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Abstract 
This study develops a mathematical model for the designing of a supply chain 

network. The uncertain nature of demand and lead time is incorporated into the 
concerned model. This motivates us to deploy the queuing concept to deal with 

uncertainties and analysing the number of orders, number of shortages and average of 

on-hand inventory. Then, in accordance with the outputs of the queuing analysis, a 

mixed integer nonlinear programming model is devised to design the distribution 
network of a supply chain. The decisions to be made are facility locations, demand 

allocations along with inventory management decisions. The objective function of the 

model aims at minimising the total supply chain costs encompassing location, 
transportation and inventory costs. Notably, we assume that each facility manages its 

inventory policy based on a    1,S S  policy and stock outs result in lost sales. 

Inasmuch as the developed problem is difficult to solve by means of exact methods, 

tailored hybrid solution algorithms based on simulated annealing and genetic 

algorithm are employed to overcome the computational complexity of the developed 
model. Finally, using the real information of the Telecommunication infrastructure 

company, we evaluate the proposed model and the management insights are reported. 

Keywords: Supply chain network design, lost sale, inventory, queuing theory, 

simulated annealing, genetic algorithm. 

1- Introduction and literature review 
Over the past decades, wide spectrums of distribution and manufacturing companies consider the concept 

of supply chain (SC) management, as their main strategic discipline to benefit from competitive advantages 
(Ben-Daya, Hassini, and Bahroun 2019; Ross, Weston, and Stephen 2010). Broadly speaking, SCs deal 

with three decision-making levels: 

1) Strategic level: this level comprises long-term decisions such as plant sizing, allocation decisions 
and products selections. 

2) Tactical level: in this level, mid-term decisions such as distribution, transportation and production 

planning are made. 

3) Operational level: this level is dedicated to short-term decisions such as delivery and production. 
In the context of SCM, companies should design, manage and control the levels of SC in an integrated 

manner to reach better positions in today’s business environment (Cárdenas-Barrón and Sana 2014, 2015; 

González-R, Framinan, and Ruiz-Usano 2013).  
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   Traditionally, inventory decisions, as tactical decisions, have been made after finalising location decisions 
that are known as strategic decisions (Shahabi et al. 2014). This approach may eventuate in sub-optimality 

and undermine the quality of the decisions since the location decisions drastically influence inventory costs 

(Sadjadi et al. 2016). Accordingly, most of the studies have tended to integrate inventory decisions into 

location models, contributing to joint location-inventory problem. To date, a considerable deal of research 
has been conducted in the location-inventory problem to make it more flexible and realistic. However, the 

existing literature suffers from some notable drawbacks. For example, most previous location-inventory 

models have overlooked the stochastic nature of the problem’s parameters such as lead-time or demand. 
Likewise, they have predominantly addressed a continuous review inventory policy with backlogged 

shortage (Berman and Kim 1999; Gebennini, Gamberini, and Manzini 2009; Mak and Shen 2009; Sadjadi 

et al. 2016). In other words, scanty modelling efforts have ever attempted to take into account lost sale 
shortage. The lost sale conditions deal with in numerous retail institutions, wherein the violent competitions 

permit customers to select a new brand or use a different store. Another application can be seen in the 

essential spare parts, where one places emergency orders when a stock-out happens (Park, Lee, and Sung 

2010).  
   In view of the preceding discussions, this study unveils a joint location-inventory problem to design the 

distribution network of a SC in an incorporated manner. The objective function aims at minimising the total 

SC costs comprising location, transportation and inventory costs. We suppose that the unsatisfied demands 

are lost and each open distribution centre (DC) manages its inventory policy based on an    1,S S  policy. 

A queuing approach is first adopted to derive the features of the inventory policy, viz. the number of orders, 

number of shortages and average of on-hand inventory. Thereafter, based on the outputs of the queuing 

analysis, the location-inventory model is devised to determine following decisions: (1) the number of DCs 

to be located; (2) the location of DCs; (3) the retailers' assignment to open DCs; as well as (4) the optimal 
inventory policies for established DCs. As such, in a bid to solve the model in an efficient way, tailored 

hybrid solution algorithms based on simulated annealing (SA) and genetic algorithm (GA) are deployed. 

Focus on this study can be categorised in two major classes: First, location-inventory problems and second, 
inventory control models with queuing theory approach. In the following, the relevant literature for each 

above-mentioned class is briefly reviewed and then the literature gaps addressing by this paper are offered.   

 

1-1- Location- inventory problem 
   As previously noted, one of the substantial integration issues in SC is the location-inventory problem that 

incorporates decisions about stocks into facility location and determines location, allocation and inventory 

decisions concurrently. One of the earliest studies on this area was taken by Baumol and Wolfe (1958), 
who introduced the idea of integrating inventory costs into location models. They provided a method for 

locating warehouses, which comprised a sequence of transportation computations. A location-inventory 

problem was formulated as an mixed integer nonlinear programming model by Daskin, Coullard, and Shen 
(2002), where safety stock and working inventory costs at DCs were taken into account. In their research, 

the Poisson flow of demands was approximated by normal distributions and some heuristics were used for 

finding good feasible solutions. Shu, Teo, and Shen (2005) introduced a network design problem, in which 

lead-time was deterministic. Thereinafter, this problem was formulated as a set covering model by Shen, 
Coullard, and Daskin (2003). Snyder, Daskin, and Teo (2007) introduced an uncertain location-inventory 

problem with risk pooling. They used normal distribution as an approximation for the Poisson distribution 

of demands. Ozsen, Coullard, and Daskin (2008) devised capacitated versions of joint location-inventory 
problem. A two-level inventory system for designing a service network was analysed by Mak and Shen 

(2009). They assumed that when a plant or service centre is unavailable, the demand is backlogged. A 

stochastic SC was developed by Javid and Azad (2010) that optimised location, allocation, inventory and 
routing decisions simultaneously. They also introduced a hybrid algorithm based on two meta-heurist 

algorithms, viz. Tabu search and SA, to solve the problem. Liao, Hsieh, and Lai (2011) devised an 

integrated location-inventory problem and extended an evolutionary algorithm to solve the presented 

problem in an efficient way. Berman, Krass, and Tajbakhsh (2012) studied a stochastic location-inventory 
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problem and considered periodic-review inventory policies for DCs. In addition, they assumed that 
shortages are backordered and lead-time is deterministic. Tsao (2013) developed a location-inventory 

problem under trade credits and used a continuous approximation approach for modelling the problem. 

Cárdenas-Barrón and Sana (2014) investigated a production-inventory model for a two-echelon SC, in 

which the procurement cost per unit was taken into account as a function of the production rate. A closed 
loop SC network problem was studied by Vahdani et al. (2018), where an imperialist competitive algorithm 

was presented to solve the problem. Recently, Manatkar et al. (2016) proposed a multi-echelon and multiple 

products location-inventory problem. Also, based on particle swarm optimisation and GA, they extended a 
novel hybrid meta-hubristic algorithm for solving the problem. Memari et al. (2017) devised a bi-objective 

optimization model for a three-echelon SC and employed a NSGA-II algorithm to find a set of near-optimal 

Pareto solutions. Vahdani et al. (2018) proposed a multi-objective location-routing model and applied two 
meta-heuristic algorithms to solve their model in an efficient way. Sadjadi et al. (2016) investigated a 

location-inventory problem in a stochastic SC. They assumed that each open DC manages its inventory 

using a  1,   S S policy when the unsatisfied demands are backordered. Bashiri & Hasanzadeh (2016) 

considered a multi-echelon location-distribution problem, where a lexicographic approach was applied to 

specify the most preferred distribution path. Puga and Tancrez (2017) developed a location–inventory 
problem for the design of large SC networks and proposed a continuous non-linear model for it. Last but 

not the least, Rayat, Musavi, and Bozorgi-Amiri (2017) considered a reliable model for a location–inventory 

problem and presented Archived Multi-Objective Simulated Annealing (AMOSA) meta-heuristic 
algorithm to solve it. Figure 1 displays a year-based assortment of the published papers in field of joint 

location-inventory problem. The evolution obviously illustrates the growing popularity of this study area, 

particularly after 2005. 

 

Fig 1. The evolution of the published location-inventory models (1976–2017). 

 

1-2- Inventory control models with queuing theory approach 
   Conventionally, the goal of researches concerning with integrated queuing-inventory models is to earn 

the optimal control policy of the inventory or minimum to find the structural features of optimal strategies. 

Because, queuing theory method is the reaction of inventory management to queuing of demands. In 

addition, queuing theory method in many systems such as inventory systems, satisfying demands requires 
on-hand inventory and a service that takes some times has better performance than other methods (Saffari, 

Asmussen, and Haji 2013). The common and powerful tool for this target is to introduce a Markovian 

process and afterwards to exploit standard optimisation procedures (Schwarz and Daduna 2006). Several 
papers can be found in the literature, which address this issue. In this sense, Berman and Kim (1999) 

examined a queuing-inventory system under both the expected discounted and the average costs and 
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proposed a simple heuristic policy for solving the problem. Implementing a Markov decision process, Kim 
(2005) modelled an inventory control problem and determined the optimal replenishment policy for it. Jain 

(2006) studied the scheduling problem in a make to stock (MTS) queue and compared three scheduling 

arrangements considering inventory cost performance. Later on, Teimoury et al. (2010) proposed a 

production-inventory problem with lost sales. In their problem, two types of customers were considered 
and a queuing approach was exploited to formulate the inventory policy. In addition, the lead-time was 

assumed to be imbued with uncertainty, where it had an exponential distribution. A multi-echelon inventory 

queuing problem was examined by Simić, Svirčević, and Simić (2015), where a manufacturer and several 
DCs were accounted for satisfying the demands from the sources. They considered that the lead-times and 

demands respectively follow exponential and Poisson distributions. Otten, Krenzler, and Daduna (2016) 

presented a two-echelon production-inventory system and obtained stationary distributions of inventory 
processes and joint queue length. Applying an M/M/1/k queuing system, Maleki et al. (2017) formulated a 

bi-objective remanufacturing problem.  

   Table 1 classifies the models of the location-inventory problem in accordance with nine criteria. The first 

criterion is to search about those models that exploit queuing theory. Based on the second criterion, papers 
are categorised into two classes: nonlinear programming (NLP) and MINLP. The third criterion, viz. the 

number of objective functions, divides the papers into two classes consist of single objective (SO) and multi 

objectives (MO). With respect to forth criterion, demand distribution, papers are classified into three groups 
comprising deterministic (DE), normal distribution (NO) and Poisson distribution (PO). The fifth criterion, 

viz. lead-time distribution, categorises the paper into three classes including deterministic, normal 

distribution and exponential distribution (EX). The inventory policy of facilities classifies the papers into 

three groups:      , ,  ,R Q R T  and  1,S S  inventory policies. The next criterion looks for the optimal 

inventory policies among the mentioned papers. The next criterion considers the kinds of shortages. Based 
on to criterion, papers are categorised into two classes, backlogged (BA) and lost sale (LO) shortages. 

Eventually, according to the solution procedure, papers are categorised into three classes: Lagrangian 

relaxation (LA), commercial software (CO) and meta-heuristic algorithm (ME). 
   Regarding the literature review and table 1, this study contributes to the literature of joint location-

inventory problem through the following avenues. This work is able to properly incorporate uncertain 

nature of parameters in the problem. Also, this is relatively one of the early attempts in the location-
inventory problems that utilize the queuing concept to withstand the uncertainties as well as analysing the 

features of the inventory policy. It is worthy to note that as inventory models are accounted as a class of 

queue, they yield more practical and general models against traditional inventory models (Sadjadi et al. 

2016; Saffari, Asmussen, and Haji 2013). Considering lost sales for the unsatisfied demands is the other 
issue that distinguishes this study from the ones existed in the literature. The proposed problem belongs to 

the class of NP-hard problems, owing to it is a development of the capacitated facility location problem 

(CFLP), as one of the most famous NP-hard problems. In addition, uncertainty of parameters adds into the 
complexity of model. (Diabat, Dehghani, and Jabbarzadeh 2017; Mirchandani and Francis 1990; Ramirez-

Nafarrate, Araz, and Fowler 2021). Accordingly, as other innovation, we develop GA and SA embedded 

with direct search method (DSM) to eases the computational burden from the concerned NP-hard problem. 

Moreover, using the  1,  S S  policy in this study for inventory control and determining the optimal 

inventory policy are as sub-contributions of this study. The aforementioned contributions and sub-
contributions, in turn, motivate us to formulate a mathematical model for stochastic joint location-inventory 

problem using queuing theory with regard to  1,S S  inventory control policy and lost sales. 

   The remainder of the study is organised as follows. The definition and formulation of the proposed 

problem are given in section 2. The solving approaches are elaborated in section 3. In Section 4, the 

computational results and sensitivity analysis are provided. Finally, summary of the results along with 
conclusion remarks are offered in section 5. 
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Table 1. Properties of location-inventory models. 
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(Daskin, Coullard, and Shen 2002)  MINLP SO NO DE (R, Q)  BA LA 

(Shu, Teo, and Shen 2005)  MINLP SO NO DE (R, Q)  BA LA 

(Snyder, Daskin, and Teo 2007)  MINLP SO NO DE (R, Q)  BA LA 

(Ozsen, Coullard, and Daskin 2008)  MINLP SO NO DE (R, Q)  BA LA 

(Javid and Azad 2010)  MINLP SO NO DE (R, Q)  BA ME 

(Liao, Hsieh, and Lai 2011)  MINLP MO NO DE (R, Q)  BA ME 

(Berman, Krass, and Tajbakhsh 2012)  MINLP SO NO DE (R, T)  BA LA 

(Tsao 2013)  NLP SO PO - -  BA - 

(Nekooghadirli et al. 2014)  MINLP MO NO DE (R, Q)  BA ME 

(Manatkar et al. 2016)  MINLP MO NO DE (R, Q)  BA ME 

(Sadjadi et al. 2016) √ MINLP SO PO EX (S-1, S)  BA CO 

This study √ MINLP SO PO EX (S-1, S) √ LO ME 

MINLP: Mixed Integer Non-Linear Programming, NLP: Non-Linear Programming 
SO: Single Objective MO: Multi Objectives DE: Deterministic NO: Normal Distribution 

PO: Poisson Distribution EX: Exponential Distribution BA: Backlogged LO: lost sale 

LA: Lagrangian Relaxation CO: Commercial Software ME: Meta-Heuristic Algorithm 

 

2- Model development 
2-1- Problem statement 
   Consider a multi-echelon SC network, which contains multiple retailers, multiple potential DCs, and a 
supplier. In general, the main objective of our problem is choosing a subset of DCs, allocating retailers to 

them and determining optimal inventory policy in each open DC. A graphical representation of the 
concerned SC is visualized in figure 2.  
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Supplier

Open DC

Close DC

Retailer

 

Fig 2. Graphical illustration of the concern SC 

   The open DCs work as the direct intermediary facilities between the retailers and supplier. Speaking 
intuitively, products are ordered from the opened DCs to the supplier and eventually delivered to the 

retailers. The objective function aims to minimize the total costs of locating DCs, transportation of products 

from open DCs to retailers and inventory. Single-item products are ordered from open DCs to the supplier 
and eventually rendered to the retailers. Each retailer is allocated to an open DC and it is supposed that each 

open DC manages its inventory policy based on a    1,  S S  policy. In this inventory policy, an order is 

released when a demand or failure happens (Schmidt and Nahmias 1985). More precisely, an order will be 

placed when the position of inventory S (base stock level) falls down to S-1. When there is no on-hand 

inventory in each open DC and a demand comes from its allocated retailer(s), then it would be lost. 
Furthermore, the maximum inventory levels of open DCs (base stock levels) cannot exceed from the storage 

spaces. Each retailer has an uncertain demand with Poisson distribution, and the demands are presumed to 

be independent of each other. Accordingly, demands of each open DC have a Poisson distribution with rate 
λ, achieved through summation of its allocated retailers’ demand rates. We also presume that the lead-time 

of supplier is hemmed in by uncertainty and is exponentially distributed with parameter 𝜇 (Following e.g., 

Simić, Svirčević, and Simić (2015) ; Teimoury et al. (2010) and; Given the fact that memory less property 
of the exponential distribution as well as constant rate of lead-time, this assumption may be acceptable). 

2-2- Problem formulation 
   In this section, we first implement a queuing concept to withstand the uncertainties and drive the features 

of the inventory policy, viz. the number of orders, number of shortages and average of on-hand inventory. 

Afterward, based on the outputs of the queuing analysis, a mathematical modelling is deployed to design 

the distribution network of the SC. The framework of the formulation procedure is depicted in figure 3. 
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Apply the queuing concept 

Derive  the number of reorders,  number of 

shortages and mean inventory level 

Apply the location-inventory model 

Determine the optimal structure of the supply chain

network and other tactical decisions

Queuing analysis

Mathematical modeling

Consider the derived features for constructing 

distribution network of the supply chain

 

Fig 3. Framework of formulation procedure. 

 

2-2-1- Notations 

Before formulating the concerned problem, the used indexes, parameters along with decision variables are 
proposed in this sub-section. 

 

Sets: 
j Index of potential DCs,  

i Index of retailers,  

t Index of time periods,  

k,m Index of Markov system states, 

Parameters: 

jPU   Unit purchase cost of DC j from supplier, 

jSH   Unit shortage cost for DC j, 

jFI   Fixed (per unit time) cost for locating DC j, 

jiTR   Unit transportation cost from DC j to the retailer i, 

jOC   Unit ordering cost for DC j, 

jHC   Unit holding cost for DC 𝑗, 

jSC   Storage space for DC j, 

'

i   Demand rate (Poisson) at the retailer 𝑖, 

𝜇 Parameter of exponential PDF for supplier lead-time 
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   jLE t   Level of inventory at DC 𝑗 in period 𝑡, 

  jST   State space of Markov process for DC 𝑗, 

 , ,jQ m k t   Probability of being in state m, t time units from now, given the state is now k, 

 jQ k   Steady-state probability of state k at DC 𝑗, 

   Weight factor related to inventory costs, 

 

Decision variables: 

jy   1 if DC j is opened, 0 otherwise, 

jix   1 if the retailer i is assigned to DC j, 0 otherwise, 

jS   Base stock level at DC j, 

j   Demand rate (Poisson) at DC 𝑗, 

jMI   The amount of mean inventory at DC j, 

jRP   The amount of reorders at DC j, 

jLO   The amount of shortages at DC j. 

 
2-2-2- Queuing analysis  
   The queuing approach is intrinsically a powerful tool for describing the behaviours of the production or 

inventory systems. As elucidated by Sadjadi et al. (2016) and Saffari, Asmussen, and Haji (2013), when 

inventory models are considered as a class of queue, they yield more general and practical models in 
comparison with traditional inventory ones. For the goal of deriving the features of the inventory policy, 

we define     ; 0jLE t t   as a continuous time Markov process, whose state space is 

   0,1, , 1, .j j jST S S    Let, 

     , , | 0            ,  j j j jQ m k t pr LE t k LE m m k ST        (1) 

   lim , ,j j
t

Q k Q m k t


   (2) 

The equilibrium equations of the defined Markov process are reached by equations (3)-(5). 

     0 1j j jQ Q    (3) 

       1 1         1  1j j j j j jQ k Q k Q k k S             (4) 

   1j j j j jQ S Q S     
(5) 

Since   1,j

k

Q k   we have: 

 
1

1 1
0

j j

j j

S S

j j

j S S

j

Q
  

 



 





  

(6) 

   0   1   

k

j j j

j

Q k Q k S




 
    

    
(7) 
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In the following, the features of the inventory policy, viz. the number of orders, number of shortages and 

average of on-hand inventory will be determined. Since the inventory policy is  1,  S S  in each open DC 

and unsatisfied demands are lost, so the expected amount of reorders can be achieved as follows:  

   1 1

( )
1 0

j j

j j

S S

j

j j j j S S

j

RP Q
  

 
 

 


  


  

(8) 

Meanwhile, due to the fact that there is no on-hand inventory in open DCs, the arriving demands are lost. 

Consequently, the expected amount of shortages at each open DC is acquired by equation (9). 

  

(9) 

The mean inventory level is outlined in accordance with the expected value of inventory level, as exhibited 

in equation (10). 

 
 

    j j

k

MI kQ k
  (10) 

Where, its closed form will be: 

  
   

1 1 1

2 1 1

j j j j j j

j j j

S S S S S S

j j j j j j j

j S S S

j j j

S S
MI

         

    

  

 

   


 
  (11) 

2-2-3- Mathematical modelling  

   We now aim to formulate the joint location-inventory problem to determine following decisions: (1) the 

number of DCs to be located; (2) the location of DCs; (3) the retailers' assignment to open DCs; as well as 
(4) the optimal inventory policies for established DCs. 
The model of location-inventory problem can be formulated as follows: 

  
   

'

1 1

  j  i 

1 1 1

2 1 1
j 

1

1 1

( )
Min 

( )
( )

j j

j j

j j j j j j

j j j

j j j j

j j

S S

j

j j ji ji i S S

j j

S S S S S S

j j j j j j j

j j S S S

j j j

S S S S

j j j

j j j j j j jS S

j

TC FI y TR x

S S
HC y

SH y y OC PU

  


 

         

    


     
 

 

 

  

 



 


 



    
 
  
 

  
   

  

 



1 1j jS S

j 
 

 
 
 
 
 
 
 


    

       (12) 

 

  

(13) 

  
 

(14) 

 
 

 
(15) 

  
 (16) 

  
 

(17) 

 
1

  1 1
0

j j

j j

S S

j j

j j j j S S

j

LO Q
  

 
 



 


 



j 

1  jix  i I 

ji jx y ,i I j J   

'

 

i 

i ji jx  j J 

j j jS SC y j J 

 0,1  jix  ,i I j J   
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 (18) 

The objective function (12) is intended to minimise the following costs: 
 

1- The first term computes the annual fixed costs of locating DCs, which is given by equation (19). 

 
  (19) 

2- The second term, shown by equation (20), calculates the annual transportation costs. Noteworthy, given 
the shortages are lost, the transportation costs are solely computed for satisfied demands. 

  '

j  i 

1 0ji ji i jTR x Q 
 

   (20) 

3- Third term represents the annual inventory costs encompassing holding, shortage, ordering along with 
purchase costs, given by equation (21). 

j 
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    (21) 

   Constraints (13) warrant that each retailer is allocated to precisely one DC. Constraints (14) ensure that 
if a DC is not open, no retailer can be assigned to it. Constraints (15) state that the demand rate of each 

open DC is reached through summation of its allocated retailers’ demand rates. Constraints (16) imply that 

the maximum inventory level of each open DC must be less than storage space. Lastly, Constraints (17) 
and (18) introduce variables. 

3- Solution method 
   The applications of soft computing are to solve the nonlinear models and to help the human knowledge 

for example learning, cognition as well as computation (Simić, Svirčević, and Simić 2015). Because of NP-
hard nature of the presented problem, it is apparent that exact procedures are inefficient to solve large scale 

instances. In this manner, we develop two popular algorithms, viz. SA and GA, to effectively and efficiently 

solve large scale examples. It is worth mentioning that GA and SA are successfully implemented in the 
location-inventory studies (see e.g. Chew, Lee, and Rajaratnam (2007); Dalfard, Kaveh, and Nosratian 

(2013); Forouzanfar et al. (2016); Javid and Azad (2010); Liao, Hsieh, and Lai (2011); Nekooghadirli et al. 

(2014)). Also, according to the aim of the proposed problem to attain the optimal inventory policy, a DSM 

is embedded in the solving procedures. In the following, solution representation, solution evaluation and 
the solving procedures are elaborated in more details. 

 

3-1- Solution representation 

   In this sub-section, we define the solution representation in the solving algorithms. In doing so, an 1 m  

array is created, wherein m the number of retailers is. The entry of each cell denotes which DC supplies the 

pertaining retailer. An example of the array is demonstrated in figure 4, where retailers 1, 2 and 3 are served 

through DCs 2, 3 and 4, respectively. In principle, the open DCs and allocation of retailers to them are 
determined by this array. Therefore, we can solely calculate the fixed costs of locating DCs at this stage.  

 

 

 0,1jy  j J 

0            jS and integer j J 

j j

j

FI y
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DCs 2 3 4 … 1 2 

Retailers 1 2 3 … m-1 M 
 

Fig 4. A sample of solution representation. 

3-2- Solution evaluation 
   For evaluating the aforementioned array in the algorithms, the inventory decisions at the open DCs should 

be specified so that besides to the fixed costs of locating DCs, the transportation costs and the inventory 

costs are determined too. On the other hands, it should be pointed out that as the location-allocation 

decisions are specified, the values of the binary variables (i.e., 
jy  and

jix ) are actually determined. Thus, 

the origin model (12) - (18) is reduced to following model, determining the inventory policy at each open 
DC: 

       ) 1 0j j j j j j j j j jOF S OC PU g Q SH LO HC MI       
 

  (22) 

j jS SC   (23) 

0    jS integer   (24) 

 Where,  

'

i 

ji ji i jTR x g         (25) 

 

   By taking into account that the objective function is nonlinear and complex, deriving the optimal solution 
*S (i.e., the optimal value of base stock level) in closed form is somehow impossible. In the same fashion, 

we have incorporated DSM into the solving algorithms (SA and GA) to solve the above-mentioned model. 
For more information about the DSM, the interested readers can refer to Wright (1996). The steps of DSM 
are given as below. Notably, this method affords the optimal inventory policy of open DCs. 

Step 1: Put 0jS   and let 
*

jOF inf (inf is a big number). 

Step 2: Compute   .jOF  

Step 3: If 
*  0,j jOF OF  then 

*   .j jOF OF  

Step 4: Let   1.j jS S    

Step 5: If    ,j jS SC  then stop. Otherwise, go to step 2. 

Now, the total costs for evaluating the presented solution (i.e., the corresponding array) can be gained as 
follows: 

*  j j

j

TC FI OF


   (26) 

 Where,   corresponds to set of open DCs in the array.  

3-3- Simulated annealing algorithm 
   SA was proposed by Metropolis et al. (1953). The algorithm is made based on the analogy between the 
annealing process of solids and the task of detecting an optimal solution in a combinatorial problem. It 
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usually starts from a randomly created initial solution, and randomly transforms to a neighbour solution. If 

there is an improvement in the objective function ( ),E  transformation to a new state is accepted. 

Meanwhile, the algorithm escapes from a local optimal through accepting not improved solutions with 

probability exp( ).
E

T


 Temperature plays a prominent role in acceptance of not improved solutions, viz. 

by decreasing in temperature, then the probability of acceptance will alleviate proportionally. Likewise, by 
decreasing temperature with low rate, the solution space is searched better. Various methods can be used 

for termination of the algorithm. In the literature, methods such as reaching the pre-determined temperature, 

certain number of iterations, no-improvement in certain number of consensus iterations, certain run time 

and combination have been utilised. In this paper, we use reaching the pre-determined temperature and no-
improvement in certain number of consensus iterations (NO) as stopping conditions. We also apply no-

improvement in certain iterations as an equilibrium condition in each temperature (NI). Two neighbour 

solution generation mechanisms are implemented. In the first mechanism, the algorithm chooses a retailer 
accidentally and changes its DC. In the second, two retailers are randomly selected and their DCs are 

exchanged. The flowchart of the DSM-SA is depicted in figure 5. 



211 
 

Start

Generate  initial solution

Determine inventory decision for initial 

solution using DSM 

Calculate the objective function

Generate a neighbor solution 

Determine inventory decision for generated 

solution using DSM 

Calculate the objective function

Calculate Delta-E

Is Delta-E<0?

Generate a Random 
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[0,1]

Is 

R<exp(-Delta-E/T)?

Accept  neighbor solution as new solution

NO

YES

Reduce the temperature

Is the equilibrium state 

satisfied? 

NO

Is termination criterion

satisfied?

End

NO

YES

NO

 

Fig 5. Flowchart of the DSM-SA. 

3-4- Genetic algorithm 
   GA was proposed by Holland and others (1992). It starts with a set of solutions (represented by 

chromosomes) called population and then establishes a new population with the aid of operators consisting 

selection patents, crossover, mutation and replacement. More precisely, some chromosomes are randomly 
chosen from the population to consider as parents and crossover combines the genes of parents and creates 

a new offspring. In order to retain variety, mutation changes one or more gene in a chromosome from its 

primary state. In addition, replacement substitutes new population with old ones. In this research, the 
aforementioned array (see figure 4) is used as chromosome and the first population is produced randomly. 

The roulette wheel/one point combination (see, An\djelić et al. (2021) and Eiben, Smith, and others (2003)) 

is employed for selecting parents/ crossover operator. For mutation issue, a retailer is selected randomly 

and then a new DC is considered for it. Furthermore, replacement is done via elitism method (see, Kumar 
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and Kumar, (2021)). Eventually, no improvement in the objective function is made after a certain number 
of iterations (NG), GA terminates. The flowchart of DSM-GA is depicted by figure 6.  

 

 

Start

Generate initial  population 

Determine inventory decision for 

each individual of  population using 

DSM

Calculate the objective function for 

each individual  of  population

Select  individuals from  population 

for crossover issue

Perform crossover for selected 

individuals 

Perform mutation for selected 

individuals 

Determine  inventory decision for 

each generated offspring using DSM

Determine  new population

Is termination criterion

satisfied?

End

NO

Select  individuals from  population 

for mutation issue

Calculate the objective function for 

each generated offspring

 

Fig 6. Flowchart of DSM-GA. 
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4- Computational and practical results 
   In this section, wide computational studies are offered to evaluate and assess the performance of the 

algorithms. As such, the impacts of different parameters on the number of open DCs, objective function 
and base stock level are studied. We coded the solving algorithms in Java programming language and run 

the codes on a PC with Intel five core CPU, 2.53 gigahertz computer and 4 gigabytes of RAM. The model’s 

parameters are randomly generated. The used ranges for the parameters are reported in table 2. 

 
Table 2. Distribution of generated parameters. 

𝐻𝐶𝑗 𝑂𝐶𝑗 𝑃𝑈𝑗 𝑆𝐻𝑗 𝐹𝐼𝑗 𝜆𝑖
′  𝑆𝐶𝑗 𝜇 𝑇𝑅𝑗𝑖 Ѳ 

U[25,35] U[5,10] U[5,10] U[70,80] U[5000,6500] U[75,110] U[15,20] U[150,350] N[4,10] 1 

 

4-1- Parameter setting  
   In this section, we are intended to tune the parameters of the solving algorithms applying Taguchi 

procedure. In principle, with tuning the parameters, we can achieve more quality and robust (i.e., with less 

variance) solutions (Tiwari et al. 2010). Taguchi method is an extension of fractional factorial experiment 
(FFE), introduced by Cochran and Cox, (1957). This method enables us to examine the effects of several 

factors on the response (i.e., fitness value of solution) with fewer experiments in comparison with full 

factorial designs (Roy 1990). That is, applying a particular design of orthogonal arrays, Taguchi method 
surveys the whole parameter set doing a low number of tests. In this method, the factors are classified in 

two categories consisting of controllable and noise factors. A major purpose of Taguchi method is to 

regulate the values of controllable factors so that the variability of response reduces via minimizing the 
impacts of uncontrollable factors. In this article, the concerned parameters for DSM-SA are initial 

temperature (IT), cooling speed (CS), certain number of consensus iterations for stopping criteria (NO) and 

certain iterations for equilibrium condition (NI). Additionally, the considered parameters for DSM-GA are 

number of population members (NP), probability of crossover (PC), probability of mutation (PM) and the 
number of consensus iterations for stopping criteria (NG). For each parameter, three levels are offered. The 

values are given in table 3. Here, we use 
9L  orthogonal array for both algorithms to design the experiments. 

In accordance with the designed experiments, S/N ratios for each level of DSM-SA and DSM-GA 
parameters are illustrated by figures (7a) and (7b), respectively. The best level for each parameter is where 
maximizes S/N. According to this, the best values of parameters are reported in table 4. 

Table 3. Level values of DSM-SA and DSM-GA parameters. 

 DSM-SA DSM-GA 

 IT CS NO NI NP 𝑃𝐶 𝑃𝑀 NG 

Level 1 900 0.9 15 60 90 0.65 0.1 50 

Level 2 1000 0.95 20 65 100 0.7 0.15 55 

Level 3 1100 0.99 25 70 110 0.75 0.2 60 

 

 

Table 4. Best values of DSM-SA and DSM-GA parameters. 

DSM-SA parameter IT CS NO NI 

Value 1100 0.99 15 60 

DSM-GA parameter NP 𝑃𝐶 𝑃𝑀 NG 

Value 100 0.75 0.15 50 
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(b) DSM-GA 

Fig 7.a, b. The mean S/N chart for different levels of DSM-SA and DSM-GA parameters.  
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4-2- Validation of the solving algorithms 
   A full enumeration method (FEM) is implemented to assess the performance of the meta-heuristic 

algorithms. FEM seeks all possible solutions of the array proposed in section 3.1, viz. for a problem with 

m potential DCs and n retailers, all 
nm  possible solutions are tested and the best value of the objective 

function is reported. The corresponding results containing the objective functions, CPU times and the gap 
between objective functions of FEM and meta-heuristic algorithms are summarised in table 5. It should be 

pointed out that the gap is calculated as follow: 

 % 100EN ME

ME

TC TC
Gap

TC


 

  

(27) 

Where, 𝑇𝐶𝐸𝑁  and 𝑇𝐶𝑀𝐸  are attributed to objective functions reached by FEM and corresponding meta-

heuristic algorithm, respectively. In other words, 1Gap  and 2  Gap are interrelated with DSM-SA and DSM-

GA, respectively. It should be pointed out that the CPU time is confined to 24 hours in FEM. For instances 

1, 2 and 3, FEM is terminated less than 24 hours and consequently the obtained solutions are optimal. 
According to the results presented in this table, it can be seen that the maximum gaps between the optimal 

solution and the solutions of DSM-SA and DSM-GA are 0.313% and 0.049%, respectively. This connotes 

that the proposed meta-heuristic algorithms reach optimal or near-optimal solutions. Also, the best-found 
solutions of FEM for instances 4 and 5 in 24 hours run-time are reported. It is apparent that in both terms 

of quality of solutions and CPU times, the meta-heuristic algorithms solutions are considerably better than 
those in FEM. All in all, it can be concluded that the solving algorithms perform efficiently.  

Table 5. Comparison between full enumeration and meta-heuristic algorithms. 
   FEM  DSM-SA  DSM-GA 

GAP1 

(%) 

GAP2 

(%) NO. 
# 

Retailers 

# 

Potential 

DCs 

Cost 
CPU 

Time(s) 

 

Cost ($) 
CPU 

Time(s) 

 

Cost ($) 
CPU 

Time(s) 

1 4 2 15592.99 0.014  15592.99 0.96  15592.99 2.3 0 0 

2 10 4 34388.75 1071.58  34388.75 3.49  34388.75 12.02 0 0 
3 11 5 407297.35 46969.48  408574.8 4.23  407497.59 27.24 -0.31 -0.04 

4 15 6 50434.238 24h limit  `48794.91 5.29  48437.61 45.63 3.2 4.09 

5 20 8 71359.47 24h limit  65321.13 7.26  65026.12 68.56 8.46 9.6 

 

4-3- Comparison of meta-heuristic algorithms in larger instances 
   The meta-heuristic algorithms are utilised for larger instances of the problem and their performances are 
compared. The results including the objective functions, CPU times and the gap between two meta-heuristic 
algorithms are summarised in table 6. The gap is calculated as follows: 

100SA GA

SA

TC TC
Gap

TC


 

  

(28) 

Where,   SATC  and   GATC  are pertaining to the objective functions of DSM-SA and DSM-GA, respectively. 

From table 6, one can see that with respect to quality of the solutions, DSM-GA predominantly outperforms 

DSM-SA, whilst DSM-SA dramatically performs better than DSM-GA in term of CPU time. Not 
surprisingly, it can be also seen with increase in the sizes of instances, CPU times of algorithms increase. 
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Table 6. Comparison between meta-heuristic algorithms in larger instances. 

   DSM-SA  DSM-GA  

NO. 
# 

Retailers 

# 

Potential 

DCs 

Cost ($) 
CPU 

Time(s) 

 

Cost ($) 
CPU 

Time(s) 
Gap (%) 

1 35 12 110990.6 31.409  111439.7 165.421 -0.404 

2 45 15 144286.3 40.842  143017.6 193.314 0.879 

3 55 17 177283.6 49.792  175320.8 226.457 1.107 

4 70 19 233780.9 70.896  232291.5 285.359 0.637 

5 80 21 274548.3 92.974  271648.6 320.337 1.056 

6 95 28 311909.5 355.186  314571.5 484.71 -0.85 

7 100 35 335854.5 432.689  328990.4 577.7036 2.043 

8 110 40 368131.9 554.8366  362657.5 770.054 1.487 

9 140 45 464955.3 832.324  455983.9 1519.351 1.929 

10 150 50 502710.1 902.477  493789.6 1634.331 1.77 

 

4-4- Sensitivity analysis  
   We survey the effects of retailers' demand rates and exponential distribution parameter of lead-time on 

the number of open DCs and the objective function in this sub-section. This study is carried out for three 

instances with size of 4 10,12 35   and 28 95  ( m n  means that the instance includes m  potential 

DCs and n  retailers). For the convenience’s sake, we term them instances 1, 2 and 3, respectively. 

Moreover, the influences of different parameters on the value of base stock level will be investigated too. 

 
4-4-1- Number of open DCs 

   Here, we investigate the impact of the demand rates and exponential parameter of lead-time on number 
of open DCs. The achieved results are given in table 7. What is apparent from this table is that thought 

raising the retailers' demand rates, the SC tends to establish more DCs for the purpose of preventing the 

shortage costs. This happens for all instances. Additionally, the results highlight that the number of open 

DCs tend to decrease with increase in the value of µ. In fact, increased the value of µ eventuates in decreased 
the expected lead-time and the supplier delivers the orders in less time. That is, at higher value of µ, the 

probability of facing the shortage in open DCs is small. In this manner, each DC can cover more demands 

and the SC can satisfy the demands of retailers with a smaller number of DCs. The results also manifest 
that by increasing the instance size, the number open DCs raises. 

Table 7. Impacts of the retailers’ demand rates and exponential parameter of lead-time on the number of open DCs 

for different instances. 

 Demand rates exponential parameter of lead-time 

 50 60 80 100 300 350 400 450 

Instance 1 
2 2 3 4 4 3 3 3 

Instance 2 
7 10 12 12 11 11 9 9 

Instance 3 
21 23 27 28 28 27 25 23 

 

4-4-2- Objective function 
   The sensitivity of the objective function with regard to changes in demand rates is plotted in figure 8(a). 

As this figure shows, there is a direct relation between the demand rates of retailers and the objective 

function. The rationale behind this is that through raising the values of demand rates, inventory costs 



217 
 

increase. Moreover, based on table 7, the SC tends to serve demands with more numbers of DCs, yielding 
to increase the fixed costs too. The relationships between the objective function and exponential distribution 

parameter of lead-time are displayed in figure 8(b). The results underscore that by increasing the value of 

µ, the total cost reduces. Furthermore, by further increasing of this parameter, no additional changes in the 

objective function would be imposed. This fact is consistent with the literature (see,).  
 

4-4-3- Base stock level 

   Here, we aim to evaluate the effect of the parameter on the value of base stock level. For this particular 

experiment, we suppose that   110,  200,  75,  30, SH HC     5, PU   5OC   and 400.g   The 

relevant results are demonstrated in figure 9. From figure 9(a), we see that at the higher value of unit 

shortage cost, the value of base stock level rises. Indeed, increased the value of base stock levels results in 

reduced the probability of facing shortage. Accordingly, the shortage cost term in the objective function 
would diminish. Figure 9(b) also evinces that at higher values of the demand, the value of base stock level 

tends to increase. This can be mainly imputed to the fact that through increasing the value of the demand 

rate, the losses increase. Therefore, the value of base stock level rises to alleviate the unsatisfied demands. 

Additionally, at the higher value of ,  the expected lead-time and probability of losing decrease. Hence, 

the value of base stock level alleviates, eventuating in more savings in the inventory costs. The results are 

depicted in figure 9(c). 

 

 

 

(a) The effect of demand rate on the total SC costs  

Fig 8. The impact of parameters on the total SC costs. 

4-5- Case study 
   The development of the digital economy in the world and on the other hand the high penetration rate of 
mobile phones and people's lifestyles have made the approach of governments to the IT as a driver of 

economic progress. Undoubtedly, the transformation resulting from the development of the digital economy 

will increase productivity, greater transparency and less corruption, promote innovation and creativity, 

reduce inequality, improve the quality of government services, reduce bureaucracy, improve public welfare. 
Of course, achieving this requires that the important roles of governance in the IT, including the 

establishment of national information network, the development of communication and information 
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infrastructure, regulating relationships between different actors, and supporting start-ups and domestic 
producers, be seriously pursued. Among the countries of the Middle East, the highest growth and use of IT 

services, including mobile services, landlines and the Internet is related to Iran, which can be boldly 

introduced it as one of the leading countries in the IT industry (Badri Ahmadi, Hashemi Petrudi, and Wang 

2017). On the other hand, owing to the rapid expansion of the information and communication technology 
industry and its key role in improving business and daily life, operators and service providers also expect 

to receive secure and appropriate communication (Büyüközkan and şakir Ersoy 2009). One of the most 

important companies that has a key role in creating communication and information infrastructure in Iran 
is the Telecommunications Infrastructure Company (TIC). The TIC Participates in the communication 

infrastructure in the fields of core network bandwidth development, development of Internet connection 

ports, development of traffic transit network and in the field of information infrastructure. 
 

4-5-1- Data gathering 

   The TIC has established a network by constructing about 360 main centres in all parts of Iran and also by 

establishing 7 entrance ports in border areas, through which all communication services reach customers 
safely. As mentioned in this section, establishing secure communication is one of the most important tasks 

of companies in charge of IT services, which in Iran is the responsibility of the TIC. Due to the complexity 

of the company's network, the existence of problems such as cooling equipment and racks, outages in the 
network for reasons such as fibre outages can be predicted, but the short time to solve these problems is 

one of the priorities of senior managers. The reason of this issue is that e-mail services, banking services 

and similar items depend on communication in the network, which in case of disruption in the network, all 
services will be out of reach. Therefore, it can be concluded that if any of the 360 main centres have a 

problem, they should be solved in the shortest possible time. 

   In the TIC, the procedure is to solve network problems through outsourcing, which has problems such as 

increasing costs and increasing the time to solve the problem. Due to the problems raised and the opinion 
of senior management, the procedure has changed and the goal is to establish a number of warehouses in 

parts of Iran that can solve network problems in the shortest possible time. For this purpose, due to the 

importance of inventory control in the warehouse, space constraints and determining the optimal location 
of the proposed locations for the establishment of the warehouse, the location-inventory model has been 

used. It is necessary to mention that the cost of building warehouse in different parts of the country is 

different, so that the cost of building a 10,000-meter warehouse in "Sistan and Baluchestan province" 

requires twice the budget than building a similar warehouse in "Tehran province". Also, due to the fact that 
the demand of existing centres is uncertain, queueing theory has been used to deal with this problem. Owing 

to the complexities of the model, the hybrid genetic algorithm and simulated annealing algorithm, have 

been used to solve the model, and the relevant results will be reported in the following sections.  
   In this research, it has been tried to consider a number of TIC centres that are more important from the 

point of view of senior management as demand points. Some of the criteria that senior management has 

considered to prioritize the TIC centres, can be the impact of the centre on the company's stable network 
and taking into account the technical considerations of the centre. Therefore, out of 360 of the TIC centres, 

10 important centres in the cities of "Tabriz", "Kermanshah", "Isfahan", "Bushehr", "Kerman", "Zahedan", 

"Bandar Abbas", "Tehran", "Mashhad" and "Gorgan" are considered as warehouse demand centres and out 

of 150 Proposed location for the establishment of the warehouse, 7 proposed locations in the cities of 
"Tabriz", "Tehran", "Ahvaz", "Shiraz", "Birjand", "Mashhad" and "Semnan" have been selected on which 

the senior management has a more favourable opinion than other places. 

   Figure 1 shows the location of 10 TIC centres and 7 proposed locations for the establishment of 
warehouses. 
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Warehouse

TIC center

 

Fig 9. Location of TIC centre and warehouse 

 

   It should be noted that the proposed model can be generalized to the whole problem and the problem can 

be solved on a large scale and the results can be analysed. 

   One of the parameters that the model needs to solve is to determine the transportation cost between the 
TIC centres and the proposed locations for the establishment of the warehouse. Due to the fact that a number 

of centres are located out of reach, so the distance between the warehouses to the city is calculated and the 

distance from the city to the exact location of the centre is converted to a normal distance and finally the 
exact distance from the proposed location to Establishment of warehouse to company centres is calculated. 

The transportation cost between the TIC centres and the proposed locations for the establishment of the 

warehouse are reported in table 8: 
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Table 8. Transportation cost between TIC centre and Warehouse (Km) 

Warehouse  
TIC centre 

 
Shiraz Ahvaz Birjand Mashhad Semnan Tabriz Tehran 

1376 1142 1770 1530 845 10 625 Tabriz 

981 823 1150 1050 223 627 15 Tehran 
982 489 1491 1391 721 600 515 Kermanshah 

1312 1199 984 582 351 1052 400 Gorgan 

1360 1652 505 15 690 1530 1050 Mashhad 
490 520 880 1262 591 895 450 Esfahan 

320 465 1432 1600 1199 1520 1072 Bushehr 

591 1220 1060 1400 1420 1805 1290 Bandar Abas 

1081 1705 470 965 1372 2010 1500 Zahedan 
582 1210 572 948 1130 1551 995 Kerman 

 

   Another parameter that must be determined is the level of demand of the TIC centres, which has already 

been discussed about its uncertainty. Given that the queueing theory has been used to deal with the 

uncertainty, it is necessary to determine the value of λ of the Poisson distribution. For this purpose, the 
value of parameter λ for each of the TIC centres is considered in table 9: 

 

Table 9. λ of TIC centre 

λ TIC centre 

150 Tabriz 

320 Tehran 

100 Kermanshah 

88 Gorgan 

150 Mashhad 

189 Esfahan 

90 Bushehr 

75 Bandar Abas 

250 Zahedan 
150 kerman 

 

4-5-2- Validation the proposed model with Case study 
   In this section, according to the case study, we evaluate the proposed model. According to the information 

provided in figure 9, 10 centers of TIC are considered as points of demand and 7 locations as proposed 

locations for the establishment of warehouses. The results of solving the model show that among the 
proposed locations for the establishment of the warehouse, the provinces of "Ahvaz", "Tehran" and 

"Birjand" have been selected. The results also demonstrate that the centers of "Mashhad", "Zahedan", 

"Bandar Abbas" and "Kerman" provinces are allocated to warehouses established in "Birjand province", 

the centers of "Isfahan", "Kermanshah" and "Bushehr" provinces to "Ahvaz province" warehouses and the 
centers of "Tehran", "Tabriz" and "Golestan" provinces to "Tehran province" warehouses. Finally, the 

relationship between the centers of TIC and the locations selected for the establishment of the warehouse 

is shown in figure 10. 
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Warehouse

TIC center

 

Fig 10. Results of case study 

 

5- Conclusion 
   In this study, we have investigated a mathematical model for stochastic network design problems with 

regard to inventory decisions when the lost sale is possible. According to the best of our knowledge and the 

related literature, this is the first study that incorporates    1,S S  inventory policy with regard to lost sales 

in joint location-inventory problem. Likewise, in a bid to withstand the uncertain nature of retailer's 
demands and supplier's lead-time and analysing the feature of inventory policy, viz. the number of orders, 

number of shortages and the mean inventory, a queuing theory was adopted. Thereafter, the concerned 

problem was formulated in term of an MINLP model based on the outputs of the queuing theory. 
Meanwhile, DSM-GA and DSM-SA were deployed to circumvent the computational burden from the 

concerned NP-hard problem. DSM was used to realize the aim of determining the optimal policy for 

inventory. To validate the derived solutions of the solution algorithms, the results were compared with the 

FEM. The computational results corroborated that the solution algorithms are capable of solving the model 
in an efficient way. Moreover, some useful output analyses were drawn in accordance with the real 

information of the TIC. For example, our analyses revealed that that the number of DCs and the total costs 

are sensitive in small values of µ; viz. if the supplier reduces its lead-time in these rages, the costs and 
required facilities are dramatically deducted. As such, the rates of demands have substantial effects on the 

objective function and the number of open DCs. 



222 
 

   The current paper can be developed in a number of promising avenues to enrich this context. Addressing 
a sustainable location-inventory problem considering the environmental and social impacts in addition to 

the economic aspects is an interesting future research direction with salient practical relevancies. 

Incorporating disruption of facilities in the proposed problem can be taken into account as another appealing 

avenue. Eventually, in view of computational complexity of the proposed model, future studies could be 
aimed at extending new algorithms for solving it. 
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