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Abstract 
This article proposes an integrated approach towards the design optimization and 

production planning of cellular manufacturing systems as a part of closed-loop supply 
chains in an effort to make manufacturing enterprises sustainable. For industrial 

applications both at the system design and operation stages, a mixed integer linear 

programming (MILP) model, to integrate the production planning problem in cellular 
manufacturing systems and the tactical planning of a closed-loop supply chain, has been 

developed. The cellular manufacturing system in the proposed mathematical model has 

several features including dynamic cell configuration, multi-period production settings, 

machine capacity, machine acquisition, machine procurements, and multiple units of 
identical machines as well as considering different cost parameters such as production 

cost, operational cost of the machines, and subcontracting cost of the part demands; 

mainly targeted to be used in industry at the operational level. In addition, several 
activities such as acquisition, disassembly, setup for disassembly, and disposition of the 

returned products have been considered on the reverse flow of the closed-loop supply 

chain of the proposed mathematical model, which would lead to further industrial 
applications mainly at the integrated design stage of manufacturing and supply chain 

systems in addition to the potential applications at the operational level.  

Keywords: Sustainability, sustainable manufacturing, cellular manufacturing systems, 

remanufacturing, mathematical programming 

 

1- Introduction 
   Developing mathematical models for the design of reconfigurable dynamic cellular manufacturing 

systems into tactical planning of the closed-loop supply chains management is in its infancy era. On the 

other hand, while sustainability has been a popular research area in closed-loop supply chains and reverse 

logistics, there has not been much emphasis on the design problems for sustainable manufacturing systems. 
Sustainability is one of the major issues for companies to be successful in today’s business world. In 

general, sustainability brings different meanings into minds such as green, clean, maintain, retainment, 

stability, ecological balance, natural resources and environment (Badiru , 2010). According to Kishawy et 
al. (2018), there is no universal definition for the term sustainability. Sustainability may be defined as 

“meeting the needs of the present without compromising the ability of future generations to meet their own 

needs”. 

 

*Corresponding author 

ISSN: 1735-8272, Copyright c 2021 JISE. All rights reserved 

Journal of Industrial and Systems Engineering 

Vol. 13, No. 4, pp. 98-123 

Autumn (November) 2021 

 

 

mailto:amirrezatelegraph@gmail.com


99 
 

   In manufacturing systems, sustainability may be defined as producing products that use processes having 
less negative environmental impacts, safe for employees, and economically sound (Jayal et al., 2010). 

Realizing sustainability in service and manufacturing enterprises requires not only a comprehensive 

investigation on the products and their fabrication processes but also the entire supply chain (Garbie , 2013). 

A sustainable manufacturing system should operate as a part of a sustainable supply chain. A sustainable 
supply chain has two main characteristics. The first one is the reverse flows of returned products, modules, 

and components along with the forward flows and the second one refers to the pillars of sustainability in 

supply chain design that is economical, ecological, and social aspects of an organization (Boukherroub  et 
al., 2017). While sustainability has been a popular research area in closed-loop supply chain and reverse 

logistics, there has not been much emphasis on the design problems for sustainable manufacturing systems. 

For sustainable manufacturing systems, resorting to cellular manufacturing systems and reconfigurable 
manufacturing systems are highly recommended (Garbie, 2013). Cellular manufacturing as the application 

of group technology (GT) has been used in intermittent production systems including job-shop or batch-

shop production to improve operations of the manufacturing system. “Group Technology is a technique for 

identifying and bringing together related or similar components in order to take advantage of their 
similarities in the design and manufacturing process”. By grouping similar parts together, manufacturing 

cells can be created. This is based on the similar operations of the parts with respect to their similarities in 

production and design. Required machines are then physically assigned to producing part families 
(Balakrishnan and Cheng, 2007). In conventional cellular manufacturing systems, the main assumption was 

to keep the product mix and part demands constant for the entire planning horizon. However, in the dynamic 

cellular manufacturing, a planning horizon can be divided into different periods where each period may 
have different product mix and part demands. There are many advantages in proper design and 

implementation of cellular layouts in manufacturing systems in manufacturing facilities; for instance, 

reduction in parts movements, set-up time, waiting time between operations, and work-in-process 

inventory. Remanufacturing is one of the main keys for companies to be successful in today’s business 
world. Remanufacturing may be defined as a comprehensive industrial process by which a previously sold, 

damaged, or non-functional products or components are returned to a like-new or better-than-new 

conditions (www.rlmagazine.com). Such processes are used mainly in automotive and component 
manufacturing industries among many other industries. There are several processes contained in 

remanufacturing activities of a company such as disassembling to separate usable parts, cleaning, repairing 

and refurbishments (Wang et al., 2011). Manufacturers worldwide concentrate on remanufacturing option 

owing to the fact that remanufacturing conserve the value-added to the components during remanufacturing 
processes. There are many benefits for companies implementing remanufacturing operations including 

savings in labor, materials and energy costs, shorter production lead times, balanced production lines, new 

market development opportunities, and a positive socially concerned image for firms (Baki  et al., 2014). 
According to Kishawy et al. (2018) in order to design for sustainable manufacturing systems, several plans 

need to be considered including: Plan for repair, reuse, and recycle; Plan for reducing hazardous materials 

and wastes; Plan for disassembly of the products; Plan for taking continuous improvements into account; 
Plan for energy efficiency; Plan for remanufacturing the returned products; Plan for optimal usage of the 

materials; Plan for cost efficacy. 

   The mathematical model proposed in this paper encompasses the first, second, third, fourth, sixth, and 

eight of the plans mentioned in Kishawy et al. (2018). The remainder of this paper is organized as follows: 
Section 2 reviews the relevant literature to the mathematical model proposed. Detailed description of the 

mathematical model and its linearization are presented in section 3. A detailed discussion of a numerical 

example of the proposed model is given in section 4. In section 5, conclusions and future research are 

presented. 
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2- Literature review 
2-1- Reconfigurable cellular manufacturing system design 
    Shorter life cycles of the products, higher varieties of different products, probabilistic demands, and 

shorter delivery times encourage researchers to investigate on designing manufacturing systems which can 

decrease the uncertainties contained in production planning quickly (Guo and Ya, 2015). Hence, cellular 

manufacturing systems have received an increasing attention in the recent years. Literature reviews 
pertinent to the mathematical models and solution approaches in designing cellular manufacturing systems 

with reconfiguration are reviewed.  

   Landers et al. (2001) were the first authors who introduced the concept of “reconfigurability” for a 
manufacturing system. Principal features, advantages, and a classification of reconfigurable manufacturing 

systems (RMSs) were presented by Koren and Shpitalni (2010). They also proposed a mathematical model 

for designing the RMSs. Eguia et al. (2013) proposed a mixed integer linear programming model to solve 

the cell formation problem and the production scheduling of the part families for a reconfigurable cellular 
manufacturing system (RCMS). They used the off-the-shelf optimization software CPLEX to show the 

applicability of the proposed mathematical model for small instances. They developed a tabu search (TS) 

algorithm for solving large-sized instances of the model. Results demonstrated that TS requires shorter 
computational times to give near-to-optimal solutions with less than 10% deviations from the optimal 

solutions overall.  

     Purchek (1975) was one of the first authors who introduced a linear programming (LP) model to 
formulate part/machine groups. Purchek’s (1975) p-median model is the first model to cluster n parts 

(machines) into p part families (machine cells) using mathematical programming. Chen and Cao (2004) 

presented a nonlinear mixed integer programming model to investigate the application of production 

planning problem in cellular manufacturing system. Their model aimed at minimizing costs related to inter-
cell material handling, manufacturing setup, cell setup, inventory holding and production planning. These 

authors developed a TS algorithm to solve the model. Tavakkoli-Moghaddam et al. (2005) discussed the 

use of different metaheuristics including TS, genetic algorithm (GA), and simulated annealing (SA) to solve 
a nonlinear mixed integer cell formation problem. Results obtained demonstrated that SA has more accurate 

near-to-optimal solutions in a shorter average computational time. Tavakkoli-Moghaddam et al. (2005, 

October) proposed a multi-objective dynamic cell formation problem including several important features 
of cellular design such as alternative process plan, sequence of operations, and machine relocations. The 

objective function of their model determined the optimal number of cells, optimal amounts of machine 

relocation cost and optimal inter-cell movements cost in different time periods. They used the combination 

of memetic algorithm (MA) and SA approach for solving their model. Defersha and Chen (2006) proposed 
a nonlinear mixed-integer mathematical model for designing a cellular manufacturing system. Their model 

incorporated dynamic cell configuration, alternative routings, lot splitting, sequence of operations, multiple 

units of identical machines, machine capacity, workload balancing among cells, operation cost, 
subcontracting part processing cost, tool consumption cost, setup cost, cell size limits, and machine 

adjacency constraints. They solved the model with the use of Lingo commercial software for small-sized 

instances of the model. They applied GA for solving the larger instances of the model.  Defersha and Chen 

(2008) integrated a cellular manufacturing system with production lot sizing problem. They developed a 
mathematical model to minimize both production and quality related costs. They solved their model by 

using a linear programming approach embedded genetic algorithm. Deferesha and Chen (2008) developed 

a parallel genetic algorithm approach to solve cell formation problem in a dynamic environment. 
Computational results demonstrated the efficiency of the proposed approach over sequential genetic 

algorithm and off-the-shelf optimization software. Tavakkoli-Moghaddam et al. (2008) developed a multi-

period mixed integer mathematical model to minimize the inter-cell movement and machine relocation 
costs simultaneously. Due to the NP-hardness of the problem, which cannot be solved in polynomial time, 

a SA algorithm was developed to solve the model. Results obtained demonstrated that there is less than 4 

percent gap in the optimal and near optimal solutions. Bulgak and Bektas (2009) extended Defersha and 

Chen’s (2006) model by proposing a nonlinear mixed integer mathematical model by addressing formation 
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of compact cells by introducing intra-cellular movement of parts. Some linearization techniques were 
followed to solve their mixed integer model. Their model was solved using off-the-shelf software CPLEX. 

Ah kioon et al. (2009) proposed a nonlinear mixed integer mathematical model for designing a cellular 

manufacturing system by considering multi-period production planning, dynamic system reconfiguration, 

operation sequences, duplicate machines, machine capacity, machine procurement, lot splitting and 
contingency process routings. Duplicate machines refer to the identical machines that are used in the cells. 

They added contingency process routings to the model to prevent cellular manufacturing system work 

intermittently due to machine breakdowns or workload imbalances. They solved the model using CPLEX. 
Jayakumar and Raju (2010) developed a multi-period, non-linear mathematical cell formation model and 

solved it with LINGO commercial software for small and medium sized problems. For small-sized 

problems the problem could be solved optimally while for medium size problems solving the problem in a 
reasonably fleeting period of time was not possible. The model encompassed several real-life parameters 

like alternate routing, operation sequence, duplicate machines, product mix, product demand, batch size, 

processing time, and machine capacity. Mahdavi et al. (2010) developed an integer mathematical model for 

designing a cellular manufacturing system considering worker assignments. Their mathematical model 
aimed at minimizing holding and backorder costs, inter-cell material handling cost, machine and 

reconfiguration costs and hiring, firing and salary costs. They considered several manufacturing attributes 

such as multi-period production settings, dynamic system reconfiguration, duplicate machines, machine 
capacity, available time of workers, as well as worker assignments. They used off-the-shelf optimization 

software LINGO for solving their proposed mathematical model. Sharifi et al. (2012) developed a 

mathematical model for designing a dynamic cellular manufacturing system. Their model aimed at 
minimizing setup time in the sequence-dependent manufacturing cells. They improvised a genetic algorithm 

approach for solving the mathematical model. Niakan et al. (2016) developed a bi-objective model featuring 

skill-based assignment of the workers. The first objective of the model was to minimize the costs of 

production and labors while the second objective was to minimize CO2 emissions, raw materials and energy 
consumption. They solved the model using non-dominated sorted genetic algorithm II (NSGA II) to reach 

to near-to-optimal solutions. Aljuneidi and Bulgak (2016) presented a mathematical model for designing a 

cellular remanufacturing system considering worker assignments. They considered several manufacturing 
attributes in their model such as multi period production planning, dynamic system reconfiguration, 

duplicate machines, machine capacity, and machine procurement. Their model was solved using CPLEX. 

Soolaki et al. (2018) designed a detailed mathematical model for integrating operational decisions of a 

cellular manufacturing system and strategic design of a supply-chain. In their model, several decision 
variables were related to the supply chain including the location of production facilities, procurement of 

raw materials, shipment of raw materials to the production facilities, as well as distribution of products to 

the markets. To find near-to-optimal solutions, they applied genetic algorithm.  Aalaei and Davoudpour 
(2017) developed a robust mathematical model for designing a cellular manufacturing system working as 

a part of closed-loop supply chain. Decisions on the closed-loop supply chain part of the model were 

strategic. They solved the model with use of CPLEX. Raoofpanah et al. (2019) developed a mathematical 
model for designing a cellular manufacturing enterprise. Their model aimed at minimizing environmental 

hazards caused by transportation vehicles. They solved the model to optimality with the use of Benders-

decomposition. Eglimez et al. (2017) developed a non-linear stochastic mathematical model for designing 

a dynamic cellular manufacturing system. They developed a novel solution approach, namely stochastic 
genetic algorithm in solving the cell formation problem. Their proposed solution approach reduced the 

solution time significantly. Mahootchi et al. (2018) developed a two-stage stochastic model for designing 

a cellular manufacturing system considering process routings and outsourcing of the part demands. They 
solved the model with the use of GAMS software for the small instances. They utilized sample average 

approximation (SAA) method for to reduce the solution times for the larger instances of the mathematical 

model. Golmohammadi et al. (2018) designed a stochastic cellular manufacturing system considering 

stochastic part demands. They solved the model to optimality with a commercial optimization software 
GAMS. They applied GA for large-sized instances of the mathematical model. Forghani and Fatemi Ghomi 
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(2019) developed a mathematical model for designing a cellular manufacturing considering queuing theory 
and process routings of the parts. They applied a heuristic method to get near-to-optimal solutions.  

 

2-2- Remanufacturing system design 
   Along with legal trends in designing closed-loop supply chains on the rise of concerns associated with 
environmental issues such as carbon emissions and solid waste generation, the increasing pressures from 

non-governmental organizations to be more environmentally friendly eventuated in strict attentiveness 

towards designing sustainable manufacturing enterprises (Jeihoonian et al., 2017). Closed-loop supply 
chains may also increase the revenue of companies by extending the life cycle of the products through 

different recovery options such as recycling, refurbishing, remanufacturing, and repairing. 

Remanufacturing as one of the recovery options refers to processes in which the returned merchandises are 

transformed into like-new ones such that the quality state and other standards usually will be the same with 
the new products. In this section, a literature review has been done on remanufacturing system design as 

one of the significant activities contained in the reverse flow of different products to the original equipment 

manufacturers. Demirel and Gökçen (2008) developed a mixed integer mathematical model for designing 
a remanufacturing system including both forward and reverse flows in the closed-loop supply chain. Their 

model encompassed taking different operational and strategic decisions including optimal production 

quantities and transportation of manufactured and remanufactured products along with the optimal locations 

of disassembly, collection and distribution facilities. They solved the model using GAMS software. Mutha 
and Pokharel (2009) developed a multi-echelon mixed integer mathematical model for designing a reverse 

logistic network. They assumed that a portion of capacities in different facilities are assigned for 

remanufacturing activities. They solved the model using GAMS software. Results obtained demonstrated 
that transportation and other logistic costs may not have prominent effect on the network design. Rather 

reprocessing and remanufacturing costs as well as the purchasing costs of the new modules can be the very 

important factor for designing a reverse logistic network. Accordingly, it would be profitable for the firms 
to locate their reprocessing centers in the regions that new modules and resources such as labor, land, and 

energy can be obtained at lower prices. Doh and Lee (2010) proposed a mixed integer model for production 

planning of a remanufacturing system aims at maximizing total profits. Their model contains encompasses 

decisions about the number of products to be disassembled, number of parts to be reprocessed, number of 
parts to be disposed, number of new parts to be purchased and number of products to be reassembled in a 

multi-period setting. They solved the model using CPLEX. Wang et al. (2011) developed a liner 

programming model for production planning of a hybrid manufacturing- remanufacturing system with 
deterministic returns. Hasanov et al. (2012) investigated a hybrid manufacturing-remanufacturing system 

where shortages in satisfying the demands for manufactured and remanufactured items are either fully or 

partly backordered. Kim et al. (2013) presented a Markov decision process model to investigate the effect 
of integrating disposal decisions in a hybrid manufacturing-remanufacturing system. They solved the model 

using a heuristic approach. Baki et al. (2014) proposed a multi-period mixed integer programing model to 

find the optimal lots of a remanufacturing system. They developed a heuristic using Wagner–Whithin 

approach to find the optimal lot sizes.  
   Chen and Abrishami (2014) presented a mixed integer mathematical model aim at minimizing the total 

costs of a hybrid manufacturing-remanufacturing system. Their mathematical model integrates operational 

decisions of a manufacturing system and tactical decisions of a closed-loop supply chain. Their model 
encompasses decisions about the optimal quantities of the manufactured and remanufactured products to 

be produced and to be stored, returns to be acquired, to be disassembled, and to be stored in a multi-period 

setting. They assumed that the demands for remanufactured products are known and distinct from the 

demands for manufactured products. They also assumed both manufacturing and remanufacturing take 
place in the same facility by using the same limited resources. They developed a solution procedure based 

on Lagrangian decomposition to efficiently solve the mathematical model in reasonable amounts of 

computational time. Guo and Ya (2015) presented a stochastic model to optimally determine manufacturing 
and remanufacturing lot sizes considering minimum quality level of returned products. The quality of 
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returns was assumed to have exponential distribution. Results obtained revealed that when the quality of 
the returned products is low, average total cost remains low, but remanufacturing cost is high. They solved 

the model with LINGO for small instances of the model. They applied Particle Swarm Optimization (PSO) 

and GA for solving large instances of the mathematical model. Aljuneidi and Bulgak (2015) developed a 

nonlinear mixed integer programming model for designing a cellular manufacturing system considering 
workforce management and remanufacturing the returned products. Several important features of the 

cellular manufacturing such as inter-cell movements, intra-cell movements, machine procurement, and 

machine capacity were incorporated in the model. They solved their model using CPLEX software for 
small-to-medium sized problems. Aljuneidi and Bulgak (2016) investigated the combination of 

reconfigurable cellular manufacturing systems with hybrid manufacturing remanufacturing systems as an 

effort to design sustainable manufacturing systems. Their model encompassed the integration of tactical 
decisions pertaining to the closed-loop supply chain and operational decisions of the cellular manufacturing 

system in designing sustainable manufacturing systems.  They developed a mixed integer mathematical 

model integrating a classical cell formation problem with reconfiguration, and production planning problem 

in a hybrid manufacturing remanufacturing environment. The overall objective function of the model was 
to minimize the total costs including machine costs, manufacturing and remanufacturing costs, and costs 

related to returned products. They used CPLEX for solving the model. Jeihoonian et al. (2017) developed 

a two-stage stochastic mathematical model for designing a closed-loop supply chain entailing several types 
of recovery options such as recycling and remanufacturing. They considered the uncertainty in the quality 

status of the returned products as a binary variable namely functional and non-functional states. They 

applied a scenario reduction scheme based on a modified Euclidean distance measure to include most 
pertinent scenarios only. They solved the mathematical model using L-shaped method. Fang et al. (2017) 

developed a mixed integer model to minimize the total configuration costs of the system considering 

stochastic demands for both manufactured and remanufactured products. They assumed both manufacturing 

and remanufacturing use the same resources. They solved the model to optimality using the Lagrangian-
relaxation approach. Liu et al. (2019) developed a mathematical model for designing a hybrid 

manufacturing-remanufacturing system considering resource depletion and environmental deterioration. 

They solved the model to minimize the total configuration cost of the manufacturing system using ant 
colony system algorithm with random sampling method (ACS-RSM). One of the major finding of their 

model was to show that the total cost of the system decreases dramatically until to a certain point, when the 

quality of the returned products is high. When the quality of the returned products is equal or higher than 

91%, the total cost of the system remains constant. Another major finding of their model was to demonstrate 
that increasing the lot sizes of the manufactured and remanufactured products has huge effect on increasing 

the total cost and the running time of their proposed solution methodology. In another research paper, 

Aljuneidi and Bulgak (2020) developed a mathematical model for designing a sustainable hybrid 
manufacturing-remanufacturing system considering carbon emissions. They solved the model using 

CPLEX software.   

   From our review, we found that designing sustainable manufacturing enterprises has received increasing 
attention in recent years. One of the recommended manufacturing systems to achieve sustainability in 

manufacturing system is cellular manufacturing system. In designing sustainable manufacturing systems, 

remanufacturing as one of the most important recovery options should also be considered because of its 

social, economic, and environmental benefits. Tables 1 and 2 show the summary of the literature review 
pertaining to the design of reconfigurable cellular manufacturing system and remanufacturing system.  
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Table 1.  Details of research on reconfigurable cellular manufacturing system design 

Author Year Solution Method Inventory Lot 

Splitting 

Worker 

Element 

Material 

Handling 

Alternative 

Routings 

Objective 

Function 

Purchek 1975 Heuristic      Configuration 

Cost 

Chen and Cao 2004 TS    Inter-cell  Configuration 

Cost 

Tavakkoli-

Moghaddam et al. 

2005 GA, TS, SA    Inter-cell  Configuration 

Cost 

Tavakkoli-
Moghaddam et al. 

2005 MA, SA    Inter-cell  Configuration 
Cost 

Defersha and 

Chen 

2006 Exact (LINGO)    Inter-cell  Configuration 

Cost 

Defersha and 

Chen 

2008 GA    Inter-cell  Configuration 

Cost 

Defersha and 

Chen 

2008 GA    Inter-cell  Configuration 

Cost 

Tavakkoli-

Moghaddam et al. 

2008 SA    Inter-cell  Configuration 

Cost 

Ahkioon et al. 2009 Exact (CPLEX)    Inter-cell  Configuration 

Cost 

Ahkioon et al. 2009 Exact (CPLEX)    Inter-cell 

Intera-cell 

 Configuration 

Cost 

Jayakumar and 

Raju 

2010 Exact (LINGO)    Inter-cell  Configuration 

Cost 

Mahdavi et al. 2010 Exact (LINGO)    Inter-cell  Configuration 

& Worker 

Cost 

Sharifi et al.  2012 GA    Inter-cell  Configuration 

Cost 

Niakan et al. 2016 NSGA (II)    Inter-cell 
Intra-cell 

 Configuration 
Cost 

Aljuneidi and 

Bulgak 

2016 Exact (CPLEX)    Inter-cell  Configuration 

& Worker 

Cost 

Soolaki et al.  2017 HGALO    Inter-cell  Configuration 

Cost 

Aalaei and 

Davoudpour 

2017 Exact (CPLEX)    Inter-cell  Configuration 

& Worker 

Cost 

Eglimez et al. 2017 Stochastic GA    Inter-cell  Configuration 

& Worker 

Cost 

Raoofpanah 2018 Exact (Benders-

decomposition) 

   Inter-cell 

Intra-cell 

 Configuration 

Cost 

Mahootchi 2018 Exact (GAMS), 

SAA 

   Inter-cell 

Intra-cell 

 Configuration 

Cost 

Golmohammadi 2018 Exact (GAMS), 

GA 

   Inter-cell 

Intra-cell 

 Configuration 

Cost 

Forghani and 
Fatemi-Ghomi 

2018 Heuristic    Inter-cell 
Intra-cell 

 Configuration 
Cost 
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Table 2. Details of research on remanufacturing system design 

Author Year Main Work  Solution Approach 

Demirel and 

Gökçen 

2008 Optimal production quantities and optimal decisions regarding the transportation 

of manufactured and remanufactured products along with the optimal locations of 

disassembly, collection and distribution facilities.  

Exact (GMAS) 

Mutha and 

Pokharel 

2009 Designing a reverse logistic network. Optimal decisions on several strategic and 

operational activities in a closed-loop supply chain network.  

Exact (GAMS) 

Doh and Lee 2010 Designing a remanufacturing system aims at maximizing total profits.  Exact (CPLEX) 

Wang et al. 2012 Hybrid manufacturing-remanufacturing system for the short life-cycle products 

considering stochastic demand and stochastic returns to calculate the optimal 
quantity of the manufactured products and the effect(s) of the ratio of the 

remanufactured products to the returned products on total costs of the system. 

- 

Hasanov et al. 2012 Investigation a hybrid manufacturing-remanufacturing system where shortages in 

satisfying the demands for manufactured and remanufactured items are either fully 

or partly backordered. 

Heuristic 

Kim et al. 2013 Investigation on the effect of integrating disposal decisions in a hybrid 

manufacturing-remanufacturing system. 

Wagner-Whitin 

Heuristic 

Baki et al. 2014 Finding the optimal lot sizes of manufactured and remanufactured products.  

Chen and 

Abrishami 

2014 Decisions on the optimal quantities of the manufactured and remanufactured 

products to be produced and to be stored as well as decisions on optimal number 

of returned products to be acquired, disassembled, and stored.  

Lagrangian-relaxation 

Guo and Ya 2015 Optimal manufacturing and remanufacturing lots considering quality levels of 

returned products. 

 

Aljuneidi and 

Bulgak 

2015 Optimal decisions on operational planning of the cellular manufacturing systems 

and tactical planning of the closed-loop supply chain considering work-force 

management.   

Exact (CPLEX) 

Aljuneidi and 

Bulgak 

2016 Optimal decisions on operational planning of the cellular manufacturing systems 

and tactical planning of the closed-loop supply chain in a hybrid manufacturing-
remanufacturing system. 

Exact (CPLEX) 

Jeihoonian et al.  2017 Designing a closed-loop supply chain. Optimal decisions on various strategic and 

tactical activities pirating to a closed-loop supply chain system. 

L-shaped 

Fang et al. 2017 Minimizing the total costs of the system considering stochastic demands for both 

manufactured and remanufactured products  

Lagrangian-relaxation 

Liu et al. 2018 Designing a hybrid manufacturing-remanufacturing system considering resource 

depletion and environmental deterioration. 

Ant colony system 

algorithm with random 

sampling method 

(ACS-RSM) 

Aljuneidi and 

Bulgak 

2019 Optimal decisions on strategic and operational planning of the cellular 

manufacturing systems and tactical planning of the closed-loop supply chain 

with cellular layout on the manufacturing side. 

Exact (CPLEX) 

 

3- The mathematical model 
3-1- Problem description and formulations 
   In this paper, design optimization of a cellular manufacturing system as a part of a closed-loop supply 
chain has been investigated to form a sustainable manufacturing enterprise. According to figure 1, this 

closed-loop supply chain includes both forward and reverse networks of the remanufacturing facility. In 

the forward chain, returned products are remanufactured to fulfil the demands of customers. On the other 

hand, in reverse chain, returned products are collected from the customer zones to be inspected and tested. 
In the disassembly center, returned products are pulled apart to separate the remanufacturable components. 

High-quality components are shipped to remanufacturing centers in which process of restoring returned 

products to “like-new” condition is performed. Low quality components are going to be disposed. 
Remanufacturing usually encompasses a number of activities such as disassembly, cleaning, repairing, 
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reassembly and refurbishing. Recognizing the suitable manufacturing layouts can highly increase the 
efficiency of remanufacturing processes which leads to a design of a sustainable manufacturing system. To 

achieve sustainability in manufacturing systems, cellular manufacturing layouts are highly recommended. 

The proposed model considers several manufacturing attributes such as multi-period production settings, 

reconfigurable layouts of the system, machine duplication which refers to multiple units of identical 
machines, machine acquisition and machine capacity. There are several parameters pertaining to reverse 

supply chain activities including acquisition of the returned products, disassembly of the returned products, 

remanufacturing of parts having high qualities, and disposal of the returned products that cannot be 
economically recovered. Figure 1 represents the material flow of the proposed sustainable cellular 

remanufacturing system. The overall objective function of the model is to minimize 4 sets of costs including 

(1) machine costs: maintenance and overhead cost, relocation costs of machines, machine procurements, 
and machine operating cost, (2) inter-cell material handling cost, (3) remanufacturing cost of the returned 

products, and (4) costs associated with returned products such as acquisition, disassembly, inventory 

holding, and disposal costs of the returned products. A mixed integer-linear programming (MILP) model 

for solving the above-described problem is formulated. The rest of the section presents the model 
assumptions, parameters, decision variables, formulation, as well as a detailed description of the proposed 

mathematical model and its linearization. 

 

 

Fig 1. Material flow diagram for the proposed cellular remanufacturing system 

3-2- Model assumptions 
   When formulating the proposed mathematical model, several specific assumptions have been taken into 
account as follows: 

 Predefined number of cells and the number is constant for each time period.  

 The demand of each type of part is deterministic and known in advance in each time period. 

 Each machine type has a limited capacity expressed in hours during each time period. 

 Reconfiguration involves the addition and removal of machines to cells and relocation from one 

cell to another in different time periods at the beginning of each time period. 

 The machine maintenance and overhead costs are known and constant in each time period. These 

costs are considered for each machine in each cell and period regardless that the machine is active 

or idle.  

 The demand for each component type in each time period can be fulfilled by internal productions 
as well as inventories that can be carried over from the previous time periods. 

 Routing flexibility of parts are not considered. 

 Each cell has a limited capacity. Lower and upper size limits of the cells are known in advance. 

 Supply of the returned products are deterministic and known in advance. 

Inventory of 

Returned Products
Disassembly Remanufacturing

Customer Zone

Disposal
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3-3- Model parameters and decision variables 
    The notations used in the model are presented below followed by the objective function and set of 

constraints. 

Problem Sets: 

i = {1, 2, 3 … I} Index set of part types 

m = {1, 2, 3 … M} Index set of machine types 

c = {1, 2, 3 … C} Index set of cells 

t = {1, 2, 3 … T} Index set of time periods 

j = {1, 2, 3 … J} Index set of returned products 

 

Parameters 

𝐷𝑖𝑡                              Demand of product i in time period t 

  

𝜉𝑖
𝑖𝑛𝑡𝑒𝑟                           Intercellular movement cost of part i 

  

𝜓𝑖𝑚                             Part-Machine Incidence Matrix (If machine m processes 

part type i) 

  

𝜌𝑖𝑚                               Processing time of part i on machine m 

  

𝜋𝑚𝑡                              Time capacity of machine m in time period t 

  

𝛼𝑐                               Lower size limit of the cells 

  

𝛽𝑐                               Upper size limit of the cells 

  

𝑅𝑚                             Installation cost of machine m 

  

𝐾𝑚                            Removal cost of machine m 

  

𝑀∞                            A large positive and integer number 

  

𝐻𝑖𝑡                             Holding/Carrying cost of part type i in time period t 

  

𝑆𝑖                                Subcontracting cost of part i 

  

𝐴𝑚𝑡                              Quantity of machine type m available at time period t 

  

𝜂𝑚                             Machine maintenance and overhead costs 

  

𝜔𝑚                            Machine investment cost 

  

𝛾𝑚                             Operating cost of machine type m 
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𝐸𝑖                              Production cost per part type i 

  

𝜎𝑗𝑡                              Unit cost to acquire returned product j in time period t 

  

𝛷𝑗𝑡                            Setup cost for disassembling returned product j in time 

period t 

  

𝛻𝑗𝑡                             Unit cost to disassemble returned product j in time 

period t 

  

ϐ𝑗𝑡                             Unit inventory cost for returned product j in time period 
t 

  

𝑈𝑖                             Average recovering rate of part I from all returned 

products j 

  

𝑉𝑖𝑗                            Number of parts i contained in product j 

  

𝜅𝑗                             Disposal cost of returned product j   

 

Decision Variables 

𝑁𝑚𝑐𝑡                 Number of type m machines present in cell c at the 

beginning of time period t 

  

𝑌𝑚𝑐𝑡
+                   Number of type m machines added in cell c at the 

beginning of time period t 

  

𝑌𝑚𝑐𝑡
−                   Number of type m machines removed from cell c at the 

beginning of time period t 

  

𝜁𝑚𝑡                    Number of machines of type m procured at time t 

  

𝐴̂𝑚𝑡                   Quantity of machine type m available at time period t 

after accounting for machines that have been procured 

  

𝑄𝑖𝑡                    Number of part inventory of type i kept in time period t 

and carried over to period (t + 1) 

  

𝑋𝑖𝑡                    Production volume of part type i to be produced in time 

period t 
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𝑂𝑖𝑡                     Quantity of part type i to be outsourced in time period t 

𝜏𝑖𝑐𝑡                  = 1, if part type i is processed in cell c in period t. =0, 

otherwise 

  

𝑍𝑖𝑚𝑐𝑡                 = 1, if part type i is to be processed on machine type m 

in cell c in period t. = 0, otherwise. 

  

𝑑𝑗𝑡                Number of returned product j to be disassembled in time 

period t 

  

𝑟𝑗𝑡                 Number of returned product j to be acquired in time 

period t 

 

3-4- Model formulation and description  
   The objective function and constraints of the model are as follows: 

∑ ∑ ∑ Nmct ∗M
m=1 ηm

C
c=1

T
t=1                                                                                                                                                                   (1.1) 

+ ∑ ∑ ∑ Rm ∗M
m=1  C

c=1
T
t=1 Ymct

+                                                                                                                                                                (1.2) 

+ ∑ ∑ ∑ Km ∗M
m=1  Ymct

−C
c=1

T
t=1                                                                                                                                                                (1.3) 

+ ∑ ∑ Qit ∗I
i=1

T
t=1  Hit                                                                                                                                                                            (1.4) 

+ ∑ ∑ [(∑ τict) − 1] ∗C
c=1

I
i=1

T
t=1  ξi

inter*Xit                                                                                                                                             (1.5) 

+ ∑ ∑ Xit ∗I
i=1

T
t=1  Ei                                                                                                                                                                               (1.6) 

+ ∑ ∑ ζmt ∗M
m=1

T
t=1  ωm                                                                                                                                                                          (1.7) 

+ ∑ ∑ ∑ ∑ Zimct ∗ Xit ∗ tim ∗  γm
C
c=1

M
m=1

I
i=1

T
t=1                                                                                                                                      (1.8) 

+ ∑ ∑ σjt ∗J
j=1

T
t=1  rjt                                                                                                                                                                               (1.9) 

+ ∑ ∑ Φjt ∗J
j=1

T
t=1  δjt                                                                                                                                                                            (1.10) 

+ ∑ ∑ ∇jt ∗J
j=1

T
t=1  djt                                                                                                                                                                            (1.11) 

+ ∑ ∑ ϐjt ∗J
j=1

T
t=1  fjt                                                                                                                                                                              (1.12) 

+ ∑ ∑ ∑ (1 −  Ui) ∗
J
j=1  κj ∗ Vij ∗ djt

I
i=1

T
t=1                                                                                                                                            (1.13) 

+ ∑ ∑ 𝑆𝑖 ∗𝐼
𝑖=1

𝐼
𝑡=1  𝑂𝑖𝑡                                                                                                                                                                              (1.14) 
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Objective function 

Minimize 

Subject to: 

Qit−1 + Xit − Qit =  Dit; ∀ (i, t)                                                                                                                                                              (2)                                                                                   

τict = min (1,∑ Zimct
M
m=1 ); ∀ (i, c, t)                                                                                                                                                          (3) 

∑ 𝑍𝑖𝑚𝑐𝑡 = ψim
𝐶
𝑐=1 ; ∀ (i, m, t)                                                                                                                                                                    (4) 

Nmct = Nmct−1 + Ymct
+  - Ymct

− ; ∀ (m, c, t)                                                                                                                                                  (5) 

∑ Nmct M
m=1 ≥ 𝛼𝑐; ∀ (c, t)                                                                                                                                                                            (6) 

∑ Nmct M
m=1 ≤  𝛽𝑐; ∀ (c, t)                                                                                                                                                                            (7) 

∑ Zimct ρim Xit
I
i=1  ≤  Nmct  πmt; ∀ (m, c, t)                                                                                                                                            (8) 

∑ ∑ Zimct
M
m=1

C
c=1  ≤ 𝑀∞ Xit; ∀ (i, t)                                                                                                                                                           (9) 

Âm(t=1) = Am(t=1) + ζm(t=1); ∀ (m)                                                                                                                                                        (10) 

Âm(t+1) = Âmt + ζm(t+1); ∀ (m)                                                                                                                                                               (11)     

∑ Nmct =  Âmt
C
c=1 ; ∀ (m, t)                                                                                                                                                                     (12) 

fjt + djt − fjt−1 = rjt; ∀ (j, t)                                                                                                                                                                     (13)             

djt ≤ 𝑀∞ δjt; ∀ (j, t)                                                                                                                                                                                   (14) 

Xit  ≤ Ui ∑ Vij
J
j=1 djt; ∀ (i, t)                                                                                                                                                                    (15) 

∑ Zimct I
i =1 ≤ 𝑀∞ Nmct; ∀ (m, c, t)                                                                                                                                                           (16) 

Nmct, Ymct
+ , Ymct

−  ≥ 0 and integer; ∀ (m, c, t)                                                                                                                                           (17) 

Qit, Xit ≥ 0; ∀ (i, t)                                                                                                                                                                (18) 

ζmt, Âmt ≥ 0; ∀ (m, t)                                                                                                                                                           (19) 

τict ∈ {0, 1}; ∀ (i, c, t)                                                                                                                                                                            (20) 

Zimct ∈ {0, 1}; ∀ (i, m, c, t)                                                                                                                                                                    (21) 

 

Objective function: The objective function of the model encompasses several cost terms. The first term 

(1.1) shows the maintenance and overhead costs of the machines. The second term (1.2) demonstrates the 
cost of machines installations while the third term (1.3) represents the cost of machines removals. The 

fourth term (1.4) shows the inventory carrying cost of the parts. The fifth term (1.5) represents the cost of 

intercellular movements of the parts between cells. The sixth term (1.6) addresses the production cost of 

the remanufactured components. The seventh term (1.7) represents machines investment cost. The eighth 
term (1.8) shows machines operating cost. The ninth term (1.9) represents acquiring cost of the returned 

products. The tenth term (1.10) represents the setup cost for disassembling operations. Eleventh term (1.11) 

addresses the disassembling cost of the returned products.  The twelfth term (1.12) shows the inventory 
holding cost for returned products. Term thirteenth term (1.13) addresses the disposal cost of the returned 

products and the last term, term number fourteen (1.14) demonstrates outsourcing cost in satisfying the part 
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demands. Costs in the objective function can be classified into four major categories including machines 
costs, material handling costs, remanufacturing costs of the returned products and costs corresponding to 

returned products such as acquisition, holding, disassembling setups, and disassembling activities that 

should be minimized. 

Constraints: The objective function of the model is subjected to constraints as follows: equation (2) 
demonstrates that demands for part type i in each time period can be fulfilled by producing remanufactured 

products as well as accounting for the inventory carried over from previous time period subtracting the 

inventory of the current time period. Equation (3) is pertinent to intercellular movements of the parts stating 
that if part type i is processed in cell c in each time period. Equation (4) is to ensure that each part is assigned 

to appropriate machines in all the cells with respect to part-machine incidence matrix (MCIM). Part-

machine incidence matrix declares that part i is processed with the use of machine m. Equation (5) 
demonstrates the number of machines of type m at the beginning of each time period is equal to number of 

machines in the previous time period considering installations and removals of machines of type m in cell 

c at the beginning of each time period t. The size of the cells is user-defined through equations (6) and (7). 

Constraint (6) states that the number of machines assignments of each type should be greater than the lower 
size limit of the cells. Constraint (7) states that the number of machines assignments of each type should be 

greater than the lower size limit of the cells. Constraint (8) ensures that the capacity of machines would not 

be exceeded. Constraint (9) guaranties that when the system does not produce anything (𝑥𝑖𝑡 = 0),  there are 
no assignments of machines or cells to different part types. Constraint (10) is relevant to the availability of 

machines for time period 1 taking into consideration machine procurements option. The total number of 

machines of each type available in the system is equal to the machine availability before machine 

procurements in addition to the number of machines acquired in the first time-period. Equation (11) 
indicates that machine availabilities for the subsequent time periods excluding time period 1 can be 

recorded. The number of machines procurements in the current time period along with the number of 

machines that have been acquired in all the preceding time periods demonstrates total available machines 
in the system. Equation (12) declares that total number of machines in each cell should not exceed the total 

number of available machines. Equation (13) indicates that the total number of returned products to be 

acquired can be calculated through the summation of total number of returned products to be kept in 
inventory for the current time period as well as total number of returned products to be disassembled for 

the current time period subtracting the amounts of inventory carried over from the previous time period. 

Constraint (14) indicates a logical constraint for disassembling activities. Constraint (15) encompasses the 

bill of materials (BOM) and the quality levels of the returned products for calculating the quantity of parts 
acquired from returned products. BOM refers to the number of part i contained in the returned product j. 

Constraint (16) shows that 𝑍𝑖𝑚𝑐𝑡 which determines the production routes of a part i with the use of machine 

m in cell c in time period t could be zero unless the same machine type is already assigned to cell c at the 
beginning of time period t. Constraint (17), Constraint (18),  Constraint (19), Constraint (20), and Constraint 

(21) specify the logical binary and non-negativity integer requirements on the decision variables.  

 

3-5- Linearizing the Objective Function  
   The objective function is a non-linear function due to the non-linear terms (1.5) and (1.8) as well as 
constraints 3 and 8. To transform these non-linear terms to linear ones, the following new variables are 

defined by Coelho (www.leandro-coelho.com) as follows:  

𝐹𝑖𝑐𝑡 = 𝜏𝑖𝑐𝑡 * 𝑋𝑖𝑡 

𝑊𝑖𝑚𝑐𝑡 = 𝑍𝑖𝑚𝑐𝑡 * 𝑋𝑖𝑡 
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By considering these equations, following constraints must be added to the model: 

𝐹𝑖𝑐𝑡  ≥ 𝑋𝑖𝑡 – M (1 - 𝜏𝑖𝑐𝑡); ∀ (i, c, t)                                                                                                                                                                        (22) 

𝐹𝑖𝑐𝑡  ≤ M ( 𝜏𝑖𝑐𝑡); ∀ (i, c, t)                                                                                                                                                                                     (23) 

𝐹𝑖𝑐𝑡 ≤ 𝑋𝑖𝑡; ∀ (i, c, t)                                                                                                                                                                                              (24) 

𝑊𝑖𝑚𝑐𝑡 ≥ 𝑋𝑖𝑡 + M (1 - 𝑍𝑖𝑚𝑐𝑡); ∀ (i, m, c, t)                                                                                                                                                          (25) 

𝑊𝑖𝑚𝑐𝑡 ≤ M 𝑍𝑖𝑚𝑐𝑡; ∀ (i, m, c, t)                                                                                                                                                                           (26) 

𝑊𝑖𝑚𝑐𝑡 ≤ 𝑋𝑖𝑡; ∀ (i, m, c, t)                                                                                                                                                                                    (27) 

𝐹𝑖𝑐𝑡, 𝑊𝑖𝑚𝑐𝑡 ≥ 0                                                                                                                                                                                   (28) 

 

Also to linearize the proposed model, constraint (3) should be replaced by these two constraints: 

∑ 𝑍𝑖𝑚𝑐𝑡
𝑀
𝑚=1  ≤ M 𝜏𝑖𝑐𝑡; ∀ (i, c, t)                                                                                                                                                                          (29) 

 ∑ 𝑍𝑖𝑚𝑐𝑡
𝑀
𝑚=1  ≥ 𝜏𝑖𝑐𝑡; ∀ (i, c, t)                                                                                                                                                                              (30) 

 

   Therefore, the objective function of the integer programming model has linear terms only. All the 
constraints in the proposed model are also linear. The number of variables and number of constraints in the 

proposed models are presented in tables 3 and 4, respectively, based on the indices of the variables in the 

proposed model. 

Table 3. Number of variables in the linearized model 

Name of variables Nature of variable Variable count Name of variables Nature of variable Variable count 

𝑁𝑚𝑐𝑡 General Integer M×C×T 𝑋𝑖𝑡  General Integer I×T 

𝑌𝑚𝑐𝑡
+  General Integer M×C×T 𝜏𝑖𝑐𝑡 Binary I×C×T 

𝑌𝑚𝑐𝑡
−  General Integer M×C×T 𝐹𝑖𝑐𝑡 General Integer I×C×T 

𝜁𝑚𝑡 General Integer M×T 𝑍𝑖𝑚𝑐𝑡 Binary I×M×C×T 

𝐴̂𝑚𝑡 General Integer M×T 𝑑𝑗𝑡  General Integer J×T 

𝑄𝑖𝑡 General Integer I×T 𝑟𝑗𝑡  General Integer J×T 

𝑓𝑗𝑡 General Integer J×T  𝛿𝑗𝑡 General Integer J×T 

𝑊𝑖𝑚𝑐𝑡  General Integer I×M×C×T    

Total: 3×(M×C×T) + 2×(I×C×T) + 2×(I×M×C×T) + 4×(J×T) + 2×(I×T) + 2×(M×T) 
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Table 4. Number of constraints in the linearized model 

- Total count Equation number Total count 

2 I×T 14 J×T 

3 I×C×T 15 J×T 

4 I×M×T 16 M×C×T 

5 M×C×T 22 I×C×T 

6 C×T 23 I×C×T 

7 C×T 24 I×C×T 

8 M×C×T 25 I×M×C×T 

9 I×T 26 I×M×C×T 

10 1×M 27 I×M×C×T 

11 M×T 29 I×C×T 

12 M×T 30 I×C×T 

13 J×T   

Total: 2×(I×T) + 4×(I×C×T) + 1×(I×M×T) + 3×(M×C×T) + 2×(C×T) + 

(1×M) + 2×(M×T) + 3×(J×T) + 3×(I×M×C×T) 

 

4- Numerical example 
   To validate and verify of the proposed model, a number of example problems are solved with the use of 

IBM ILOG CPLEX Optimization Studio 12.6/OPL a commercially available optimization software. The 
data set used is based on the data used by Mahdavi et al. (2010) and Chen and Abrishami (2014). Unknown 

parameters were extracted by cross-referencing between the data sets containing them to be incorporated 

inside the other data sets missing that information. For illustration purposes, a detailed discussion for the 

input data and computational results of one example problem (example 1) is also presented. Since, other 
test problems are similar to Example 1, only summarized results are presented to further demonstrate the 

design issues addressed with the proposed mathematical model. All of the computational experiments are 

performed on Intel® CoreTM2.67 GHz workstation, with the problems being solved using IBM ILOG 

CPLEX Optimization Studio 12.6/OPL. Table 5 demonstrates different scenario examples of the proposed 

model. Elapsed time and optimality gaps (difference between current solution and best bound on optimal 
solution) are also shown in table 5. Accordingly, CPLEX is not able to solve the last test problem namely 

problem scenario 7 which is a large-scale instance after 14422 seconds with 0.06% optimality gap. After 

running the optimization software for 14422 seconds the search was stopped due to the memory limitations. 
Therefore, branch and bound and branch and cut algorithms of the CPLEX are not able to produce good 

equality solutions within reasonable computational time for the largest instance of the proposed model 

considered in this article. Problem scenario 6 which is also a large-scale instance is solved to optimality 

after 298.29 seconds. Table 5 represents all the other test problems namely problem scenarios 1 to 6 of the 
proposed model have been solved to optimality and the computational times increase as the problem size 

grows from small-scale instances to medium ones in terms of the number of variables and constraints.   
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Table 5.  Different problem scenario of the proposed model 
Problem 
scenario 

Classification Number 
of parts 

Number 
of 

machine
s 

Number 
of cells 

Number 
of time 
periods 

Number of 
returned 
products 

Number of 
variables 

Number of 
constraints 

Time 
elapsed 

(Second) 

Optimality 
gap (%) 

1 Small-Scale 1 2 2 2 3 84 108 0.65 0.00 

2 Small-Scale 1 6 2 2 3 260 265 0.95 0.00 

3 Medium-Scale 4 3 2 2 3 340 216 1.26 0.00 

4 Medium-Scale 4 3 3 2 3 298 474 9.07 0.00 

5 Medium-Scale 4 3 2 3 3 324 510 4.55 0.02 

6 Large-Scale 4 4 2 5 3 660 1025 298.29 0.02 

7 Large-Scale 4 2 4 3 3  432 717 14422      0.06* 

*Search was stopped due to memory limitations 

4-1- Example 1 
   In solving example 1, 4 parts, 3 machines, 3 cells, 2 time periods, and 3 types of returned products are 

considered. The input data of this example are presented in tables 6-10. Table 6 contains costs pertaining 

to different machine types as well as the capacity of each machine. Table 6 also demonstrates the number 

of machines of each type available in the system in the first time period which indicates the existing 
manufacturing layout is being reconfigured from a cellular manufacturing layout. If the number of machines 

available in the system is zero in the first time period, it reveals that a cellular manufacturing system is 

being reconfigured from no existing manufacturing layouts. Table 7 demonstrates costs related to returned 
products including disassembly, acquisition, inventory holding, and setup for disassembly. Table 8 

represents the costs associated with different part types such as disposition, outsourcing, inventory carrying, 

inter-cell material handling, recovery rates as well as production costs per unit. Demands for 
remanufactured products are given in table 8 for two consecutive time periods. In table 8, outsourcing cost 

has been generated randomly in the range of (250, 1000). Table 9 shows the part-machine incidence matrix. 

It represents if each part type needs any machines from the set of machine types. The numbers of 

components contained in different returned products are shown in table 10. For example, there are 8 parts 

of type 4 contained in returned product 3.   

Table 6. Data related to different machine types 

Machine  Cost Capacity 

 Available Machines 

(𝐴𝑚)  

Operating Overhead  Procurement removal Installations 𝑇1  𝑇2 

1 2 18 400 4000 140 550 30 30 

2 3 16 410 2000 130 530 30 30 

3 1 14 430 2000 150 560 30 40 

 

 



115 
 

Table 7.  Costs related to returned products 

Returned  

Products  

Cost 

Time Period Disassembly Acquisition Inventory Holding Setup 

1 1 30 25 40 20 

1 1 35 15 40 30 

2 2 25 35 50 25 

2 2 30 20 50 20 

3 3 20 25 30 22 

3 3 18 28 30 33 

 

Table 8.  Data related to different part types 

Part  Cost  Demand 

 Outsourcing Disposition Inventory  Production Inter-cell Recovering Rate 𝑇1  𝑇2  

1 580 200 4 20 11 0.5 0 1550 

2 660 250 6 21 9 0.5 1700 500 

3 513 220 8 23 8 0.6 900 600 

4 642 300 10 20 10 0.2 1000 900 

 

Table 9.  Part-Machine Incidence Matrix 

Parts/Machines 1 2 3 

1 1 1 1 

2 1 1 0 

3 1 0 1 

4 0 1 1 

 

Table 10.  Number of parts I in Returned Product J 

Parts/Returned Products 1 2 3 

1 10 10 8 

2 12 12 10 

3 15 11 3 

4 13 12 8 

 

4-1-1- Solution of example 1 

   Production route of each part type in terms of machines and cells in each period is given in table 11. Table 

11 demonstrates the single process routing of all the part types. For example, part type 1 is going to be 
processed on machines 1, 2, and 3 in cell 2 during the second time period. Results pertaining to assignments 

of machines at the beginning of each time period are shown in figure 3. For instance, 2 machines of type 1 

is assigned to cell 3 at the beginning of period 2. Number of returned products to be acquired in each time 
period is presented in table 12. Accordingly, 416 returned products of type 2 need to be acquired for the 

first time period while 375 returned products of the same type need to be acquired for the second time 
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period. The number of returned products to be disassembled is completely equivalent with the number of 
returned products to be acquired for the same and subsequent time periods. Therefore, 416 returned products 

of type 2 are disassembled for the first time period while 375 of the same type are disassembled for the 

second period. The inventory levels of the returned products are zero for all types in all the time periods. 

Example 1 is solved apart from outsourcing option in satisfying the part demands. The effect of outsourcing 
option will be investigated in section 4-1-2.  

 

Table 11.  Production Route of Part I Resorting to Machine M in Cell C in Time Period T 

Part (I) Machine (M) Cell (C) Time period (T) 

1 1 1 1 

1 1 2 2 

1 2 1 1 

1 2 2 2 

1 3 1 1 

1 3 2 2 

2 1 1 2 

2 1 2 1 

2 2 1 2 

2 2 2 1 

3 1 3 1 

3 1 3 2 

3 3 3 1 

3 3 3 2 

4 2 1 1 

4 2 2 2 

4 3 1 1 

4 3 2 2 
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Fig 3. Allocation and quantity of machine types 

 

Table 12. Number of returned product J to be acquired in time period T 

Returned Product (J) Time Period (T) Value 

1 1 0 

1 2 0 

2 1 416 

2 2 375 

3 1 0 

3 2 0 

 

4-1-2- Sensitivity analysis 

   To demonstrate the additional usability of the model at the system design and operational levels, a 
sensitivity analysis has been conducted to show the effects of quality levels of the returned products on the 

total costs as well as the total number of acquired returned products. The effects of outsourcing option of 

the part demands on the objective function value and the total number of acquired returned products have 

also been investigated. Figure 4 demonstrates the fluctuations of the total costs by changing the recovery 
rates from 0.1 to 1.0 through gradual increments of 0.1. The main assumption in the sensitivity analyses is 

to consider the same recovery rates for all types of the returned products. According to figure 4, for the 

recovery rates of 0.1 to 0.5, fluctuations in the total costs are moderately higher in comparison with the 
recovery rates of 0.6 to 1.0. This is because of the substantial reduction of the total number of returned 

products to be acquired with the recovery rates of 0.6 to 1.0. Accordingly, acquiring high-quality returned 

products will be resulted in the reduction of objective function value. For example, for the quality level of 

M1 C1 T1 1 Machine M2 C1 T2 2 Machine

M1 C1 T2 1 Machine M2 C2 T1 4 Machine

M1 C2 T1 3 Machine M2 C2 T2 4 Machine

M1 C2 T2 3 Machine M3 C1 T1 2 Machine

M1 C3 T1 2 Machine M3 C2 T2 2 Machine

M1 C3 T2 2 Machine M3 C3 T1 1 Machine

M2 C1 T1 2 Machine M3 C3 T2 1 Machine
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0.2, 1187 returned products are needed while for the quality level of 0.8, 297 returned products are acquired. 
Accordingly, total number of returned products are approximately 70% reduced, so objective function value 

will be reduced. Figure 5 shows the effects of variation of the recovery rates on the number of acquired 

returned products. There is a significant reduction in the number of returned products to be acquired 

especially when the recovery rates fluctuate between 0.1 and 0.5. Figure 5 demonstrates that by acquiring 
high-quality returned products, number of returned products to be bought will be reduced. Accordingly, 

total costs related to quality level of 0.1 is approximately 16,000,000. By considering quality level of the 

returned products to be 0.9, total costs are reduced to 389,310. Accordingly, 97% of the total costs can be 
reduced.   

   In order to reduce the objective function value, operational managers can consider outsourcing option of 

the part demands. Figure 6 demonstrates the effects outsourcing option on the number of acquired returned 
products. According to figure 6, number of acquired returned products decreased from 791 to 419 while 

taking outsourcing option into account in satisfying the part demands. Figure 7 also demonstrates the effect 

of outsourcing option on the total costs in the objective function. According to figure 7, objective function 

value has decreased from 5,267,561 to 2,963,616 which shows 43% improve in reducing the total costs. 
Our sensitivity analyses demonstrated that acquiring high-quality returned products and outsourcing option 

of the part demands can have firm managerial implications, in operational level, to reduce the total costs 

substantially.  
 

 

Fig 4.  Total cost versus recovery rate 
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Fig 5.  Acquired returned products versus recovery rates 

 

 

 

Fig 6.  Effect of outsourcing option versus acquired returned products  
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Fig 7.  Effect of outsourcing option versus objective function value  

5- Conclusion and future research 
   In this paper, a mixed integer linear programming (MILP) model, which considers the integration of 
production planning problem in cellular manufacturing systems bridged with the tactical planning of a 

closed-loop supply chain, has been developed. This is, accordingly, one preliminary step towards 

integration of manufacturing systems in the closed-loop supply chains to build a sustainable manufacturing 

enterprise. The proposed models consider several manufacturing attributes such as: multi period production 
settings, machine capacities, machine procurements, acquisition of the returned products, disassembly of 

the returned products, remanufacturing of parts having decent qualities, and disposal of parts not having 

enough quality to be selected for remanufacturing. Enterprises operating cellular manufacturing systems as 
a part of closed-loop supply chains and with sustainability objectives could use the integrated model that 

we propose at the design optimization and production planning stages of their activities. More precisely, 

the more likely users of our model are the designers of sustainable manufacturing/supply chain systems at 

the design stage as well as the managers running such systems at the operational level. 
   The overall objective function of the model is to minimize 4 categories of costs including (1) machine 

costs: maintenance and overhead cost, relocation costs of machines, machine procurements, and machine 

operating cost, (2) inter-cell material handling cost, (3) remanufacturing cost of the returned products, and 

(4) costs associated with returned products such as acquisition, disassembly, inventory holding, and 
disposal costs of the returned products. The future work in this research incorporates several recovery 

options such as recycling, refurbishing, buck recycling, repair, and reuse ‘as is’ to design a holistic 

sustainable manufacturing enterprise. Iinvestigation on the large-scale problems of the proposed model and 
deriving solution methodologies for them is another direction for the future extension of this research.  
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