppose there are 10 patients and 3 operating rooms. In this case, 
figure (2) shows the structure of the chromosome of a solution and its decoding process. The first string 

consists of a random arrangement of integers from 1 to N (number of patients), and the second string 

specifies the allowed operating room allocated to the patients in the first row. Each patient in the first 
row is assigned according to the operating room specified in the second row. The patients’ sequence is 

determined based on the random order created in the first row of the matrix. 

 

 

Fig 2. A feasible chromosome and its decoding process. 

4-2- Crossover and mutation 
    Both simulation and differentiation processes are used in the crossover and mutation operations. 

Simulation process: In this process, one chromosome is named as influencer and the other as follower. 

One or more patients are randomly selected and their assignments in the follower chromosome are 
changed to be same as the influencer chromosome. 

Differentiation process: Like simulation process, there are influencer and follower chromosomes. But 

in the differentiation process, one or more patients are randomly selected from the follower 
chromosome and their assignments are checked to be different from their position in the influencer 

chromosome. If an assignment is similar in both chromosome, then it should be changed to a randomly 

different feasible position. If the selected patient is only allowed to be assigned to one position and that 

position needs to be changed according to the differentiation process, then the differentiation process 
will not be performed for that patient.  

    The number of selected genes to perform a simulation or differentiation process is determined by a 

coefficient of the total number of genes of chromosomes, namely impact factor. For example, assume 
the impact factor and the number of patients (genes) to be 0.3 and 10, respectively. In this case 3 (10 * 

0.3) genes should be selected to perform a simulation or differentiation process.  

 

Fig 3. The crossover operation 

   The crossover and mutation operators in the proposed algorithm work as follows: 

Crossover: People in a community are influenced by each other. Two chromosomes are randomly 

selected, one of them is considered as follower and the other is considered as influencer. Thereafter, the 
simulation process takes place between them. 
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Mutation: In a community, some people are known as good role models and some as bad role models. 
People tend to follow good role models and avoid bad ones. In the mutation operator, a chromosome is 

randomly selected as follower and a chromosome is selected from the good role models set called good 

influencer and a chromosome is selected from the bad role models set called bad influencer. 

Consequently, the simulation process is occurred between the follower chromosome and the good 
influencer and the differentiation process is occurred between the follower chromosome and the bad 

role model chromosome. Consider the following example: 

Suppose chromosome a is selected randomly, chromosome G is selected from the good role model set 
with the best fitness value, and chromosome B is selected from the bad role model set that have the 

worst fitness value. Also, the impact factor and the number of patients are 0.3 and 10, respectively. 

Therefore, 3 (10 * 0.3) genes must be selected randomly in chromosome a in order to be simulated 
based on the best chromosome, and then three other genes must be selected in order to be differentiated 

according to the worst chromosome. Suppose that the three genes selected for the simulation process 

are 6, 7, and 2, and the three genes selected for the differentiation process are 3, 10, and 8. Figure 4, 

shows the result of performing the mutation operator on chromosome C.  
 

 

Fig 4. Perform the simulation and differentiation processes in the mutation operator 

 

4-3- The proposed algorithm 
The implementation of RMGA process is as follows: 

Step 1- Generate the initial population: Create an initial population of random chromosomes. The 

population number is determined by a parameter named npop. 

The chromosomes are produced as follows: 

Step 1-1. Generate two strings, each containing N arrays. The arrays in the first string contain non-

repetitive random integers numbers from 1 to N (number of patients). The value of each array in the 

second string is a random integer number from 1 to m (number of operating rooms). 

Step 1-2. Calculate the objective function value for each chromosome. The chromosome’s objective 

function values are calculated as follows: 

The cost function is composed of five stages: 

1.2.1 Perform the first step of scheduling patients based on the allocation and priority specified in the 

corresponding chromosome (arrangement of patients in different operating rooms), the operating 

rooms’ preparation time, and the duration of surgery. 
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2.2.1 The first penalty function is calculated based on the difference between the maximum occupation 
time of the operating room and the minimum occupation time of the operating room, that is the 

difference between the occupancy periods of the two operating rooms. 

3.2.1 The second penalty function is calculated based on the surgeon's unemployment time and is 

considered as the second cost function. 

4.2.1 Third Objective Function: if two different surgeries are assigned to one surgery at the same time, 

the overlapping time intervals are calculated and for each minute of the surgeon’s overlap time, a λ set 
of penalty units is assigned, so that this assignment is likely to be removed from selection priorities due 

to the high value of the cost function. 

5.2.1 Fourth penalty function: if the duration of an operation exceeds the allowable time window of a 

surgeon, this assignment will probably either be removed by considering a β penalty for it, or be 

corrected in a way that it is performed within the allowable time window, 

6.2.1 Fifth penalty function: If the duration of an operation exceeds the permitted working period of the 

operating room, it is considered unallowable by assigning a unit if ρ penalty. This operation will 

eventually be corrected in a way that it is performed within the permitted working period. 

Note that depending on the type of surgery, the operating room assigned to each patient is necessarily 

correct and does not need to be controlled. Finally, the penalty functions of surgeons’ idle time, 
exceeding surgeons’ allowable time window, exceeding operating rooms permitted working period, and 

overlapping surgeries assigned to a surgeon are calculated and the summation of all cost functions is 

considered as the final penalty function. 

Step 2. Create sets of good and bad chromosomes: select as much as n-good chromosomes with the 
best fitness function and n-bad chromosomes with the worst fitness as the good and bad chromosome 

sets, respectively. 

Step 3. Perform the crossover operation: The number of crossover operations in each iteration is fixed 

and determined by a coefficient of npop, named cross-rate, which is one of the parameters of the genetic 

algorithm. Perform the crossover operation as follows: 

Step 3-1. Determine the number of changeable genes using the impact factor: define a value as the 
impact factor according to the number of patients and call it α. Multiply the number of patients by the 

impact factor and name the result K. 

Step 3-2. Select the chromosomes: Randomly select two chromosomes and name them Y1 and Y2. 

Step 3-3. Simulation process between the two chromosomes Y1 and Y2: randomly select K genes in 

chromosome Y1. Simulate the selected genes, according to their location on chromosome Y1, in 

chromosome Y2. Then randomly select K genes on chromosome Y2. Simulate the selected genes, 

according to their location on chromosome Y2, in chromosome Y1. 

Step 3-4. Calculate the fitness function and replace the chromosomes: Calculate the objective function 

value of the new chromosomes Y1 and Y2 and replace them with the old chromosomes. 

Step 4. Perform the mutation operation: The number of mutation operations in each iteration is fixed 

and is determined by a coefficient of npop, named mut-rate, which is one of the parameters of the 

genetic algorithm. Perform the mutation operation as follows: 

Step 4-1. Select a chromosome to perform the mutation operation, a good chromosome, and a bad 

chromosome: first, randomly select a chromosome from the initial population. Also, randomly select a 

chromosome from the set of good chromosomes and a chromosome from the set of bad chromosomes 

and name them C, CG, and CB, respectively. 

Step 4-2. Simulate based on a good chromosome: select K genes randomly from chromosome C. 
Simulate the position assigned to these genes based on the best selected chromosome. At each stage of 

the simulation process, the sequence in each row is random. 
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Step 4-3. Differentiate based on a bad chromosome: select K genes randomly from chromosome C, and 
then differentiate the position assigned to these genes in the selected chromosome based on the worst 

selected chromosome. At each stage of the differentiation process, the sequence in each row is random. 

Step 4-4. Calculate the fitness function and replace the chromosomes: Calculate the objective function 

value of the new C chromosome and replace the new chromosome with the previous one. 

Step 5. Check the termination criterion: the termination condition is reaching to Max_itr generations. 

Step 6. Update the set of good and bad chromosomes: if in the current population there are 

chromosomes with a better objective function value than the chromosomes in the good chromosomes 
set, place it in the set of good chromosomes and delete the worse chromosome in the set, do the same 

process to update the bad chromosome set. 

We empirically found that values of 0.5 for cross-rate, 0.5 for mut-rate, 0.2 for α, 200 for the initial 

population, 200 for Max_itr, 5 for n-good, and 5 n-bad prepare good results in a reasonable time. 

5-Numerical experiments 
   In this section, the proposed algorithm is compared to a conventional genetic algorithm namely CGA 

and a hybrid genetic algorithm proposed for the nearest problem in the literature (Ala et al., 2020), 

namely HGA. CGA has the same structure as RMGA, but in CGA there is not good and bad role model 
sets and the Exchange mutation operator is performed. On the other hand, the problem considered by 

(Ala et al., 2020) did not consider the surgeons in the scheduling procedure and only patients and 

operation rooms were considered in the scheduling procedure. While in the current problem, three 

parameters of surgeons, patients, and operation rooms are considered. 

5-1- Generating random data for the problem 
   The problem investigated in this study has different parameters. We consider 3 parameters of the 

number of patients, the number of operating rooms, and the number of surgeons and consider 3 levels 

for each of them as shown in table 4. For other parameters only one level is considered. 

Table 4 . Problem parameters 

Level 3 Level 2 Level 1 Parameter  

40 30 20 The number of patients 1 

6 4 2  The number of operating rooms 2 

8 6 4  The number of surgeons 3 

 6  Number of surgery types 4 

 U[5,15]  Operation times 5 

 U[10,50]  Operation preparation times  

 

   By combining different levels of the parameters, 27 types of problems (3 * 3 * 3) are randomly 

generated. Six types of surgery are considered with different durations which are defined using the 

uniform distribution U[10,50]. The preparation times are also determined by the uniform distribution 
U[5,15]. If two consequent operations are identical, then a constant preparation time of 5 is considered.  

All computer programs used in this research are written by the MATLAB 2016 programming language 

and run by an Intel Core i7, 2GHz, and 6GB RAM computer. 

5-2- Comparison between RMGA and CGA 
   The all 27 generated test problems based on table 4 are solved by both RMGA and CGA. Because of 

the random nature of genetic algorithms, each run may prepares a different result. Therefore, each 

problem is solved  20 times by each algorithm. The 27 randomly generated problems can be divided 
into three categories in terms of the number of patients. The first category consists of problems with 20 
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patients and the problems in the third and fourth categories have 30 and 40 patients, respectively. Each 
category consists of 9 problems, the average solutions obtained from solving them by each of the two 

algorithms are shown in table 5. Similarly, the problems were also divided into three groups of 9 in 

terms of the number of operating rooms and the number of surgeons, whose average solutions obtained 

from solving them by each of the two algorithms are shown in table 5. To evaluate the performance of 
the proposed algorithm, all 27 random problems are solved by the RMGA and CGA, and their results 

are presented in table 5, in terms of the different states shown in table 4. The average CPU time and the 

average results obtained by the CGA and the RMGA are shown in columns 5, 6, 7, and 8 of table 5. In 
columns 9, 10, 11, and 12, the number 1 indicates which algorithm has found a better maximum or 

minimum between different runs of the algorithms, respectively. RMGA obtained a better maximum 

value in 25 cases and a better minimum value in 24 cases than CGA. Additionally, table 5 shows the 

average results obtained by RMGA is better than CGA.  
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Table 5. Comparing the results of RMGA with the result of CGA 
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1 0 1 0 28.119 4827 27.92 5421.2 4 

 

2 

 

 

 

 

20 

1 

1 0 1 0 34.939 45948.3 33.926 46605.3 6 2 

1 0 1 0 36.072 33042 35.21 33317.8 8 3 

1 0 1 0 33.858 42448.2 31.756 42987.5 4 

 

4 

4 

1 1 1 0 32.865 12575.8 32.038 13907.6 6 5 

1 0 1 0 32.786 26893 31.994 27161.3 8 6 

1 0 1 0 34.557 16517 33.759 18194 4 

 

6 

7 

1 0 1 0 35.337 40422.8 34.414 52267.4 6 8 

1 0 1 0 37.037 41099.9 36.94 41108.4 8 9 

1 0 1 0 34.832 61348.5 33.1 62299.2 4 

 

2 

 

 

 

 

30 

 

10 

1 0 1 0 35.392 58833.3 34.265 69282.6 6 11 

1 0 1 0 35.135 47232.5 34.65 48880.2 8 12 

1 1 1 0 42.426 67449.4 39.13 68161.5 4 

 

4 

13 

1 0 1 0 43.349 48703 41.43 50153.6 6 14 

1 0 1 0 42.83 44729.8 41.57 48743.5 8 15 

1 0 1 0 45.289 77133.2 42.34 77290.3 4 

 

6 

16 

1 0 1 0 44.802 67979.2 43.51 68022.8 6 17 

1 0 1 0 49.768 47266.7 46.643 47703.8 8 18 

1 0 1 0 38.925 209917.6 37.58 211293 4 

 

2 

 

 

 

 

 

 

40 

19 

1 0 0 1 40.419 156621.8 39.99 185515.4 6 20 

1 0 1 0 41.715 134285.3 40.623 134977.5 8 21 

1 1 1 0 46.563 137541.2 44.341 141495.7 4 

 

4 

22 

1 0 1 0 47.06 73385.2 46.644 73480.6 6 23 

1 0 1 0 48.596 66685 47.38 67165 8 24 

1 0 1 0 54.401 159003.1 51.07 160185.5 4 

 

6 

25 

1 0 1 0 58.003 103887.9 54.867 112433.7 6 26 

1 0 0 1 56.824 115379 53.88 118921.9 8 27 

24 3 25 2 41.181 71894.66 39.665 74073.2 Total 
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   Table 6 integrated the obtained results by 3 categories of  number of surgeons, number of operation 
rooms, and number of patients. The table shows that RMGA produces better results than CGA in all 

cases. The table also shows that by increasing the number of patients, the average results and the average 

CPU times also increase. The number of operating rooms has a nonlinear relationship with the average 

results. In case there are 2 operating rooms, some patients may get treated late, due to a lack of resources. 
If the number of operating rooms is increased to 4, the number of operating rooms seems appropriate 

as the results are improved compared with the previous case. In the case of 6 operating rooms, although 

all patients are treated, more costs are imposed due to the unused operating rooms. By examining 
different levels of the number of surgeons, better solutions are obtained when the number of surgeons 

is increased. This will, however, increase the CPU time. 

 

Table 6. Comparing the results of RMGA and CGA in each subset 

RMGA CGA 
 

CPU time Result CPU time Result 

33.95 29308.22 33.11 31218.94 20 

Number of patients 41.54 57852.84 39.63 60059.72 30 

48.06 128522.9 46.26 130940.9 40 

36.17 83561.81 35.25 85621.36 2 
 Number of operation 

 rooms 
41.15 57823.4 39.59 59250.7 4 

46.22 74298.76 44.16 77347.53 6 

39.89 86242.8 37.89 87480.88 4 

Number of surgeons 41.35 67595.26 40.12 71629.89 6 

42.31 61845.91 40.99 63108.82 8 

 

5-3-  Comparison between RMGA and HGA 
   For more evaluation of the proposed algorithm, it is compared with a hybrid genetic algorithm, proposed to 

solve the nearest problem in the literature to current problem (Ala et al., 2020), namely HGA. They did not 

consider the surgeons in the scheduling procedure and only patients and operation rooms were considered in 

the scheduling procedure. We use the same test problem structured considered by  (Ala et al., 2020). They 

considered 6 levels for the parameter  of  “Number of patients” and 3 levels for the parameter of “Number of 

operation  rooms” ( Number of patients = 10,20,30,40,50,100; Number of operation  rooms = 5,10,15). By 

combination of these parameters 18 test problem is produced, and each problem is solved HGA and RMGA 

1o times. For the parameter  of operation time,  uniform distribution U[1,99], and for the parameter of 

preparation time, uniform distribution U[1,9] are used. Regarding the considered parameters  for HGA (Ala et 

al., 2020), the parameters of RMGA are set as follows: population size: 20; crossover rate :0.5; mutation rate: 

0.2; α: 0.2; Max_itr: 200; n-good:5; n-bad: 5. Comparison results were illustrated in table 7.  
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Table 7. Comparing the results of RMGA with the result of the HGA 

Problem 

number 

Number of 

patients 

Number of 
operation 

 rooms RMGA HGA RMGA HGA T d.f t Sig 

1 10 5 922.3 928 5.2 9.5 1.67 14 1.75 No 

2 10 10 1189.7 1,202.50 6.8 12 2.92 14 1.75 Yes 

3 10 15 1498.9 1,511.40 6.8 12.3 2.81 14 1.76 Yes 

4 20 5 1164.2 1,171.30 3.8 7.5 3.8 28 1.77 Yes 

5 20 10 1590 1,602.60 8 14.7 3.35 29 1.74 Yes 

6 20 15 1902.5 1,917.00 11.4 22.5 2.56 28 1.73 Yes 

7 30 5 1910.9 1,931.00 8 16 6.14 43 1.76 Yes 

8 30 10 2265.9 2,279.40 11.5 22.9 2.9 43 1.75 Yes 

9 30 15 2580.8 2,598.40 9.3 16.3 5.13 46 1.77 Yes 

10 40 5 2693.1 2,703.70 13.2 24.5 2.41 60 1.73 Yes 

11 40 10 3132.2 3,148.20 16.1 30.1 2.97 60 1.74 Yes 

12 40 15 3453.1 3,492.70 14 24.5 8.88 62 1.74 Yes 

13 50 5 2901.8 2,940.00 7.5 14.7 16.38 73 1.73 Yes 

14 50 10 3207.2 3,219.00 9.2 16.9 4.35 76 1.74 Yes 

15 50 15 3687.2 3,691.00 12.3 22.9 1.04 75 1.73 No 

16 100 5 5526.5 5,594.00 18.2 34.2 17.43 151 1.73 Yes 

17 100 10 5842.2 5,871.00 8.2 14.6 17.21 156 1.77 Yes 

18 100 15 6417.8 6,442.10 13.8 26.1 8.22 151 1.75 Yes 
 

   In this section, the hypothesis test is used to determine the significance differences and, µ1 - µ2 > 0 
was compared to µ1 - µ2 = 0 (null hypothesis). The difference of total final times follows the normal 

distribution, and the amount of α was 0.05. If the hypothesis is correct, the random variable T had a T-

distribution. Formulas (27) and (28) define t-test and d.f (degree of freedom). 

 

𝑇 = (𝑋̅1 − 𝑋̅2)/√(𝑆1
2 𝑛1⁄ ) + (𝑠2

2 𝑛2⁄ )                                                                                                                (27) 

 

d.f= (
𝑆1

2

𝑛1
⁄ +

𝑠2
2

𝑛2
⁄  )

2

/ (
(

𝑺𝟏
𝟐

𝒏𝟏
⁄ )

𝟐

𝒏𝟏−𝟏
+  

(
𝑺𝟐

𝟐

𝒏𝟐
⁄ )

𝟐

𝒏𝟐−𝟏
)                                                                                                (28) 

 

   The critical value of C was extracted from prob(T>C) = α =0.05. For instance, in table 7, the sample 

size of data equals n1 = n2 =10, and the amount of average for RMGA and HGA are X1 = 922.3 and  
X2 = 928, respectively. As regards standard deviations, figures for the RMGA  and HGA are S1 = 5.2 

and S2 = 9.5, respectively. There is not significant difference among solutions, since T= 1.67 < t = 1.75. 

The superiority of RMGA was obvious compare to HGA due to significant differences in all except in 

two cases (Problem numbers 1 and 15).  

5-4- Discussion 
   Two main differences between RMGA and a conventional GA are as follows: 

_In the proposed algorithm the best and the worst solutions during the optimization process are saved 

in two sets of good and bad role models, respectively.  
_ In RMGA, three chromosomes cooperates to perform the mutation operator: a chromosome is 

considered as a follower, and two chromosomes as influencer. one influencer is selected from good role 

model set and another is selected from bad role model set. Whereas in the standard genetic algorithm, 
the mutation operator requires only one randomly selected chromosome. 

_ In the proposed algorithm the similarity procedure is used in the crossover operator. 
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the better performance of RMGA is shown in the comparisons. One of the main features of RMGA is 
its mutation procedure. The mutation operator in RMGA includes two steps. In the first Step, the random 

chromosome from the population (follower) obtains attributes of a member of good role model set (good 

influencer). The good influencer has better fitness value than other chromosomes in the population. It 

means that it has desirable attributes in its chromosome. The first step of the mutation operator tries to 
convey these desirable attributes to the follower chromosome. It is reasonable that we conclude that this 

step improves the fitness functions of the chromosomes. 

   On the other hand, in the second step of the mutation operator, the follower tries to remove some 
characteristics of a bad chromosome (bad influencer) from itself. A bad chromosome has worse fitness 

value than chromosomes of the population. It is because some undesirable attribute in its chromosome 

structure. Eliminating this bad attributes may cause an enhancement of the quality of the follower   
chromosome.  

   Although the first step of the mutation operator increase the similarity of chromosomes in the 

population, the second step of the mutation operator prevents it. In other words, the second step of 

mutation operator, enhances the diversity of chromosomes and delays the convergency of the genetic 
algorithm and decrease the probability of obtaining local optimum solutions. 

 

6-Conclusion and future directions 
    In this study, the integrated operating room planning and scheduling problem was investigated at the 

operational level with aims to minimize the completion time of surgeries, minimize the surgeons’ free 
time window, and minimize operating rooms’ overtime and idle time costs, considering uncertainty in 

the surgery times, sequence-dependent operating rooms’ preparation, and a short-term daily time 

horizon. The problem was solved by an algorithm inspired from the role model concept in sociology 
using simulating and differentiating procedures, namely  RMGA. RMGA is compared with two  other 

algorithms. The first compared algorithm is a  conventional genetic algorithm namely CGA and the 

second one is a hybrid genetic algorithm proposed for the nearest problem in the literature (Ala et al., 

2020), namely HGA. The comparison between RMGA and CGA shows that RMGA provides better 
results than CGA. In addition to the average solutions, the average solving times were also calculated 

for both algorithms. CGA offered a better average solving time than the proposed algorithm. It may be 

concluded from results, that the availability of resources played a key role in the patient scheduling 
process. Lack of access to the required resources during surgery could increase patients' waiting time 

and their dissatisfaction. Moreover, improper use of resources and improper planning could increase 

hospital costs due to unused resources or overworking. On the other hand, the comparison between 

RMGA and HGA shows the superiority of RMGA compare to HGA.  
   Considering three levels of decision-making in the patient scheduling process would be effective, 

Therefore, the combination of different levels of decision-making could lead to better decisions in terms 

of patient scheduling and resource allocation. In future studies, uncertainties such as resource 
unavailability and the arrival of emergency patients may be investigated in the proposed problem. 

Considering intensive care units and post-anesthesia care units may also be examined in the scheduling 

process. 
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