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Abstract 
The present scenario of supply chain management is full of uncertainty due to the intrinsic 

complexity of operating environments. A perishable products supply chain is not an 

exception and is often vulnerable to disruptive incidents throughout all stages from 
upstream to downstream. To deal with such a challenge, a resilient structure of the supply 

chain with the capability to recover from or react to disruptions is approached in this study. 

To secure the supply chain operations, we investigate a set of proactive strategies, 
including signing contracts with backup suppliers, reserving extra capacity in production 

facilities, lateral transshipment, and keeping inventory. Using a two-stage stochastic 

programming model, this study examines the extent to which supply chain responsiveness 

and resilience are supportive. The proposed model is validated through a numerical 
example, and managerial insights are derived. The computational results are based on 

three analyses: (1) extracting the relationship between the cost function and the acceptable 

service levels, (2) examining the effectiveness of different strategies in managing 
disruptions, (3) and evaluating the accuracy of the two-stage stochastic programming 

approach in comparison with other approaches. 

Keywords: supply chain management, perishable products, resilience, responsiveness, 

two-stage stochastic programming    

 

1- Introduction 
   In recent years, due to consumer preferences for features such as freshness, quality and safety, the 
production of perishable products has been recognized as one of the main subgroups in production (Dutta 

& Shrivastava, 2020). Many industries, especially for the manufacture of food and high-technology 

products, are dealing with products that are inherently perishable (Hasani, Zegordi, & Nikbakhsh, 2012). 

These products are characterized with an associated expiration date and the values of products beyond their 
expiration data will decrease significantly, and customers will have a high sensitivity to competitors’ offers. 

In general, perishable products referred to as products having at least one of the following conditions: (1) 

its quality drastically drops in proportion to the passage of time, (2) dangerous consequences are likely 
following its reduced functionality, and (3) its amount decreases gradually (Aliabadi, Yazdanparast, & 

Nasiri, 2019).  
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   Like other types of supply chains, the network design problem performs a major function in the long-term 
survival and success of supply chains dealing with perishable products. Such a problem should be addressed 

tacking into account the particular characteristics of perishable products. General cases of supply chains for 

perishable products involve a variety of decision at strategic and tactical levels concerning the location and 

size of facilities to configure the supply chain network, production planning, demand management, and 
logistics management, to name few (Khalafi, Hafezalkotob, Mohamaditabar, & Sayadi, 2020).  

   In this regard, the structure of a perishable product supply chain is more complex, and its uncertainty and 

vulnerability is high as a result of being prone to decay and damage during operations, all of which increase 
the risk of supply chain disruption (Biuki, Kazemi, & Alinezhad, 2020). 

   As supply chain networks become more complex, their vulnerability to disruption risks increases 

dramatically (Pettit, Fiksel, & Croxton, 2010). In the current competitive setting, supply chain risk 
management has been in the concentration of attention. Referring to Tang’s research, operational and 

disruption risks are two major categories of risks that supply chains are exposed to (Tang, 2006). 

Operational risks are related to those uncertainties expected in day-to-day operations and for the most part, 

are internal to the organization (e.g., variations in supply, demand, and cost and production and 
transportation equipment malfunction) (Chen, Sohal, & Prajogo, 2013). On the other hand, disruption risks 

are the outcomes of internal and external events originated from natural hazards, accidental or intentional 

acts, and could lead to disruptions to the supply chain’s functionality, goals, and performance 
(Yazdanparast, Tavakkoli-Moghaddam, Heidari, & Aliabadi, 2018). In supply chain design studies, 

investigating the effects of this type of risks in any part of the network is usually performed in terms of 

different probabilistic scenarios (Fazli-Khalaf, Naderi, & Mohammadi, 2018). Going through the real-life 
cases, it can be understood that the negative operational and financial effects in the case of occurring 

disruption risks are much severe than those in the case of operational risks. Realizing the adverse 

consequences of disruptions, companies more than ever are seeking to create or expand their activities by 

adopting resilience thinking on supply chain management. Having capability to absorb the negative impacts 
of disruptions and retain the original function and structure, can be used as a practical definition for a 

resilient supply chain (Brusset & Teller, 2017). The resilience of a supply chain severely affected by its 

structure and design. In other words, accurately design of supply chains makes organizations more resilient 
to disruption risks (Sahebjamnia, Torabi, & Mansouri, 2015). Some of the most commonly applied 

resilience strategies in the supply chain design efforts comprise: multiple sourcing which is practical when 

the uncertainty in supply is high (e.g., Namdar, Li, Sawhney, and Pradhan (2018) and Meena and Sarmah 

(2013)), contracting with backup suppliers which accepts greater costs in exchange for higher reliability of 
supply (e.g., Hosseini and Barker (2016) and Ni, Howell, and Sharkey (2018)), facility fortification which 

is effective in maintaining higher production capacity after a disruptive event (e.g., Losada, Scaparra, and 

O’Hanley (2012) and Fattahi, Govindan, and Keyvanshokooh (2017)), capacity expansion which incurs a 
capital investment that is worth paying if compensates the increase in lost sales opportunities (e.g., Caunhye 

and Cardin (2018) and Rabbani, Yazdanparast, and Mobini (2019)), pre-positioning emergency inventory 

which is useful in dealing with the potential shortages of products (e.g., Lücker and Seifert (2017) and 
Rezapour, Farahani, and Pourakbar (2017)), and controlling flow and physical complexities which manages 

the total interactions between facilities and the whole domain of the network (e.g., Sharifi, Hosseini-

Motlagh, Samani, and Kalhor (2020) and (Zahiri, Zhuang, & Mohammadi, 2017)). 

   A responsive supply chain should be capable of adaptation to disruptive situations in the supply chain 
structure. Despite the substantial research on designing and managing supply chains dealing with perishable 

products, the quantitative dependence of the supply chain responsiveness on resiliency has remained 

unclear. In fact, addressing resiliency in a supply chain environment characterized by inevitable and 
unpredictable disruptive events necessitates a modeling and optimization framework that accommodated 

dynamism and complexity. Concerning our introductory discussion, our research effort examines a new 

perishable product supply chain network considering the two mainstream topics of responsiveness and 
resiliency. The distinctive features of this problem compared to those reported in the literature are as 

follows: 
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 Jointly consideration of resiliency and responsiveness paradigms in designing a supply chain network 

dealing with perishability of products, 

 Investigating the reinforcement effect of the resiliency on the supply chain responsiveness, and 

 Both introducing and constructing proactive resilience enablers in designing a supply chain network 
dealing with perishability of products. 

   The present research attempt is developed in the following sections. Section 2 is devoted to briefly 

reviewing the relevant literature. Our problem setting is described in section 3. The mathematical 

formulation and definition of its components are given in section 4. The description of an illustrative 
example of the problem and the associated numerical results are provided in section 5. A discussion on the 

conclusions and proposals for further research in the field are suggested in the last section.    

2- Literature review 
   As mentioned previously, considering the limited shelf-life of perishable products, their supply chain is 

more complex compared to the ones associated with non-perishable products. In addition, the use of special 

refrigerated distribution vehicles is necessary to avoid quality losses of products. To support the integrated 
management of a perishable product supply chain, La Scalia, Nasca, Corona, Settanni, and Micale (2017) 

developed a controlling mechanism to manage and guarantee the safety and quality of products in 

agreement with goals of economic efficiency and sustainability. The study by Hiassat, Diabat, and Rahwan 
(2017) gave emphasis to the perishable product supply chain in defending the claim that integration of the 

decisions at strategic, tactical, and operational levels provides superior outcomes in managing supply 

chains. Dellino, Laudadio, Mari, Mastronardi, and Meloni (2018) developed a decision support system 

combining forecasting and optimization tools to support the supply of fresh and quickly perishable products. 
   In addition to food products, other perishable items have also been taken into consideration in the 

literature. Considering the perishability of blood products, Fahimnia, Jabbarzadeh, Ghavamifar, and Bell 

(2017) formulated a stochastic mathematical model in the context of supply chain network design for blood 
supply operations in disaster management. The blood supply network under investigation is designed for 

maximum efficiency (an objective function for cost minimization) and effectiveness (an objective function 

for delivery time minimization). The authors developed a hybrid solution approach that is composed of the 
epsilon-constrained and Lagrangian relaxation approaches to handle the model. Research conducted by 

Ensafian, Yaghoubi, and Yazdi (2017) incorporated the age of platelet and pattern of ABO and Rhesus (Rh) 

blood group among blood donors into the platelet supply chain to enhance the platelet transfusion services 

in terms of quality and safety factors. Zahiri, Tavakkoli-Moghaddam, Mohammadi, and Jula (2014) 
designed a transportation network applicable for organ transplant centers considering the constraint on how 

long it may take for organs to remain out of body for the transplant operation. Hosseini-Motlagh, Samani, 

and Homaei (2020) established a two-stage stochastic formulation with two conflicting objectives to 
determine location and allocation decisions as well as inventory management policies in operating a blood 

products supply chain network. Planning for the management of perishable products in the context of 

disaster management forms the subject of the research by Rezaei-Malek, Tavakkoli-Moghaddam, Zahiri, 

and Bozorgi-Amiri (2016), Tavana, Abtahi, Di Caprio, Hashemi, and Yousefi-Zenouz (2018), and 
Akbarpour, Torabi, and Ghavamifar (2020). The key issue in the pre-disaster stage is deciding about the 

renewal strategy of medical supplies, while the issue of the post-disaster stage is the distribution plan of the 

products. Also, product perishability is critical in pharmaceutical supply chains, and this importance has 
been highlighted in the research of Zahiri, Jula, and Tavakkoli-Moghaddam (2018). Finally, the 

perishability considered in the study of Hasani et al. (2012) is consistent with industries deal with high-tech 

products.   
   Multi-period supply chain models which have real-life applications should take into account uncertainty 

because input parameters change over time. Yavari and Geraeli (2019) examined a closed-loop supply chain 

for a dairy production system under the absence of perfect knowledge about demands as well as parameters 

involved in the reverse logistic chain such as return rate of deliveries and their quality in a multi-period 
planning horizon. The authors developed an innovative robust model to minimize the economic and 

environmental objectives. Imran, Salman Habib, Hussain, Ahmed, and M Al-Ahmari (2020) introduced the 
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objective of priority index maximization in the study of supply chains of perishable products under 
uncertainty to evaluate the performance measures of players involved in the supply chain domain. Onggo, 

Panadero, Corlu, and Juan (2019) applied a simheuristic algorithm, which integrated Monte Carlo 

simulation with a metaheuristic algorithm to capture the stochastic demands in an inventory-routing 

problem. Zandkarimkhani, Mina, Biuki, and Govindan (2020) addressed a bi-objective optimization 
problem in the presence of cost and lost demand minimization objectives for multi-periods and multi-

products. The authors considered demand as uncertain and uncertainty was modeled based on fuzzy theory 

and chance constrained programming.   
   Evaluation of the performance for modern supply chain networks depends on simultaneously considering 

conflicting performance metrics. Heidari-Fathian and Pasandideh (2018) approached the issue of 

sustainability in designing an organ transplant transportation network with the consideration of minimizing 
the economic and environmental impacts of the activities within the supply chain network. Chan, Wang, 

Goswami, Singhania, and Tiwari (2020) tried to achieve efficient food logistics operations by defining four 

objective functions at a time, namely minimization of the total costs, maximization of the product quality 

through offering the best possible service level to customers, maximization of the emissions from 
transportation activities, and minimization of the delivery lead time. Sahraeian and Esmaeili (2018) focused 

on the fact that customer satisfaction is inversely proportional to the waiting times in distribution of 

perishable products. In line with this view, they addressed a tri-objective vehicle routing problem which 
included objective functions to minimize the traveling costs, customer’s delays, and greenhouse gas 

emissions. Yavari and Zaker (2019) investigated the design of a supply chain network for a dairy industry, 

where electric power network failures are prevalent. Total network costs along with total amount of 
greenhouse gas emissions were considered as the performance measures in their study. 

   A number of researchers have incorporated service level constraints into classical supply chain models. 

They typically achieve optimal inventory levels for each storage location in the presence of service level 

constraints by adopting base-stock policies and developing optimal or innovative methods (Woerner, 
Laumanns, & Wagner, 2018). Ernst and Powell (1998) studied a distribution system in which the 

manufacturer incurs financial incentives to improve the service level of the retailer. Sethi, Yan, Zhang, and 

Zhou (2007) found that the two factors of optimal order quantity in the first stage and maximum expected 
profit are monotone with the target service level. They extended their analysis to the situation when order 

cancellation is permitted and the channel coordination issue. Katok, Thomas, and Davis (2008) considered 

a supplier who delivers products to a retailer through inventory holding. The supplier undertook to meet 

the meet the agreed fill rate or service level within a specified time horizon. Li, Xu, and Ye (2011) proposed 
a discount mechanism for coordination of a supply chain consisting of a vendor and a buyer who faces 

service level constraints. Jha and Shanker (2013) considered an integrated supply chain model that includes 

service level constraints corresponding to each buyer to find the optimal order quantity, procurement time, 
and buyer safety factor simultaneously. Sawik (2016) adopted two different service level measure, 

including the expected worst-case order fulfillment rate and the demand fulfillment rate to study the worst-

case optimization of service level.        
   Disruptions in supply chains are generally due to natural disasters (e.g., Elluru, Gupta, Kaur, and Singh 

(2019), Marufuzzaman and Ekşioğlu (2017), and Mari, Lee, and Memon (2014)), man-made accidents such 

as fires, strikes and terrorism (e.g., Jabbarzadeh, Fahimnia, Sheu, and Moghadam (2016) and (DuHadway, 

Carnovale, & Hazen, 2019)), and severe legal disruptions. To lessen the effect of disruptions on business 
performance, it is necessary to control the adverse effects by making full use of its favorable characteristics, 

including resilience, redundancy, robustness, and flexibility. Actually, resilience is a concept mainly 

referring to the adaptability of a supply chain network to cope with or respond to disruptive situations and 
its building is through creating redundancy, which is narrowly associated with robustness and flexibility 

(Xu, Zhang, Feng, & Yang, 2020). In order to create and promote resilience in supply chain networks and 

deal with uncertainties arising from operational risks as well as natural and man-made disruptions, Torabi, 
Baghersad, and Mansouri (2015) sought to establish business continuity plans of suppliers, strengthen 

suppliers, and cooperation with reliable suppliers. Ratick, Meacham, and Aoyama (2008) addressed a set 

covering location model for (1) deciding about the number and optimal location of reliable facilities at 



157 
 

different coverage intervals and (2) creation of backup capacities in some existing facilities. The purpose 
of the study conducted by (Hasani & Khosrojerdi, 2016) is to build a global supply chain network under 

uncertainties and interdependent disruptions for the aim of maximizing the profit after tax. To overcome 

the disruptions, adopting six resilience strategies, consisting of (1) dispersion of facilities, (2) fortification 

of the infrastructure, (3) semi-products manufacturing, (4) multiple supply, (5) inventory holding, and (6) 
use of a bill of materials were examined. The developed model by Namdar et al. (2018) integrates strategies 

such as signing contracts with backup suppliers by paying a part of the contract price in advance in exchange 

for allocating a certain amount of raw materials at an agreed price to the buyer, the ability to immediately 
buy raw materials at market prices when needed, and cooperation and visibility of the buyer and suppliers 

which is a strong way to avoid disruption risks. Rezapour et al. (2017) considered the existence of two types 

of risk, intense market competition and the risk of losing market share and low reliability of suppliers’ 
performance as their motivation for building a resilient supply chain network. They examined the three 

strategies of inventory prepositioning, planning for the use of backup capacity in suppliers, and multiple 

supply in the design phase and how they affect the improvement of supply chain performance. Schmitt and 

Singh (2012) examined the effects of inventory holding and making backup capacity for processes in a 
supply chain network that faces two types of risks, including supply disruptions and demand uncertainties. 

Khalili, Jolai, and Torabi (2017) studied the issue of integrated production and distribution planning 

assuming the vulnerability of operational facilities as well as shipment routes to the risk of disruptions. As 
strategies for dealing with disruptive events, considering additional capacity in manufacturing centers, 

planning for backup layer in shipment routes, and storage of safety stock inventory were used in this study. 

Jabbarzadeh, Fahimnia, and Sabouhi (2018) proposed a two-stage formulation for planning a sustainable 
and resilient supply chain. The supplier sustainability indices were identified, quantified, and aggregated 

and the score of each supplier was calculated using a clustering approach in the first stage. Subsequently, a 

bi-objective optimization model, with the aim of deciding on supply and marketing issues in terms of 

supplier selection and order allocation and the extent to which resilience strategies are exploited (i.e., 
making contract with backup suppliers and extending the available facilities) was developed in the second 

stage to ensure the continuity of operations in the event of a disruption. 

   The research attempts reviewed so far contains two major gaps in the context of designing supply chain 
networks dealing with perishable products. First, a clear gap is illustrated in addressing disruptive events 

by incorporating resilience enablers in the supply chain structure. In this regard, we consider policies such 

as contracting with backup suppliers, preparing extra capacity in manufacturing centers, the possibility of 

lateral transshipment between manufacturing centers, and inventory management to enhance the supply 
chain performance against disruption risks. Moreover, the joint taking into account supply chain 

responsiveness and resilience in tackling the uncertainties has not been highlighted in the previous studies 

of supply chains with perishable products. To overcome these shortcomings and fulfill the requirements 
that will be discussed in the next section, we develop a stochastic optimization model with the aim of 

achieving responsive and resilient supply chain operations at minimum costs under random location-based 

disruptions. 

3- Problem statement 
   Our optimization problem concerning production and distribution planning in a supply chain dealing with 

perishable items focuses on a four-echelon supply chain network, composed of multi raw material suppliers, 
multi manufacturers, multi distribution centers, and multi retailers. In the supply chain network, firstly, the 

raw materials are purchased from the suppliers and then converted to the final products constrained by the 

bill-of-material relations in the manufacturing centers. The delivery system is planned in such a way to 

deliver products to retailers directly by manufacturers or indirectly by distribution centers. The distribution 
centers are used to store the perishable products, until their expiration dates, to be shipped to retailers and 

satisfy their demands.  

   In the supply chain network, location-based disruptions may occur at any part of the first two echelons, 
consequently influencing the serviceability of the supply chain network. A set of stochastic scenarios with 

pre-specified occurrence probabilities are used to define such disruptions. Incorporating a number of 
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resilience strategies in the proposed supply chain network increases the adaptability of the supply chain 
network against uncertainties, these strategies are as follows:     

 

 signing contracts with backup suppliers;  

 reserving extra capacity in production facilities; 

 lateral transshipment between facilities at the same echelon; and 

 keeping inventory. 

 
   We consider the above-mentioned resilience enablers in formulating a two-stage stochastic model. A 

coordination mechanism is assumed to be performed to maximize the cost-efficiency of the supply chain 

while the minimum customer satisfaction level is satisfied. The various strategic and tactical decisions 

which are involved in this model are those associated with the configuration of the supply chain network, 
i.e., locating and sizing the new facilities, determining the level of capacity expansion in the available 

facilities, and selecting the suppliers, material requirement planning in terms of the quantity of purchases 

from different suppliers, production planning in terms of the quantity of productions in manufacturing 
centers, transportation planning in terms of the quantity of shipments throughout the supply chain network, 

as well as the lateral transshipment amounts within echelons, and the inventory planning.  

The underlying assumptions of the problem to provide a better approximation to reality are as follows: 

 The time horizon is finite.  

 In establishing new facilities, the candidate locations and possible capacities are known. 

 Both multi-product and multi-period parameters are considered in the production-distribution supply 

chain.  

 The perishable products are characterized by specific lifetime periods. 

 Deterioration has not been considered during transportation. 

 There is no demand for expired products.  

 The distribution centers face known demands. 

 The backup suppliers are not influenced by the disruptions and their capacity is infinite. 

 The inventory holding is intended in the facilities for both the raw materials and final products.  

 The material flow is permitted only between every two consecutive echelons except for lateral 

transshipments. 

 Backordering is allowed. 

4- Mathematical formulation 
4-1- Scenario-based robust optimization  
   Robust optimization, first approached by Mulvey and Ruszczyński (1995), is a potentially valuable tool 

for management of decision processes in uncertain environments. When the realizations of critical 
parameters are expressed using a set of scenarios, robust optimization is applicable to seek the favored risk 

aversion or service-level requirements. The framework is equipped with two mechanisms, namely solution 

robustness and model robustness to create solutions with less sensitivity to realizations of the scenarios. 

The former aims to keep the final solution "close" to optimal for any possible scenario, while the latter 
states that the solution must be "almost" feasible for any realization of the scenarios. With respect to the 

fact that having both feasibility and optimality conditions is unlikely in most cases, the robust optimization 

model overcomes the tradeoff between the conflicting mechanisms of solution and model robustness by 
incorporating DM’s preference.   

   Mulvey and Ruszczyński (1995) concentrated on optimization problems with two kinds of constraints, 

one of which is free of scenario-dependent parameters and called here as structural constraints, while the 
other is subject to uncertainty and known as control constraints. To formulate such constraints, variables 

with same name appear: structural variables which are not adjustable with realizations of random 

parameters and control variables which are characterized by adjustability with realization of uncertain 
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parameters. With this perspective in mind, the general structure of the robust optimization is elaborated on 

the basis of LP model (1) to (4) in the following. 

T TMin C x d y  (1) 

s.t.  
A x b  (2) 
B x C y e   (3) 
x , y 0  (4) 

    

   The key feature of this model is that some components of the model is assumed to be uncertain in terms 

of future scenarios. A set of scenarios  s 1, 2 , ..., S  with probability s  and 
s

s S

1


  is considered to 

represent the probable conditions in reality. In this regard, for each scenario s S , the set  of realizations 

 s s s sd , B , C , e  is associated with the coefficients. Also, the model encompasses both structural variables x 

and control variables sy . In better words, the objective function in equation (1) turns into random variable 
T T

s s s sC x d y    with occurrence probability s . In addition, equation (2), which is free of randomness, is a 

structural constraint, while equation (3) represents a control constraint whose components may be contained 

randomness. 
   To derive the robust optimization formulation, some modifications in the framework of model (1) to (4) 

are necessary. First of all, error vector s  is included in equation (2) for the computation of the infeasibility 

occurred in the control constraints. Then, the function of model robustness is added to the objective function 
to penalize violations occurred in the control constraints. As mentioned previously, since the robust 

optimization takes a multi-criteria objective form to provide the tradeoff between the two mechanisms, the 

reformulated objective function also includes the solution robustness function. Formulation of the solution 
robustness function can be performed in different ways; for example, Mulvey and Ruszczyński (1995) 

employed the initial objective function mean plus a constant coefficient (λ) of its standard deviation. In 

order to enable the formulation to generate a spectrum of solutions based on the tradeoff between the two 

types of robustness, the goal programming weight   is multiplied by the model robustness function. The 

robust formulation up to this point is summarized in model (5) to (10). 

   1 2 S 1 2 SMin x , y , y , ..., y , , ...,       (5) 

s.t.  
A x b  (6) 

s s s s sB x C y e ; s S      (7) 

 
2

1 2 S s s s s s s

s S s S s S

x , y , y , ..., y        

  

 
   

 
    (8) 

 1 2 S s s

s S

, , ...,     


  
(9) 

sx , y 0 ; s S    (10) 

 

   It is worth mentioning that this formulation is based on the earlier attempt by Mulvey and Ruszczyński 

(1995) to construct a robust decision-making framework. However, the presence of the quadratic term 
2

s s s s

s S s S

    

 

 
 

 
   in the formulation results in drastic computational complexity of the approach. Hence, 

the last modification is converting model (5) to (10) into a LP model. For this purpose, Yu and Li (2000) 

supplement the squared function with the absolute value function and then linearize it using their proposed 

technique that introduces a set of deviational variables in the non-negative domain per scenario ( s ). In 
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addition to the changes in the objective function, a new constraint is also needed. The LP version of the 

robust programming is presented in equation (11) to (14). 

   1 2 S 1 2 SMin x , y , y , ..., y , , ...,        (11) 

s.t.  

Equations (5), (6), (8), and (9)  

 1 2 S s s s s s s s

s S s S s S

x , y , y , ..., y 2         

  

  
      

  
    (12) 

s s s s

s S

0 ; s S   


      
(13) 

s 0 ; s S     (14) 

4-2- The proposed two-stage stochastic model  
   This section provides the notations used in the formulation of our proposed problem along with its 

mathematical formulation. 

Sets 

A  pool of suppliers, each one is represented by a A    

A A   pool of backup suppliers, each one is represented by a A   

M  pool of manufacturing centers, each one is represented by m M     

D  pool of potential locations for establishing distribution centers, each one is represented by d D      

R  pool of retailers, each one is represented by r R       

L  pool of capacity levels in establishing distribution centers, each one is represented by l L    

K  pool of raw materials, each one is represented by k K        

P  pool of products, each one is represented by p P         

T  pool of time periods, each one is represented by t T           

S  pool of stochastic disruptions, each one is represented by s S           

Parameters 

dlec  fixed cost of establishing distribution center d D  with capacity level l L     

asc  cost of signing a contract with backup supplier a A    

mac  unit cost of extending manufacturing center m M   

ijtc  unit cost of transportation from node i  to node j    

kapc  unit cost of purchasing raw material k K  from supplier a A      

pmmc  unit cost of producing product p P  at manufacturing center m M      

1

kmhc  unit cost of inventory holding for raw material k K  at manufacturing center m M       

2

pdhc  unit cost of inventory holding for product p P  at distribution center d D    

prbc  unit penalty cost for uncovered demands of retailer r R  for product p P  in each time period  

prtq  demand for product p P  by retailer r R  in time period t T      

aksv  maximum supply capacity of supplier a A  in providing raw material k K       

mpmv  maximum production capacity of manufacturing center m M  in producing product p P     
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ldv  capacity of a distribution center at capacity level l L   

islv  percentage of capacity of facility  i A M   which is disrupted under scenario s S    

muv  maximum extendable capacity of manufacturing center m M   

  acceptable service level for each customer  

1

k  lifetime of raw material k K   

2

p  lifetime of product p P     

kp  quantity of raw material k K  used in producing a unit of product p P   

  weight coefficient of strategic costs  

Decision variables 

dlX  equals to1 if distribution center d D  with capacity level l L  is established; 0, otherwise 

aY  equals to1 if a contract is signed with backup supplier a A  ; 0, otherwise   

mZ  additional production capacity in manufacturing center m M    

1

kmtsU  quantity of inventory of raw material k K  which is available in manufacturing center m M  at the 

end of time period t T  under scenario s S  

2

pdtsU  quantity of inventory of product p P  which is available in distribution center d D  at the end of 

time period t T  under scenario s S  

amkE  quantity of raw material k K  which is purchased by manufacturer m M  from supplier a A   

1

mdptsW  quantity of product p P  which is transferred from manufacturer m M  to distributor d D  in time 

period t T  under scenario s S   

2

mrptsW  quantity of product p P  which is transferred from manufacturer m M  to retailer r R  in time period 

t T  under scenario s S  

3

drptsW  quantity of product p P  which is transferred from distributor d D  to retailer r R  in time period 

t T  under scenario s S  

4

mm ktsW 
 quantity of raw material k K  which is transferred from manufacturer m M  to manufacturer m M  

in time period t T  under scenario s S  

prdtsB  a part of retailer r R ’s demand for product p P  which could not be satisfied by distribution center 

d D  in period t T  under scenario s S  
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1 2 1 2 3 4, , , , , , , , , , , 0m kmts pdts amk mdpts mrpts drpts mm kts prdts s kmts kmtsZ U U E W W W W B    

   (33) 

   The objective function of the optimization problem in equation (15) which aims to minimize the total 

costs is formulated through stochastic variables of  , , ,s s kmts kmts     , and how to calculate these variables are 

discussed in the following. Equation (16) calculates the stochastic variable 
s  in the objective function 

formulation, and includes cost of facility establishment, cost of additional production capacity preparation, 

and cost of contracting with backup suppliers in the first term, raw material supply costs in the second term, 
production and inventory holding costs in the second two terms, penalties for backordered demands in the 

fifth term, and transportation costs in the sixth terms. Equation (17) is similar to equation (13) and calculates 

the values of 
s . Equation (18) states that establishing more than one facility at each candidate location is 

not allowed and if such a facility is chosen for construction, its capacity is limited by a set of capacity levels. 
Equation (19) takes care of the maximum extendable production capacity in incorporating one of the 

reliance enabler strategies in the network structure. Equations (20) - (23) enforce the capacity limitation of 

facilities associated with suppliers, manufacturers, and distributors, respectively. Equation (24) considers 
the possibility of lateral transshipment between manufacturing centers. Equations (25) and (26) are the flow 

conservation law for manufacturers and distributors, respectively. Equations (27) and (28) are just to ensure 

the fact that the inventory management operations in production and distribution facilities are based on the 

limited lifetime of materials. Equation (29) declares the necessity of meeting all the demands by the end of 
the last time period. Equation (30) ensures the minimum service level of retailers. Equation (31) states that 

there should not be any backordered demand at the end of the planning horizon. Equations (32) and (33) 

determines the decision variables types in the mathematical formulation.                                        

5- Computational results 
   The applicability of the current modeling effort is tested in this section for a randomly generated 

numerical example. This example is associated with a multi-echelon supply chain network that is partly 
influenced by natural disasters. The framework of the supply chain under investigation is depicted in figure 

1. As can be understood from figure 1, there is a set of six suppliers, each of which acts as a primary or 

backup supplier with a difference in its reliability against disruptions. These suppliers offer three types of 
raw materials to the manufacturers. There are also three manufacturing centers in the network that are 

responsible for producing three types of perishable products. This possibility is recognized in the proposed 

formulation to add extra production capacity to the available manufacturing centers to strengthen them 

against possible disruptions. Then, in order to satisfy the customers’ demands, products are delivered to the 
15 retailers directly by manufacturers or indirectly by distribution centers. Actually, to lessen the 

transportation costs, it is possible to establish a set of manufacturing centers in five candidate locations and 

according to three relevant capacity levels. It is worth mentioning that our example examines four 
disruption scenarios, including a scenario without disruption occurrence and three subsequent scenarios 

with different levels of consequences on suppliers and manufacturers. The values of other parameters are 

reported in table 1. 
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Raw material shipment
Indirect product shipment

Direct product shipment

Lateral aw material shipment

 

Fig. 1 the supply chain framework in the illustrative example 

   Table 1. The uniform distribution of parameters in the illustrative example  

Parameter Distribution  interval Parameter Distribution  interval 

dlec  105 Uniform [1, 15]  
asc  102 Uniform [3, 5] 

mac  102 Uniform [1, 9] 
ijtc  10-2 Uniform [5, 10]  

kapc  Uniform [3, 5]  
pmmc  Uniform [1, 3]  

1

kmhc  Uniform [0.3, 0.6]  2

pdhc  Uniform [0.4, 0.8]  

prbc  Uniform [0.5, 0.9]  
prtq  Uniform [10, 40]  

aksv  103 Uniform [0.5, 10]  
mpmv  102 Uniform [10, 15]  

ldv  102 Uniform [10, 15]  
islv  Uniform [0.1, 0.5]  

muv  Uniform [5, 20] (%)   Uniform [50, 100] (%) 

1

k , 2

p  Uniform [2, 5]  
kp  Uniform [1, 2.5]  

   The given problem is implemented in GAMS software, and the optimal solution is calculated using the 

CPLEX solver. Figure 2 indicates the total costs required to attain a set of acceptable service levels ranged 
from 0.5 to 1. It is worth mentioning that the CPU time required to achieve each solution is lower than or 

equal to 531s. As illustrated, the objective function value of the formulation (i.e., total costs) is increased 

with increment in the service level. Therefore, the curve in figure 2 confirms the direct relationship between 

the acceptable service level of the supply chain and its associated costs. However, the changes in the 
objective function do not follow a linear pattern. More precisely, the curve can be approximately divided 

into three regions:  

(1) The acceptable service levels between 0.5 and 0.6 in equation (30) result in the same optimal solutions. 
In fact, a service level lower than 0.6 imposes great penalties for unmet demands, and it is necessary to 

balance the penalty costs with other cost components to achieve the least costs of the network, which means 

the increment of the left-hand side of equation (30) to the extent of 0.6. 
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(2) The acceptable service levels between 0.6 and 0.9 approximately follow the trend line of the curve. As 
a result of this behavior, the system planner can estimate the required budget for achieving a specific service 

level. 

(3) The service levels greater than 0.9 show the ideal serviceability of the supply chain in exchange for a 

significant increment in the investment costs of the network.  

 

Fig. 2. The objective function values for different acceptable service level 

   Figure 3 compares the expected values of the components of the objective function based on service level 

α=0.9. We call this problem the base case. It is clearly observed that a considerable portion of the total 

costs, at about 75% of the total, is associated with production costs, fixed investment costs, and raw material 

purchasing costs. In the following, we investigate the effectiveness of the four resilience enablers in 

mitigating disruption risks based on the base case. 

 

Fig. 3 The share of cost components in the cost function (the base case) 

   To evaluate the significance and effectiveness of the resilience strategies, we conduct four experiments, 

each of which lacks one of the strategies in its mathematical formulation. Table 2 reports the values of the 
cost components for each experiment along with their percentage of decrease or increase. The findings 

reveal the importance of all the strategies in capturing disruptions to maintain the supply chain’s 

responsiveness. However, two strategies of keeping inventory and contacting with backup suppliers are the 
most important ones in which their absence could increase the supply chain costs up to 11% compared to 

the base case. Note that since the acceptable service level in all the experiments is fixed at 0.8, the 

production costs are relatively similar and we avoid reporting the details of this cost component.         
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Table 2. The effect of ignoring resilience enablers on the cost components    

 Contracting with 

backup suppliers  

Capacity expansion Lateral 

transshipment 

Inventory holding 

Total costs 54,181 (↑ 8%) 52,175 (↑ 4%) 51,673 (↑ 3%) 55,686 (↑ 11%) 

Fixed costs 14,791 (↑ 21%) 13,200 (↑ 8%)  13,797 (↑ 13%) 20,270 (↑ 65%) 

Raw material purchase costs 9,373 (↓ 1%)  9,652 (↑ 2%)   10,386 (↑ 9%) 9,355 (↓ 1%) 

Transportation costs 4,985 (↑ 1%)  4,643 (↓ 5%) 4,599 (↓ 6%) 5,179 (↑ 5%) 

Inventory holding costs 5,526 (↑ 72%) 4,539 (↑ 41%) 2,325 (↓ 27%) 0 (↓ 100%) 

Penalty costs 3,684 (↓ 15%)   4,330 (↓ 0%) 4,702 (↑ 8%) 5,012 (↑ 15%)  

 

5-1- Analysis on the impact of uncertainty on the planning 

   In order to investigate the effectiveness of the robust optimization approach on the planning of the system, 

we benchmark its performance against that of the expected value approach (Maggioni & Wallace, 2012). 

For this purpose, we use the measure of Value of the Stochastic Solution (VSS) defined as the difference 

between the objective values under expected value and robust optimization approaches. In the expected 
value approach, at first, the values of the uncertain parameters are set equal to their expected values. The 

optimal values of the strategic decisions are then obtained by solving the model in presence of only the new 

scenario (i.e., the average uncertain parameters values). Using the optimal values of the strategic decisions, 
the model is solved again to calculate the objective function, this time considering all the original scenarios 

with fixed strategic decisions. This benchmarking is conducted for the most desirable solution over a range 

of variability weights. Figure 4 confirms the superiority of the robust optimization approach over the 
expected value approach. In fact, supporting the network under higher level of uncertainties justifies the 

higher planning cost of the robust optimization approach than the deterministic approaches. 

 

 

Fig. 4 The economic performance of the robust optimization approach versus the expected value approach 

6- Conclusions 
   A key issue in supply chain management is to retain its responsiveness. Resiliency is the way to reach 

supply chain responsiveness in real-world situations. With this consideration, we have suggested a new 

two-stage stochastic optimization model for supply chain networks with perishable products taking into 
account both the responsiveness and resiliency. We have quantified the customer responsiveness level 
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through the demand fill rate, which is the proportion of customers’ demands met within the corresponding 
time period. On the other hand, the resilience concept was addressed in the configuration of the supply 

chain through four proactive strategies, namely signing contracts with backup suppliers, reserving extra 

capacity in production facilities, lateral transshipment between facilities at the same echelon, and keeping 

inventory. We have also employed the scenario-based robust optimization framework to capture the 
uncertainties are stated in the form of a finite number of possible scenarios. A small-size problem was 

generated to examine the validation and effectiveness of the developed model. We have studied the behavior 

of the cost function versus the acceptable service levels and found a direct relationship between them. 
Moreover, it is observed that all the resilience strategies are effective in achieving cost-efficiency at a pre-

specified service level. Finally, the robust optimization approach was compared with the expected value 

approach. The obtained results support the accuracy of the stochastic programming approach. As a future 
research direction, it would be worth to examine the influence of other resilience strategies in designing a 

supply chain network. In addition, machine learning techniques can open new perspectives in preparing for 

supply chain disruptions. The authors also highlight the need for updating the dataset with information 

associated with a real-world case study.         
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