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Abstract 
This paper studies a location-inventory problem with uncertain demands and lead 

times in a three-level supply chain including a producer, multiple distribution 
centres (DCs) and multiple retailers. A number of perishable products such as 

food and medicine goods are considered with a specific shelf life; unlike the 

previous studies in the literature, the restrictions of storing different perishable 
products in identical DC is considered. The objective is to determine the number 

and location of DCs, the allocation of retailers to DCs, the reorder point and 

demand rate at each DC. Due to the uncertainty on demands and lead times, a 

queuing approach is utilized to model the problem. The problem is an integer 
nonlinear programming model and solved using the Genetic and the Imperialist 

Competitive algorithms. 
Keywords: Location-inventory, perishable products, uncertain demands and lead 
times, Genetic Algorithm, Imperialist Competitive Algorithm 

1- Introduction 

   Supply chain design is one of the most critical issues for effective supply chain management because 

it reduces costs and increases service quality. One of the essential steps in the supply chain design is 
determining the number and location of distribution centres (DCs). In the most of location-inventory 

problems with multi-products, restrictions on storing different kinds of products is not studied. Unlike 

prior researches in the literature, we consider restrictions on storing different perishable products with 

uncertain demands and lead-times. The mentioned restrictions will be presented using a matrix. Each 
Matrix element indicates the possibility of storing a specific type of product in a particular DC.  

   In this paper, we study a location-inventory problem for a three-level supply chain considering 

restrictions on storing different perishable products with uncertain demands and lead times. The supply 
chain is composed of a producer, multiple DCs, and arbitrary number of retailers. Considering 

restrictions on storing different perishable products with uncertain demands and lead times makes the 

model closer to the real world applications. On the restrictions on storing different perishable products, 

holding perishable products in DCs is not as easy as other normal products. Perishable products like 
meat and fruit need special holding systems such as refrigerators, shelving equipment and so on.  
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   These systems may be involved with high establishment and operational costs. This is why, it is 
recommended that each DC to be designed for holding and distributing a particular family of product. 

On the other hand, uncertainty of demands and lead times may be originated from some outside factors 

such as sudden increase in demand, seasonal trends and disruptions in suppliers. These factors make 

uncertainty on demand and lead time. The objective is to determine the number and location of DCs, 
the allocation of retailers, and the reorder point and demand rate at each DC. Due to the uncertainty on 

demands and lead times, a queuing approach is utilized to solve the model. Two heuristics based on the 

genetic algorithm (GA) and imperialist competitive algorithm (ICA) are proposed to solve the problem 
for large sized instances. The literature related to location-inventory problems and inventory 

management problems with storage restrictions and the solution approaches are presented in the next 

sections. 

1-1- Location-inventory problem 

   The research by Baumol and Wolfe, (1958) is one of the first studies that consider inventory costs 

into location models. Firstly, they investigated the number and location of limited capacity warehouses; 

then, they considered transportation and inventory costs in the model, which resulted in a local optimum 

solution. Erlebacher and Meller, (2000) developed an analytical model that keeps acceptable service 
while minimizing system costs. Since the proposed model was NP-Hard, they developed a heuristics 

solution, and evaluated its performance.  Daskin, (2002) proposed a distribution centre location model 

that consists of working inventory, safety stock inventory, and transportation costs. The model was 
formulated as a non-linear integer-programming problem. A Lagrangian relaxation solution algorithm 

was proposed to solve the problem. After the termination of Lagrangian relaxation, they applied a 

variant of heuristics for finding reasonable solutions. Shen et al., (2003) considered a joint location-
inventory problem in which each retailer came across a varying demand. They considered safety stock 

to achieve a suitable service level. The objective was to determine which retailer should serve as 

distribution centre and how to assign other retailers to the addressed distribution centres. The authors 

formulated the problem as a non-linear integer programming. Snyder et al., (2007) presented the 
stochastic version of the location model with risk pooling to optimize location, inventory, and allocation 

decisions under random parameters described by discrete scenarios. The objective was to minimize the 

system costs across all scenarios. Furthermore, they proposed a Lagrangian relaxation algorithm to 
solve the problem. Miranda and Garrido, (2008) proposed an approach in order to incorporate inventory 

control decisions into location problem with stochastic demand and safety stock. They formulated the 

problem as a non-linear mixed integer model. They presented a solution based on the Lagrangian 

relaxation approach and the sub-gradient method to solve the problem. Park et al., (2010) considered a 
three-level supply chain, including suppliers, DCs, and retailers with risk pooling strategy and lead-

time; the objective is to determine the number and locations of suppliers and DCs, the assignment of 

each DC to a supplier, and each retailer to DCs. The model was formulated as a non-linear integer 
programing problem. The problem was solved using a Lagrangian relaxation based heuristic algorithm. 

Chen et al., (2011) studied reliable join location-inventory problem with stochastic facility disruptions 

due to natural or human-made hazards. When a facility fails, its customers are reassigned to other 
facilities to avoid the penalty cost related to losing service. They formulated the problem as an integer 

programing model and proposed a Lagrangian relaxation based heuristic in order to solve the problem. 

Tancrez et al., (2012) studied location-inventory problem integrating three decisions: location of the 

DCs, allocation of customers to DCs, and the size of the shipments. The model was formulated as a 
nonlinear programming model with cost minimization objective function. They developed an iterative 

heuristic to solve the problem. Shahabi et al., (2014) developed location- inventory problem with 

correlated demand. The authors presented a mixed integer conic quadratic program formulation of the 
model. The solution was based on an outer approximation strategy proposed to solve the model. 

Ahmadi-Javid and Hoseinpour, (2015) Presented a location-inventory-pricing model with price 

sensitive demands and inventory-capacity constraints. A Lagrangian relaxation algorithm was proposed 
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to solve the problem. The proposed approach can be applied to other supply chain design problems with 
sensitive demands. 

   Escalona et al.(2015) studied location-inventory problems with fast-moving items. They considered 

critical-level policies to provide different service levels for products with two types of demand. The 

model was formulated as a mixed integer non-linear programming (MINLP) and a heuristic approach 
was proposed to solve the problem. Sadjadi et al., (2015) studied a three-level supply chain network 

with uncertain demands and lead times, which include a supplier, multiple DCs, and retailers. The 

queuing approach is used to obtain the amount of annual ordering, purchase, shortage, and the average 
inventory in the steady-state condition. They formulated the model as MINLP. Moreover, the expected 

average inventory was calculated by two different methods and the result were compared. Diabat et al., 

(2017) developed location-inventory problem proposed by Sadjadi et al., (2015). The objective is to 
determine the number and location of DCs, the allocation of retailers to DCs, and the size and timing 

of orders for each DC. Due to uncertain demands and lead times, they utilized a queuing approach for 

calculating expected average inventory in each DC. To solve the presented problem, they proposed 

simulated annealing and the direct search method.   

1-2- Inventory problems with uncertain demands 

   Berman and Kim, (2004) presented an optimal inventory control problem with uncertain demands 

and lead times with an outside supplier. The authors formulated the model as a Markov decision 

problem with continuous review policy, which maximized the facility's benefit subject to the system's 
costs and analytical examination of how the changes in system parameters affect the optimal profit.         

Mak and Shen, (2009) studied the problem of designing two-level spare parts inventory system. The 

model consists of a central plant and some service centres with stochastic demand. The manufacturing 
process is modelled as a queuing system in the central plant. The model was formulated as a MINLP 

with system costs minimization as the objective function. Since the problem is NP-hard, a Lagrangian 

heuristic approach was proposed. Atamtürk et al., (2012) studied facility location and inventory 

management problems with stochastic demand. They considered incapacitated facilities, capacitated 
facilities, correlated demand, stochastic lead times and multi commodities in their modeling. Saffari et 

al., (2013) considered the queueing approach to model the inventory problem with continuous review 

policy, lost sales, stochastic demands and lead times, which followed the Poisson process and 
exponential distribution.  

   Rashid et al., (2015) presented an inventory control system with stochastic demand and supplier's 

service time. The queuing theory was used to tackle the stochastic nature of the model for single 

product; then, the proposed model was extended to multi-item inventory model. According to the 
complexity of this problem, a new heuristic algorithm was developed. Wang (2018) proposed an 

inventory control model for an incapacitated warehouse. They considered two-stage and three-stage 

supply chains with uncertain demand and lead time. The objective was to minimize total system costs. 
They proposed an exact algorithm to solve the problem. They compared the result from the given model 

with three decision-making strategies: optimistic, moderate, and pessimistic. 

1-3- Inventory problems with perishable product 
   Lee et al. (2014) studied a perishable inventory system. The objective was to maximize the profit of 
the system under a linearly decreasing price structure assumption. They showed that last in, first-out 

(LIFO) policy is optimal with a linearly decreasing price structure and it has a better performance than 

first-in, first-out policy (FIFO). White and Censlive, (2015) considered the effects of shelf life on a 
three-level supply chain's performance with sudden demand sales rate. It assumed that each product 

with a shelf life follows the FIFO policy. They showed a significant reduction in the number of discards 

leading to reduce carbon footprint and wasted resources. Kim et al., (2015) presented a multi-period 
newsvendor model to optimize the total logistic cost for perishable products. The model was formulated 

as multi-stage stochastic programming with integer decisions-the progressive hedging method used to 

solve the model efficiency. Hiassat et al., (2017) studied a location-inventory-routing problem for 
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perishable products in such a way that location decision was added to the inventory-routing problem to 
make it more realistic. Since the problem is NP-hard, they proposed a GA based heuristic to solve it. 

Azadeh et al., (2017) presented an inventory-routing problem with a single perishable product. Since 

the problem is NP-hard, a GA based heuristic is used to solve the problem.  Rafie-Majd et al., (2017) 

proposed an inventory-location-routing model with multi-perishable products in a three-level supply 
chain. They considered heterogeneous vehicle fleet and multiple DCs in the supply chain. A Lagrangian 

Relaxation Method was used to solve the problem.  

   Considering the given review on the literature of location-inventory problems shows that previous 
researchers do not study the assumption of restrictions on storing different types of perishable products 

in the identical DC while it is an important issue when designing and allocating a DC to a family of 

products. Furthermore, uncertainty of demand and lead time, makes the model closer to the real life 
applications. On the solution method side, application of GA and ICA based heuristics and comparing 

them can be for solving the large-sized instances can be another feature of the current paper.  

   The remainder of this paper is organized as follows: In section 2, we define the problem and then 

formulate it. In section 3, the solution methods are proposed. In section 4, numerical results are 
presented and the two proposed heuristics are compared. Finally, conclusions and recommendations for 

future research are presented in section 5. 

2- Problem definition and formulation 

2-1- Problem definition 
   This paper studies a three-level supply chain including a Producer, multiple potential DCs, and A 

retailers. The locations of the producer and retailers are known. In the first level, the producer 

manufactures multiple perishable products with independent demands; the producer gives the products 
to a set of retailers in different areas via some DCs. Since the establishing and operating cost of each 

DC is high, have considered restrictions on storing different perishable products in each DC. DCs 

receive orders from the retailers and place orders at the producer. The structure of the understudy supply 

chain is shown in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

The major assumptions of the model are: 

- Our three-level supply chain includes a producer, multiple distribution centres and multiple 

retailers 
- A number of perishable products such as food and medicine goods are considered with a 

specific shelf life  

Fig 1. Structure of the understudy supply chain 
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- In the first level, the producer manufactures multiple perishable products with independent 
demands; the producer gives the products to a set of retailers in different areas via some DCs. 

There exist restrictions of storing different perishable products in distribution centres 

-  Demand and lead time are considered to be uncertain 

- The locations of DCs should be determined, while the locations of the producer and retailers 
are known 

2-2- Notation   

The following notations are used in order to model the problem: 

Sets: 

K      Set of potential DCs, 

S      Set of products, 

I       Set of retailers. 

Parameters: 

Cks     Unit purchase cost of product s from the producer by DC k 

πks      Unit shortage cost of product s at DC k 

Fk       Fixed cost of locating a DC at location k 

Aks     Unit ordering cost of product s at DC k 

hks     Unit holding cost of product s at DC k 

Uks     Storage capacity of product s at DC k 

shf
s
    Shelf-life time of product s 

λis
'

       Demand rate of product s at retailer i  

μ
s
       Exponential distribution parameter of lead time of product s 

𝑀       A big number 

Tkis    Unit transportation cost from DC k to retailer i for product s 

β       Weight factor associated with transportation cost       

θ       Weight factor associated with inventory cost 

𝑉𝑠      Minimum service level of product s 

p
s
      Maximum number of DCs that can hold product s  

Xks    Is equal to 1 if it is possible to hold product s in DC k; 0, otherwise 

The major decisions of the given model are as follows: 

a- Number and location of each DC. 

b- Best allocation of retailers to opened DC(s) based on restrictions on storing different 
perishable products. 

c- Reorder point and demand rate of different products at each DC.  
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Based on the given descriptions, the following decision variables are given: 

Zk    Is equal to 1 if DC k is opened; 0, otherwise. 

Ykis  Is equal to 1 if retailer i is assigned to DC k for replenishing product s; 0, otherwise. 

Sks   Reorder point at DC k for product s 

Q
ks

  Demand rate of DC k for product s 

2-3- Problem formulation 
     𝑋𝑘𝑠  represents a Matrix with k rows and s columns. Its arrays are set to one or zero depending on 

what kind of product can be stored in each DC. For example, as figure 2, the first product can be stored 
in the first and second potential locations for the DCs, while, the second products can be stored in the 

second and third potential locations for the DCs.  

 
 

 

 

 

 

 

 

 

 

    We utilized a continuous-time Markov chain for modeling the on-hand inventory levels at each DC 

for each product. Markov chain is a powerful analyzing tool for modeling uncertain inventory problems 

(Markov and Models, 2006; Diabat, Dehghani and Jabbarzadeh, 2017). Initially, we formulate on-hand 

inventory level for each product at each DC based on a Markov chain. Each DC places order at the 

producer according to the continuous review policy which is represented by (Sks.Qks
), where Sks is the 

reorder point, and Q
ks

 is the reorder quantity of product s. When on-hand inventory for each product 

becomes equal or less than 𝑆𝑘𝑠, the DC places an order at the producer with size of Q
ks

. We assume that 

(Sks>Q
ks

) in order to prevent permanent shortage. In each DC, the on-hand inventory level can be 

changed between 0 and (Sks+Q
ks

). Figure 3 shows the states of on-hand inventory level for product s 

at the DC k.  

 

 
 

 

 

 

 

 

Fig 2. Representation of restrictions on storing products in each 

DC for each product by Matrix of Xks 
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   Let 𝐼𝑘𝑠(𝑡)represent the on-hand inventory level at time t in DC k for product s. Thus {𝐼𝑘𝑠(𝑡); 𝑡 > 0} 

with state space 𝐸𝑘𝑠 = {𝑄𝑘𝑠 + 𝑆𝑘𝑠 , 𝑄𝑘𝑠 + 𝑆𝑘𝑠 − 1, … , 1, 0} is a Markov process. Therefore, the 

probabilities of transitioning from one state to another state in a time unit can be obtained as in 

equations (1)-(2) 

Pks(i, j, t)= Pr  [Iks(t)=i| Iks(0)=i]                                  i, j ∊Eks                                                             (1) 

Pks(j)= lim
t→∞

Pks(i ,j, t)                                                                                                                             (2) 

By equating the input and output rates of each state in Figure 3, the following equilibrium equations are 

obtained as in equations (3)-(7). 

μ
s
p

ks
(0)=λkspks

                                                                                                                                       (3) 

                                                                        

(λks+μ
s
)p

ks
(j)=λkspks

(j+1)                                         1≤  j ≤Sks                                                             (4) 

                                 

λkspks
(j)=λkspks

(j+1)                                                  Sks+1≤ j ≤Q
ks

-1                                                   (5) 

                       

λkspks
(j)=λkspks

(j+1)+μ
ks

p
ks

(j-Q
ks

)                           Q
ks

≤ j ≤Sks+Q
ks

-1                                               (6) 

                                                                                                                             

λkspks
(Sks+Q

ks
)=μ

s
p

ks
(Sks)                                                                                                                     (7) 

 

Where p
ks

(𝑗)denotes the steady-state probability that the inventory level of product s will be equal to 

level j at DC k. Equations (3)-(7) based on the Markov process properties, ensure that the input and 

output rates for each state are equal. By solving the equations (3) - (7), we achieve to equations (8) - 

(11). 

𝑝𝑘𝑠(𝑗) = (1 +
𝜆𝑘𝑠

𝜇𝑠
)

𝑗−1 𝜇𝑠

𝜆𝑘𝑠
𝑝𝑘𝑠(0)                                 1≤ j ≤Sks                                                          (8) 

                                                                                 

p
ks

(j)= (1+
μs

 λks

)
Sks μs

λks
p

ks
(0)                                         Sks+1≤ j ≤Q

ks
                                                     (9)                                           

                                                                   

p
ks

(j)= [(1+
μs

λks

)
Sks

- (1+
μs

λks

)
j-Q

ks
-1

] (
μs

λks

) p
ks

(0)           Q
ks

+1 ≤ j ≤Q
ks

+Sks                                          (10)                                                                                                                                                                                            

 

Fig 3. The on-hand inventory states at DC k for product s with demand rate of λks and service 

rate of 𝜇𝑠 
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p
ks

(0)=
λks

λks+Qksμs(1+
μs
λks

)
Sks

                                                                                                                     (11)                                                                                                            

 

Where p
ks

 represents the probability of steady state where the inventory level of product s will be equal 

to 0 at DC k. The other performances measures computed as follows: 

Rks represents the number of reorders of product s at opened DC k; it is calculated by equation (12). 

Each DC places order at the producer when the inventory level of product s is equal or less than(Sks+1).  

Rks=λksp(Sks+1)=μ
S

(1+
μs

λks

)
Sks

p
ks

(0)                                                                                                (12)       

Γksrepresents he number of lost sales of product s at opened DC k; it is calculated by equation (13). 

When the inventory level for of product s in DC k is equal to 0, receiving demands are lost. 

Γks=λkspks
(0)                                                                                                                                        (13)                                                                                                                              

MIksrepresents the expected amount of average inventory level of product s in the steady-state and is 

calculated by equation (14). 

MIks= ∑ (jp
ks

Q
ks

+Sks

j=0

(j))                                                                                                                           (14) 

By replacing p
ks

(j) in equation (14) with its equivalent in the aforementioned equations, we can obtain 

Equation (15). 

MIks=

Pks(0)(m2 (
Sks

2
+SksQks

+
Sks

2

2
) -

λks(λks+μ
s
)

Qksλks
Sks+1

-m3+Q
ks

μ
s
(λks+μ

s
)

Sks
+m1-Q

ks
λks

Sksμ
s

λks

Qksλks
Sksμ

s
2 (

λks+μ
s

λks
)

Qks

λks

 

+
Pks(0)(λks

Sks+1
-m3+m1)

λks
sksμ

s

+

Pks(0)μ
s

(
Q

ks
(Q

ks
+1)

2
-
Sks(Sks+1)

2
) m2

λks

                                                 (15)    

 

Where m1.m2 and m3 are obtained from equations (16)-(18).                                                                                                                                                                                                                   

m1=Sksμs
(λks+μ

s
)
Sks                                                                                                                            (16)                                                                                                                 

m2= (1+
μS

λks

)
Sks

                                                                                                                                    (17)                                                                                                                           

m3=(λ
ks

)(λks+μ
s
)
Sks                                                                                                                              (18)                                                                                                             

λksrepresents demand rate of product s at DC k; it is calculated by equation (19). 

λks= ∑ y
kis

λis
'

i

                                                                                                                                 (19) 

                                                                                                                                                                                                               

The objective function of the model consists of the following components as in equations (20) - (22): 
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The total cost of locating DCs is obtained from equation (20). 

∑ 𝐹𝑘𝑍𝑘          

𝑘

                                                                                                                                     (20) 

                                                                                            

The expected total inventory costs is obtained from equation (21). It consist of the holding, ordering, 

shortage, and purchase costs for all products in all DCs. 

∑ ∑ Xks(hksMIks+AksRks+ΠksΓks+CksRksQks

k

)         

s

                                                                     (21) 

Total Transportation cost can be calculated by equation (22). 

∑ ∑ ∑ XksTkisykis
λis

' (1-p
ks

(0))

s∈Si∈Ik∈K

                                                                                                  (22) 

The optimization model is formulated as in equations (23)-(34). 

Min TC: ∑ FkZk

k

+θ ∑ ∑ Xks(hksMIks+AksRks+ΠksΓks+CksRksQks

k

)

s

 

              +β( ∑ ∑ ∑ XksTkisykis
λis

' (1-p
ks

(0))
s∈Si∈Ik∈K

                                                                                (23) 

                                                               

S.t: 

∑ y
kis

k∈K

=1                           ∀ i∈I. ∀ s∈S                                                                                            (24) 

∑ y
kis

i∈I

≤M×Zk                    ∀ k∈K,  ∀ s∈S                                                                                         (25) 

∑ λis
'

y
kis

i∈I

=λks                     ∀ k∈K, ∀ s∈S                                                                                          (26) 

Xks(Q
ks

+Sks)≤Uks               ∀ k∈K,  ∀ s∈S                                                                                         (27) 

 

(1-p
ks

(0)) ≥V s                   ∀ k∈K,  ∀ s∈S                                                                                         (28) 

   

(Q
ks

+Sks)

λks

≤shf
s
                   ∀ k∈K,  ∀ s∈S                                                                                         (29) 

                                                                                                                    

1≤ ∑ ZkXks≤p
s

k∈K

                   ∀ s∈S                                                                                                        (30) 

                                                                                          

Sks+1≤Q
ks

                            ∀ k∈K, ∀ s∈S                                                                                          (31)                                                          
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y
kis

∈ {0.1}                             ∀ i∈I, ∀ k∈K,  ∀ s∈S                                                                             (32)                                              

Zk∈{0.1}                              ∀ k∈K                                                                                                      (33) 

 Sks.Qks
 ≥0                           Sks and Q

ks
are Integer         ∀ k∈K.  ∀ s∈S                                            (34)   

Equations (8)-(19)  

   The objective function (23) minimizes the total costs with the terms described earlier. Constraint (24) 

states that each retailer must be assigned to only one DC for replenishing each product. Constraint (25) 

guarantees that each retailer is assigned to merely the opened DCs. Constraint (26) states that each DC's 
demand rate for each product is equal to the sum of the demand rates of its assigned retailers. Constraint 

(27) guarantees the capacity limitations according to the constraint of facilities for holding products in 

each DC for each product. Constraint (28) states that the minimum service level of each product at each 
DC. Constraint (29) is for the shelf-life time of each product at each DC. Constraint (30) gives the 

maximum number of DCs which are assigned for each product noting that at least one DC should be 

assigned to each product. Constraint (31) makes sure that the order quantity of each product at each DC 

is at least one unit higher than the reorder point. Constraints (32), (33), and (34) give the status of the 

decision variables of the model. Equations (8)-(19) are also considered in the model. 

3-Solution algorithms 

    Since the problem is NP-hard, two heuristics based on GA and ICA are proposed to solve the 

problem. 

3-1- Genetic Algorithm (GA) 
   GA starts with an initial population; each individual in the population is called a chromosome and has 

three operators including mutation, crossover, and selection. 
 

3-1-1- Chromosome representation in GA 

   The most important part of the GA is the chromosome structure. A chromosome is a tool for defining 

a proposed solution for the problem that the GA is trying to solve. Matrix notations are used for 
demonstrating the chromosomes. In this paper, due to the impossibility of displaying all the variables 

in one matrix, each chromosome consists of three matrices.  Figure 5 is an example of a chromosome, 

in which the number of potential locations for DCs is three, the number of retailers is six, and the 
number of products is two.  

   The decision variable Ykis gives the best assignment of retailers to the opened DCs based on the 

limitation of facilities in holding products. For the decision variable Ykis, a matrix with s columns and 

k × i rows is generated. In this matrix, the third DC is open.  As shown in figure 5, the matrix Ykis 
indicates that the retailers of zone 1, 2, 3, 4, 5, and 6 are assigned to the third DC for both products. For 

the decision variable Sks the matrix s × k is generated. This matrix shows the reorder point for the 

products based on the matrix Xks. The matrix Sks in Fig. 5 indicates that the reorder points for the first 
product in the second DC and for the second product in the first potential DC are zero because there are 

holding restrictions for them. Furthermore, the matrix Q
ks

 gives the order quantity for the products 

based on the matrixXks given in figure 4. For example, the order quantity for the first product in the 

second DC is eleven. 

https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
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3-1-2- GA operators:  

In this section, we describe the applied operators of GA based heuristic. 

Selection: the roulette wheel mechanism is usually used for selection in GA to select the potential 

higher quality solutions. Suppose that the fitness value of chromosome i, p
i
 in each population is given 

as 

 ( p
i
=

e
-β

ci
cworst

∑ e
-β

ci
cworsti

) 

Fig 5. The representation of the chromosome with two products, six retailers and three DCs 

Fig 4. Representation of restrictions on storing products in each DC 

for each product by the matrix Xks 

https://en.wikipedia.org/wiki/Genetic_algorithm
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where 𝛽 is a constant parameter and represents the selection pressure, cworst and ci represent the 
maximum cost of a chromosome in the population (i.e. the chromosome with worst fitness value) and 

the cost of chromosome i, respectively. Considering F as the sum of the addressed fitness values as 

F= ∑  p
i

npop

i=1   (npop represents the number of population), then Ai=p
i
/F gives the probability of selecting 

chromosome i.  

 
Crossover: Crossover is used to combine parental genetic information to produce new offspring. In this 

step, parents are selected with a roulette wheel selection strategy. The crossover rate is shown by 

Pcrossover. Here, the two-point crossover is used. The genes between these two points are swapped 
between the parents and the off springs are obtained as shown in figure 6. Since each chromosome 

consists of three matrices, the crossover operator is randomly applied to one of them with equal 

probabilities. 

 

 

 

 

 

 

 

Mutation: Mutations occurs randomly with equal probabilities in one of the three matrices of each 

chromosome with the probability Pmutation. The genes selected for the mutation change within the 

allowable range of each variable. According to figure 7, mutation occurred randomly in the matrix Q
ks

. 

 

 

 

 

 

 

3-2- Colonial competition algorithm   

   ICA was presented by Atashpaz-Gargari and Lucas (2007). This algorithm starts with an initial 

population; each individual in the population is called a country. Countries in the ICA are the 

counterpart of chromosomes in GA. The main operators of this algorithm are the assimilation and 

revolution processes. The steps of this algorithm are given in the following: 
 

3-2-1- Empire formation  

   ICA starts with an initial population. Several of the best individuals of this population, called 

countries, are picked up as the imperialist states based on the profit function; the rest of the population 
are called the colonies of these imperialists. Based on the roulette wheel selection method, the colonies 

of the initial population are divided among them. Any empire that does not improve in the imperialist 

competition will be diminished. 

 

Fig 6.  Crossover application on order quantity matrix 

Fig 7.  Mutation application on order quantity matrix 
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3-2-2- ICA operators 

   The operators of ICA are as follows:  

Assimilation process: Assimilation makes the colonies of each empire get closer to the imperialist state 
in the optimization search space. This is performed by moving the colonies toward their imperialists as 

shown in figure 8 for the matrix Q
ks

. Each colony moves toward the imperialist by Na which is a random 

element in each row of the matrix as in equation (35) in which assimilation is applied. 

Na~rand(1:b. ceil(b×β))                                                                                                                     (35)   

In equation (35) parameter β is the assimilation coefficient that is a positive number less than one; 

furthermore, a and b are the number of rows and columns in the matrix, respectively.  

 

 

 

 

 

 

 

Revolution process: This step helps the solution not to get trapped in the local optimum as shown 

in figure 9. The revolution rate for each colony, Prevolution is calculated, then a random number in a 

uniform range [0, 1] is generated; if the generated random number is lower thanPrevolution, the revolution 
is performed. Parameter Nmu calculates the revolutions for imperialists for each matrix of decision 

variables as in Equation (36); it is the total number of output vectors in which a revolution is performed 

randomly. Parameter mu is a positive number less than 1. If the imperialist's fitness value becomes 

better than the earlier value, the revolution is performed.  

Nmu=Rand up(mu*output vector size)                                                                                                 (36) 

 

 

 

 

 
 
 
3.2.3. Total power of an empire 

The total power of each empire is defined as in equation (37): 

TCn=Cost (Imperialist)+ ξ(mean (Cost(colonies of empire))                                                            (37) 

Where ξ is a positive factor less than one.  

Fig 8. Assimilation process for a colony toward the imperialist 

 

Fig 9. The revolution process of the colony on second part of the output vector 

 

a local optimum. 
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4- Numerical results 

4-1- Parameter tuning  
   Since the performance of metaheuristic algorithms depends on their parameters' value, in this paper, 
the Taguchi method is used to tune the parameters of GA and ICA based heuristics. According to 

research that conducted by Ahmadzadeh and Vahdani, (2017), we consider different levels for the 

parameters in both algorithms; then, based on the Taguchi method, which uses the concept of "signal 

to noise ratio" (S/N), the best level for each parameter is obtained. Table 1 and 2 show the levels for the 

GA and ICA based heuristics. 

Table 1. The parameters levels for the GA based heuristic 

 

 

 

 

 

 

 

Table 2. The parameters levels for the ICA based heuristic 
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The means of S/N ratio at each level of the GA and ICA parameters are illustrated in figures 10 and 11, 

respectively. 

The optimal levels for the parameters of GA turn out to be: 

Npop=150 ,Pcrossover=0.6,Pmutation=0.2 .α= 1, Max it=300. 

The optimal levels for the parameters of ICA turn out to be:  

Npop=200 , α= 1, β=0.3, p
revolution

=0.1, mu=0.04, ξ=0.2, Nimp=20, Max it=200.  

 

4-2-Numerical examples 
   We design a number of test problems to study the performance of the model and given heuristics. We 

generate the values of parameters as in table 3, where U [a, b] means the parameter’s values is randomly 

generated in the uniform range of a and b. The unit time for the shelf-life time is considered equal to 
one day for each product. The other unit times are considered equal to one hour. 

 

Fig 10. The mean of S/N ratio at each level for the GA parameters. 

Fig 11. The mean of S/N ratio at each level for the ICA parameters. 
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Table 3.  Ranges of parameters’ values for the test problems 

 

   We have also solved a few test problems utilizing optimization package of GAMS 25.1.2 in a 
reasonable time. The GA and ICA based heuristics are used to solve large sized instances of the 

problem. The objective function values and the required time spent for solving are given as in tables 4 

and 5. 

4-3- Assessing the performance of the heuristics 
   In this section, we evaluate the efficiency of both heuristics. The stopping condition for both heuristics 

is considered the number of iterations. Based on the results from table 5, the GA based heuristics 
outperforms than the ICA one in most of the cases. 
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Table 4. Objective function values for different sizes of the problem by GAMS, GA and ICA. 
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Table 5. Time spent for different sizes of the problem by GA and ICA 
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Table 6. Objective function values for different sizes by GA, and ICA with identical running times 
 

 

 

 

 

 

 

 

   As given in table 6, for identical running times of both heuristics, the ICA based heuristic outperforms 

than GA based heuristic. Figures 12 and 13 show the variations of best solution for test problem with 

K=5, S=4 and I=65 by ICA and GA for running time equal to 180. 
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Fig 12. Variations of best solution for test problem with K=5, S=4 and I=65 by ICA 
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5- Conclusions and further researches  

   We studied a location-inventory problem considering restrictions on storing different perishable 

products with uncertain demands and lead-times. By considering the restrictions on storing products in 

each DC, inventory-holding costs are expected to decrease because only products with similar storage 
conditions are stored in each DC. Furthermore, DC establishment costs are decreased since different 

storage equipment like shelving systems are not required in each DC. Considering shelf-life time for 

products was another major assumption in the given model. The relevant literature reviews did not show 

a model with such assumptions to be studied. We have also considered other constraints such as capacity 
limitation, and service level to make the model closer to the real life conditions. A model with these 

assumptions is usable for food and medicine industries with perishable items and specialized storage 

areas because of different storage requirements for different products. For example in the food industry, 
we may have some products, which require sub-zero storage temperatures. In medicine industry, we 

can mention different temperature conditions for different types of vaccines. A clear example can be 

COVID-19 vaccines, which require different temperature conditions in their logistic systems.    
   We also developed two heuristics based on GA and ICA in order to solve the problem especially large 

sizes. To evaluate the performance of the given heuristics, a number of numerical examples were 

generated. The results showed that the proposed ICA based heuristic could produce more efficient 

solutions than the GA based heuristic when two heuristics are run in equal processing times.  
    Further ideas for extension of this research can be considering multiple producers in the higher 

echelon of the supply chain, considering other assumptions like using multi-modal transportation 

systems, considering other objectives except for the cost such as environmental issues, or reliability of 

some facilities and application of some novel heuristics to solve the problem specially, for large sizes.  

 

 

 

 

Fig 13. Variations of best solution for test problem with K=5, S=4 and I=65 by GA 
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