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Abstract 
In this paper, a new integrated mathematical model for production and distribution 

planning is presented to minimize tardiness and transportation costs. A mixed-

integer linear programming (MILP) formulation is developed for the problem 
which consists of two parts. First, the production scheduling in a hybrid flow shop 

(HFS) environment with identical machines in each stage, and then, the delivery of 

completed jobs with a fleet of vehicles that have the same capacity. Due to the NP-
hard nature of the problem, a new metaheuristic approach based on Particle Swarm 

Optimization Algorithm (PSO) and Genetic Algorithm (GA) is presented to solve 

the integrated problem. GA’s operators are used to update the particle position of 

the PSO algorithm. The algorithm uses dispatching rules to represent the initial 
solution and searches in the solution space including active schedules. To 

investigate the efficiency and effectiveness of the proposed method, numerical 

studies are carried out with random problems. The computational results show that 
the proposed solution approach yields fairly good results in comparison with the 

PSO versions in the subject literature. The algorithm is capable of generating 

relatively good solutions for sample cases. 

Keywords: Integrated production and distribution scheduling, hybrid flow shop, 

vehicle routing problem, particle swarm optimization algorithm, genetic algorithm. 

 

1-Introduction  
   There is intense competition for companies that are influenced by their customer demands to find 

heuristic methods as keeping costs down and staying competitive, while they are providing excellent 

customer service. Due to this global environment complexity, scheduling and transportation problems not 

only can reduce costs but also ensure the service quality and satisfaction in the business. The HFS 
environment is one of the development problems of the scheduling and sequencing models, in which 

various production stages are grouped in series, and jobs are processed on the machines respectively. 

Each component of each product can be manufactured by a machine, and if there are more than one 
particular machine which are located in a stage as parallel lines, the subject of machine allocation will 

also arise. Tardiness costs play a pivotal role in production costs in a HFS production environment; in 

fact, transportation costs have a significant share in the final cost of goods. Therefore, the optimization of 
the distribution system is one of the main goals of the companies. In the real world, where orders size is 

smaller than the vehicle's capacity, allocating one or more orders to a vehicle is possible. Vehicle routing 

will be used to minimize tardiness cost and transportation costs. 
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   In classic supply chain management, various activities optimization, such as the purchase of raw 
materials, and the production and distribution of the finished products, are carried out individually. 

However, with the improvement of optimization methods and increasing the computing speed, it is now 

possible to use integrated models and simultaneously plan the levels of the supply chain. One of the most 

important advantages of integrated models is the possibility of using the constraints and the various 
objective functions, which lead to a variety of proposed models. In the real world and real goods 

production processes such as foods, pharmaceutical, and medical production, chemical and petrochemical 

production, ceramic, clothes, semiconductors, electronics manufacturing, and airplane engine production, 
not only their production environment being an HFS, due to the aforementioned reasons, consideration of 

the vehicle routing while solving the production scheduling problem can reduce production and 

distribution costs specially tardiness costs. Therefore, it seems necessary to consider integrated HFS and 
VRP models together. 

   In this paper, a mixed-integer programming (MILP) model is presented that includes production 

scheduling, and the goal is to optimize an integrated scheduling problem for the HFS and the distribution 

and vehicle routing at the operational level. In the literature, scheduling and routing problems often deal 
with problems with the single-machine production environment or parallel machines and examine the 

flow shop (FS) environment with single-machine processes. According to our knowledge, this is the first 

attempt to consider the HFS scheduling with parallel identical machines at each stage, and VRP together. 
The vehicle capacity constraints are also considered for the first time in an integrated scheduling 

environment for HFS and VRP. The goal is to minimize the tardiness costs of delivering the client’s job 

and transportation costs. To solve the integrated problem, a hybrid PSO algorithm is used. The proposed 
algorithm is a combination of the PSO algorithm and the GA algorithm, and the GA’s operators are used 

to update the particle position of the PSO (Pan et al, 2008). The algorithm also used the EDD and ERT 

rules for the display of the initial solution section and searches in the solution space including active 

schedules. Finally, numerical analysis is used to show the performance of the proposed algorithm. 
   The paper is organized as follows: In the next section, the literature on integrated production scheduling 

and distribution models will be reviewed. In section 3, the problem considering is fully defined. In section 

4, a metaheuristic algorithm is proposed to solve the mathematical model and in section 5, the 
computational results are presented. Eventually, in the final section, the ultimate conclusions and topics 

for future research will be presented. 

 

2-Literature review 
   An overview of the most important models of mathematical planning for HFS scheduling and vehicle 

routing is presented. Based on the review of existing studies, a framework for the production scheduling 
and vehicle routing consists of three main steps: the problem definition and the production system 

characteristics, the model design, and the solution method. 

   Karimi and Davoudpour (2015) have scheduled the production and distribution of the supply chain with 
related factories, including the supplier and the manufacturer. These components of the chain are grouped 

in series. The jobs move in batches. The number of categories is not limited, but the capacity of each 

category is limited. The goal is to balance the transportation cost and the tardiness penalty. The branch 
and bound method is presented for the problem. Chieu Ta et al. (2015) have presented the problem of 

integrated FS scheduling with multiple machines and distribution and vehicle routing by studying a case 

in the real world and the chemotherapy industry. Only an unlimited capacity vehicle is available for 

delivery. The goal of the problem is to minimize total tardiness. A greedy heuristic algorithm based on a 
taboo search is proposed to solve the problem. Rohmer and Billaut (2015) have considered the integrated 

production scheduling problem with the two factors of the manufacturer and the logistics company. This 

production environment is a FS and the purpose of the problem is to minimize a cost function consisting 
of inventory costs, vehicle costs, and tardiness penalties. Vehicles have a fixed departure date. Their 

number and capacity are unlimited. Heuristic algorithms are based on the due date and the search for 

neighborhood solutions). Johar et al. (2016) have proposed a production and distribution planning 
problem. The objective function involved minimizing the total weight of transportation costs and the 
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tardiness penalty. The problem posed by Lacomme et al. (2016) involved the integrated production 
scheduling problem and transportation with limited capacity and short lifespan products with several 

vehicles. Armstrong et al. (2008) presented a problem of producing and distributing perishable materials 

with single machine production and a vehicle with time-window; the goal is to find a subset of customers 

that can help maximize demand-supply. Alvarez et al. (2015) suggested a multifactor approach for 
production planning with parallel machines and dynamic distribution with time-windows in a supply 

chain.  

   Amorim et al. (2013) determined the size of production batches in job shop production for systems in 
which they are considered to be perishable products. In this research, production is carried out in the 

environment of parallel vehicles and carriers along with the routing of similar vehicles with limited 

capacity. Chen et al. (2009) presented a tactical and operational nonlinear mathematical model taking into 
account the production planning and vehicle routing for perishable food products in a two-stage, single-

period, multi-retailer form. Low et al. (2014) have presented an integer nonlinear programming model 

and two adaptive genetic algorithms for the problem of single-machine production and routing of 

heterogeneous vehicles. Ulrich (2013) merged production and distribution schedules to minimize total 
tardiness. Kumar et al. (2015) considered a VRP that simultaneously examined the problem of single 

machine production and routing with limited-capacity vehicles. Ramezanian et al. (2017) have studied the 

simultaneously planning of production and delivery operations as major and important operations in the 
production system with an integrated view. Moons et al. (2017) focused on production and distribution 

planning problems that explicitly address the decision of vehicle routing in the delivery process. The 

literature on integrated production planning and VRP are reviewed and categorized.  
   As mentioned, the goal of this paper is to integrate the HFS scheduling, distribution, and VRP following 

the objectives of minimizing production and distribution costs. In the literature, scheduling and routing 

problems often deal with problems with a single-machine production environment or with parallel 

machines. In this paper, is attempting to consider the HFS scheduling with parallel machines at each 
stage, and integrating its scheduling with limited capacity vehicle routing. This problem has not been 

studied so far, and the need to consider it is felt. In this paper, a MILP model is presented for production 

scheduling in the HFS environment. At each production stage, several identical machines work in parallel 
with each other. The jobs enter the first stage with prioritization, and they pass the production stages 

accordingly. Machines are not idle until a job is available. After the production completion, the jobs are 

delivered to the customers using limited capacity vehicles. The purpose of the model is to minimize 

tardiness costs and transportation costs.  
   Given that the problem of the HFS is included in NP-hard problems (Gupta, 1988), as well as the 

vehicle routing problem is included in NP-hard problems (Prince, 2004), so the integrated problem, which 

includes production scheduling in the HFS environment and vehicle routing, also is NP-hard, and if the 
problem dimensions are large, it is not possible to reach the global optimum in a reasonable time. To find 

the solution for the integrated problem in less time, a combination of PSO and GA algorithms is 

proposed, and the GA’s operators are used to update the particle position of the PSO algorithm. The 
advantages of the PSO algorithm include a simple structure, immediately accessible for practical 

applications, easy implementation, speed to acquire solutions, and robustness that are sustained in the 

literature. Also, GA is one of the most popular metaheuristic algorithms which have been used in many 

combinatorial optimization problems. The main property of this algorithm is related to the knowledge 
sharing between individuals in the population using a crossover operator. As a general solution method, 

GA is extensively applied to solve most of the scheduling and routing problems (Diveev and Bobr, 2017). 

The proposed algorithm uses the EDD and ERT rules in the representation part of the initial solution and 
searches in the solution space including active schedules. This algorithm is presented for the first time in 

the literature of scheduling problems. Finally, numerical analysis is performed to evaluate the 

performance of the proposed algorithm, compared to three versions of PSO, IPSO, and the results are 

examined.  
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3-problem definition 
   The assumptions, notations, parameters, variables and model of the problem are defined as follows. 

Given the notation is provided by Chen (2010), we define the problem as HFm || V (∞, K), routing | 𝑛 | γ, 

in which the field 𝛼 represents the general HFS scheduling problem and there are 𝑚 machines at each 

production stages. The field β is empty because no constraint is defined in the schedule. The next section 

includes V (∞,𝐾) and routing, which indicates the vehicles routing in the distribution sector. Vehicles 

have capacity constraints. The number of vehicles that are used for delivery is unlimited and they are 
available to any extent required. Each vehicle has the same fixed capacity and cost and has the same 

variable cost (homogeneous), while in articles related to the subject of FS and routing, the number of 

vehicles or capacity is considered unlimited. The next section, fill with the 𝑛 sign, reflects the fact that 
each job belongs to a customer. For each job, delivery time is set, after which the tardiness penalty, which 

is a time-dependent linear function, is imposed on the production and distribution system. All jobs and 

machines are available at zero time and one job cannot be processed simultaneously on more than one 

machine. The goal is to minimize total transportation costs and tardiness penalties. 

3-1-Indices, parameters, decision variables  

Indices 

i: Index of the demand points and the number of nodes in the network (i=1,2, … , 𝑁) 

k: Index of serial production stages (k=1,2, … , 𝐾) 

m: Index of machines available at each stage (m=1,2, … , 𝑀) 

j: Index of jobs (j=1,2, … , 𝐽) 

v: Index of vehicles available (v=1,2, … , 𝑉) 

Parameters 
𝑝𝑗.𝑘: The processing time of the jth job on stage 𝑘. 

𝑡𝑖.𝑖′ : Travel time between node 𝑖 and node 𝑖′(this value is proportional to the distance between 

the two nodes i and node 𝑖′). 

𝑐𝑖.𝑖′ : The travel cost between node i to node 𝑖′. 

𝑑𝑗: Allowed delivery time of the jth job to the customer. 

𝑝𝑖𝑗: Tardiness penalty in delivering job j to the customer.  

𝑓𝑐: The fixed cost of using vehicle v. 

𝑐𝑎𝑝𝑣: The capacity of vehicle v (the maximal number of customers that can be serviced during 

the trip). 

𝑀1: A number is large enough in manufacturing constraints. 

𝑀2: A large number. 

Variables 
𝑍: The objective function of the problem including minimizing the tardiness penalties and fixed 

and variable of transportation costs. 

𝑐𝑜𝑗,𝑘: The completion time of the jth job in stage k. 

𝑎𝑟𝑖,𝑣: The arriving time vehicle v to ith customer node. 

𝑅𝑒𝑙𝑠𝑣: The release time of vehicle v (The completion time of all vehicles’ orders) 

𝑓𝑗: The completion time of the jth production in the production line. 

𝐿𝑗: Tardiness in the delivery of jth job to the customer. 

𝑢𝑢𝑖: The auxiliary variable of the constraint of elimination sub-tour. 

𝑥𝑗,𝑗′ ,𝑘: A binary variable that is equal to 1 when job 𝑗 at the kth production stage is produced 

before the job 𝑗′, otherwise, it is zero. 
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𝑦𝑗,𝑘,𝑚: A binary variable that is equal to 1 when job 𝑗 at the kth production stage is produced on 

machine m, otherwise it is zero. 

𝑧𝑖,𝑖′ ,𝑣: The binary variable that equals 1 when the vehicle v of the ith node goes to the node 𝑖′, 

otherwise, it is zero. 

𝑢𝑣: The binary variable that is equal to 1 when using the vehicle v, and otherwise equals to zero. 

𝑤𝑖,𝑣: The binary variable that is equal to 1 when node i is on the route of vehicle v, otherwise it is 

zero. 

 

3-2-Mathematical modeling 
   As mentioned, the purpose of this paper is to plan to schedule the production, distribution, and vehicle 

routing to minimize production and distribution costs. The proposed problem is the integrated scheduling 

of the HFS and VRP. In the following, the HFS model with parallel machines at each stage and 

integrating its scheduling with vehicle routing of limited capacity is presented. 
 

𝑍 = ∑ (𝑓𝑐. 𝑢𝑣)𝑣 + ∑ (𝑐𝑖.𝑖′. 𝑧𝑖,𝑖′,𝑣𝑖,𝑖′,𝑣 ) + ∑ (𝑝𝑖𝑗. 𝐿𝑗)𝑗   (1) 

𝑓𝑗 ≥ 𝑐𝑜𝑗,𝑘                                                                                                                            ∀𝑗 , 𝑘 (2) 

∑ 𝑦𝑗,𝑘,𝑚𝑚 = 1                                                                                                          

∀𝑗 , 𝑘                                         

(3) 

𝑐𝑜𝑗,𝑘 −  𝑐𝑜𝑗,𝑘−1 ≥ ∑ (𝑦𝑗,𝑘,𝑚𝑚 . 𝑝𝑗.𝑘)                                                                        

∀𝑗 , 𝑘                                          

(4) 

𝑀1. (2 − 𝑦𝑗,𝑘,𝑚 − 𝑦𝑗′,𝑘,𝑚 + 𝑥𝑗,𝑗′,𝑘) + 𝑐𝑜𝑗,𝑘 − 𝑐𝑜𝑗′,𝑘 ≥ 𝑝𝑗.𝑘                                 ∀𝑗, 𝑗′, 𝑗 < 𝑗′, 𝑘, 𝑚                      (5) 

𝑀1. (3 − 𝑦𝑗,𝑘,𝑚 − 𝑦𝑗′,𝑘,𝑚 − 𝑥𝑗,𝑗′,𝑘) + 𝑐𝑜𝑗′,𝑘 − 𝑐𝑜𝑗,𝑘 ≥ 𝑝𝑗′.𝑘                                ∀𝑗, 𝑗′, 𝑗 < 𝑗′, 𝑘, 𝑚                     (6) 

∑ 𝑧𝑖,𝑖′,𝑣𝑖′(𝑖′>1,𝑖′≠𝑖) ≤ 𝑢𝑣                                                                                             

∀𝑖, 1 <  𝑖 < 𝑁 , 𝑣                      

(7) 

∑ 𝑧𝑖,𝑖′,𝑣𝑖′(𝑖′≠𝑖,𝑖′<𝑁) = 𝑢𝑣                                                                                            

 ∀𝑖, 𝑖 = 1, 𝑣                                

(8) 

∑ 𝑧𝑖,𝑁,𝑣𝑖(1<𝑖<𝑁) = 𝑢𝑣                                                                                                

∀𝑖′, 𝑖′ = 𝑁 , 𝑣                           

(9) 

∑ ∑ 𝑧𝑖,𝑖′,𝑣𝑣𝑖′(𝑖′≠𝑖) = 1                                                                                            ∀𝑖, 1 < 𝑖 <

𝑁                         

(10) 

∑ 𝑧𝑖,𝑖′,𝑣𝑖(𝑖<𝑁,𝑖′≠𝑖) − ∑ 𝑧𝑖′,𝑖,𝑣𝑖(𝑖>1,𝑖′≠𝑖) = 0                                                             ∀𝑖, 1 <

 𝑖′ < 𝑁 , 𝑣                 

(11) 

𝑧𝑖,𝑖′,𝑣 + 𝑧𝑖′,𝑖,𝑣 ≤ 1                                                                                                    

∀𝑖, 𝑖′, 𝑣                                   

(12) 

𝑧𝑖,𝑖′,𝑣 = 0                                                                                                                 

∀𝑖, 𝑖′, 𝑣, 𝑖 = 𝑁, 𝑖′ = 1            

(13) 

𝑢𝑢𝑖 − 𝑢𝑢𝑖′ + (𝑁. 𝑧𝑖,𝑖′,𝑣) ≤ 𝑁 − 1                                                                            

∀𝑖, 𝑖′, 𝑣                     

(14) 
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∑ 𝑧𝑖,𝑖′,𝑣𝑖′ ≤ 𝑤𝑖,𝑣                                                                                      

                      ∀𝑖, 𝑣                

(15) 

∑ 𝑤𝑖,𝑣𝑣 = 1                                                                                                             ∀𝑖, 1 <

 𝑖 < 𝑁         

(16) 

∑ 𝑤𝑖,𝑣𝑖≠0 ≤ 𝑐𝑎𝑝𝑣 . 𝑢𝑣                                                                                             ∀𝑣          (17) 

𝑎𝑟𝑖,𝑣 ≥ 𝑅𝑒𝑙𝑠𝑣                                                                                                           

∀𝑣, 𝑖 = 1            

(18) 

𝑅𝑒𝑙𝑠𝑣 ≥ 𝑓𝑗 − 𝑀2. (1 − 𝑤𝑖,𝑣)                                                                                 ∀𝑖, 𝑗, 𝑣                     (19) 

𝑎𝑟𝑖,𝑣 ≤ 𝑀2 . 𝑤𝑖,𝑣                                                                                                       ∀𝑖, 𝑖 >

1, 𝑣            

(20) 

𝐿𝑗 ≥ 𝑎𝑟𝑗,𝑣 −  𝑑𝑗                                                                                                       

∀𝑖, 𝑗, 𝑖 = 𝑗 + 1, 𝑣     

(21) 

∑ 𝑎𝑟𝑖′,𝑣𝑣 ≥ (𝑎𝑟𝑖,𝑣 + 𝑡𝑖,𝑖′). 𝑧𝑖,𝑖′,𝑣                                                                             

∀𝑖, 𝑖′, 𝑖′ = 1              

(22) 

𝑍, 𝑐𝑜𝑗,𝑘 , 𝑎𝑟𝑖,𝑣 , 𝑓𝑗 , 𝐿𝑗 , 𝑢𝑢𝑖 ≥ 0                                                                                   

∀𝑖, 𝑖′, 𝑣, 𝑗, 𝑘                           

(23) 

𝑥𝑗,𝑗′,𝑘 , 𝑦𝑗,𝑘,𝑚 , 𝑧𝑖,𝑖′,𝑣 , 𝑢𝑣 , 𝑤𝑖,𝑣 = 0,1                                                                          

∀𝑖, 𝑖′, 𝑣, 𝑗, 𝑗′, 𝑘, 𝑚                  

(24) 

 

   The objective function is described in the constraint (1) which includes the minimization of the 

tardiness penalties and fixed and variable transportation cost. Constraint (2) ensures that the completion 
time of job production is higher than the processing time of the job at each stage. The constraint (3) 

ensures that the job on each stage is exactly processed on a machine of parallel machines in that stage. 

Constraint (4) ensures that the completion time of the job 𝑗 in stage 𝑘 is greater than the completion time 

of this job in the previous stage plus the processing time of the job in stage 𝑘. Constraints (5) and (6) are 

to establish an appropriate sequence of jobs in the workshop production stage. If job 𝑗 and 𝑗′are 

proceeding on the same machine at the same stage (𝑦𝑗,𝑘,𝑚 = 𝑦𝑗′,𝑘,𝑚 = 1  𝑎𝑛𝑑  𝑥𝑗,𝑗′,𝑘 = 1), so the job 𝑗 has 

proceeded before 𝑗′. According to (7) and (8), the two vehicles do not meet a customer node (except for 
origin and destination) and each vehicle is considered as a used vehicle if it visits at least one customer 

node. According to the constraint (9), each vehicle does not meet the destination node more than once. 

According to the constraints (10), each customer node is visited by exactly one of the vehicles. According 
to the constraint (11), the number of arcs entering each node is equal to the number of arcs leaving that 

node (except for origin and destination node). According to the constraint (12), a vehicle does not pass an 

arc more than one time (zi,i′,v and zi′,i,vcan not value 1 simultaneously). According to the constraint (13), 

there is no arc from the destination to the depo. Constraint (14) is the sub-tour elimination constraint for 

the vehicle routing problem. Constraint (15) ensures that, as long as the node is not assigned to a vehicle, 

no edges including that node are passed that vehicle. According to the constraint (16), each customer node 
is assigned to only one vehicle. According to (17), the orders assigned to each vehicle are as high as that 

vehicle’s capacity. According to the constraints (18) and (19), the arrival time of each order to the 

destination by any vehicle is larger than the completion time of the production of all orders of that 

vehicle. That is, every vehicle is not allowed to move until the production of all assigned orders is 
completed. According to the constraint (20), the vehicle's arrival time is calculated only for the nodes 

assigned to it. Constraint (21) is used to calculate the tardiness in delivering the job to the customer, 
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which is obtained by differentiating the allowed due date from the delivery time of that job. According to 
the constraint (22), the time to reach a node is equal to the time it takes for the last edge to reach that 

node, plus the time it takes to reach the previous node in the vehicle’s route. Finally, constraint (23) is 

related to the positive variables of the problem and the constraint (24) to the binary variables of the 

problem. 
 

4-Proposed hybrid PSO algorithm 
   As stated in the previous sections, the integrated problem that includes production scheduling in the FS 

environment and distribution routing is NP-Hard, and if the problem dimensions are large, it is not 

possible to reach the global optimal at acceptable times. Therefore, for these types of problems, it is 
necessary to develop methods that will respond faster and sooner. For this purpose, a metaheuristic PSO 

is used to find the integrated problem solution. 
 

4-1-Introduction of PSO algorithm 
   The PSO algorithm is introduced by Kennedy and Eberhart (1995). This algorithm combines a local 
search considering the individual experience and a global search considering collective experience, thus 

demonstrating the efficiency of the search. 

   Although the PSO algorithm has been proven to be effective in solving hybrid optimization problems, 
there are many problems in which simple particle optimization algorithms are not able to find optimal or 

near-optimal solutions at a reasonable and logical time. A disadvantage of the PSO algorithm is that in a 

large space, it easily reaches the local optimum and has a high convergence rate in the process of 
iteration. Therefore, a variety of hybrid methods has been proposed to improve the performance of the 

PSO algorithm. To avoid early convergence, most research on this algorithm focuses on diversity in the 

search for better configurations that allow the algorithm to escape from the local minimum. Improvement 

can be divided into two categories: the velocity equation and neighborhood topology. For the velocity 
equation, Shi and Eberhart (1998) introduced an inertia coefficient for the balancing of general and local 

agents. Eberhart and Shi (2000) also showed that the use of a decreasing factor is better than the inertial 

coefficient. Kennedy et al. (2001) used a constant to limit the speed increase to avoid over-speeding. 
Also, He et al. (2004) introduced a social behavior of influential societies for the velocity equation. The 

discrete PSO algorithm is first proposed by Kennedy and Eberhart (1997). 

   For scheduling problems, Tasgetiren et al. (2004) have proposed a continuous PSO to solve single-

machine and FS problems. On the other hand, Liao et al. (2007) developed a PSO algorithm based on 
discrete PSO for the FS scheduling problem. Pan et al. (2008) proposed a discrete PSO algorithm for the 

FS scheduling problem in which the initial population is created using the NEH neighborhood approach 

and used the local search based crossover and mutation operators. In their paper, they presented a new 
method for the particle velocity equation. Santosa et al. (2017) have provided a discrete PSO algorithm 

for the multi-objective HFS scheduling problem with a waiting time limitation. Jamrus and Chien (2018) 

have presented a hybrid discrete PSO algorithm with genetic algorithm operators for the job shop 
scheduling problem with uncertain processing time. Choudhary and et al. (2019) have presented a PSO 

with the mutation operator to solve the flexible job-shop scheduling problem (FJSP). The target of this 

paper is to reduce the makespan. 

 

4-2-EDD-ERT-Active-PSO-GA algorithm  (EAPG) 
   To prevent premature convergence and to escape from local optimal, in this paper, genetic algorithm 
operators that increase diversity the search process is used to refine the particle position in PSO. This 

hybrid algorithm is a discrete algorithm, which can be used to solve the problem considering the discrete 

solution space for sequencing, scheduling, and routing problems. 
   In this paper, a local optimization method is added to this hybrid PSO algorithm to create a hybrid PSO 

algorithm for the HFS planning problem. In the proposed approach (we called it EAPG), certain operators 

are introduced to improve the accuracy and efficiency of the algorithm and suggested methods for local 
searches. As you know, the HFS scheduling problem has a very large solution space, and reducing the 
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size of the solution space without removing the optimal solution can be very beneficial. Therefore, the 
corresponding algorithm utilizes the EDD and ERT algorithms in the representation of the initial solution 

and searches in the solution space including the actual schedules. Finally, numerical analysis is performed 

to evaluate the performance of the proposed algorithm and the results will be reviewed. The structure of 

the proposed algorithm is as follows: 
Step 1 (Generate Initial population): Creates a set of solutions for the first population. 

Step 2 (Assessment): Calculate the objective function for each solution into the population. 

Step 3 (crossover): crossover operator with a random probability between members of the population 
and the best individual and global solution. 

Step 4 (Mutation): Apply mutation operators to random particles on the population. 

Step 5 (Local exploration search): Change the percentage of solution selected from the population 
using a local search exploration method. 

Step 6 (Update): Update the best solution and global solutions. 

Step 7 (End): Repeat steps 2- 6 until the ending criteria are fulfilled. 

 

4-3-Solution representation 
    In this paper, we use the job-based representation and sequencing method in the first stage (Oguz and 

Ercan, 2005) (referred to as JBRF in this article). In the job-based approach, the sequence of jobs is 

displayed in one stage with a simple permutation of jobs. According to this sequence, using vehicle 
assignment rules, jobs are assigned to different machines at one stage, and in fact, each job is allocated to 

the first free machine.  

    Also, the vehicle routing problem requires the identification of two indicators and the adoption of two 
decisions: the number of vehicles that are needed and the assignment of each job to a vehicle in each 

stage to the customer. Alba and Dorronsoro (2004), in the solution representation for the routing problem, 

developed a permutation of random integers in the interval[1, 𝐽 + 𝑉 − 1], which includes both customers 

and path separators, thus allocating customers to the paths. 𝐽 is the number of customers and V is the 

number of vehicles. In this permutation, customers are shown with numbers 1 to 𝐽 and path separators are 

represented in the interval [𝐽 + 1, 𝐽 + 𝑉 -1]. 

   In this paper, a two-part vector is used to represent the solution, in which the first part includes the job 

sequence in the first stage of production, and the second part includes vehicle routing. 

 
Fig1. Two-part vector for the solution representation of the problem 

   In the solution, representation is shown in Fig. 1, the permutation 1-2-4-3-5 is set for the jobs. In this 

paper, the representation method of the solution based on the job is used for the first stage, which is 

shown in the first part of the solution representation vector, and the jobs are thus assigned to the first free 
machine until the production stages are completed and entered the transport stage to enter the customer's 

location. Also, according to the second part of the solution vector, in the sequence above, the first and 

third work will be carried by the first vehicle, and the second, fifth and fourth jobs will be carried by the 

second vehicle. Because for dividing 𝐽 between 𝑉 vehicles, 𝑉-1 separator is needed, dividing five 

customers between two vehicles requires one separator. The numbers that are larger than the number of 

customers are separators. In the above example, we have five customers, so number 6 is a separator. The 
numbers between the separators are the customers assigned to the vehicles. 

 

1 2 4 3 5 1 3 6 2 5 4 

 

Part 2 Part 1 

Vehicle 1  Vehicle 2  
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4-4-Decoding process 
   Since the HFS scheduling problem has a very large search space, reducing the size of the solution space 

without neglecting the optimal solution is very beneficial. The proposed heuristic algorithm in this paper 

is in the active scheduling space, which is a subset of semi-active schedules. However, the set of non-
delay schedules is much smaller than the active schedules. On a non-delay schedule, no machine will be 

idle until it can start processing (Pinedo, 2008). A set of non-delayed schedules is a subset of active 

programs, but it is possible to ignore the optimal solution. We suggest that a random number be generated 
in the interval [1, 0]. When this number is less than probability β, the solution is obtained without delay 

and using the ERT (Earliest Release Time) rule in the stages following the first process stage, while if the 

random number exceeds the probability of β, the initial phase sequence is used to assign the next stages of 

production. At the same time, the work can be carried out at an idle time if it does not delay any other 
work. The general structure of the proposed algorithm for generating active schedules is as follows: 

Step 1: The matrix X is generated in size (𝑛𝑗 . 𝑛𝑘). 

Step 2: At the first stage (𝑘 =  1): 

Step 2-1: The first column of the matrix 𝑋 is sorted and base on it, the sequence of operations is 

determined (Matrix 𝑌1). 

Step 2-2: Based on the 𝑌1 sequence, jobs are assigned to the first free machine and scheduled. 

Step 3: From the second stage (𝑘 >  1): 
Step 3-1: The random number 𝑏 generated, if 𝑏 >  𝛽, the solutions are based on the 𝑘th column 

of the matrix X and if 𝑏 < 𝛽 solutions are chosen based on the previous step matrix 

(𝑌𝑘−1) and the sequence matrix of the 𝑘th stage is obtained (𝑌𝑘). 

Step 3-2: All idle intervals are calculated for each machine in stage 𝑘, equals [𝐼𝑖 ,  𝐼𝑖+1]𝑚. 

Step 3-3: Based on the sequence of 𝑌𝑘, the selected job is assigned to the first interval [𝐼𝑖 , 𝐼𝑖+1] 
with the minimum start time, (𝑚𝑎𝑥[𝐼𝑖 , 𝑟𝑖+𝑘−1]), where 𝑟𝑖+𝑘−1 is the finishing time on 

the previous stage. If: 𝑝𝑗 + 𝑚𝑎𝑥[𝐼𝑖 , 𝑟𝑖+𝑘−1] ≤ 𝐼𝑖+1. 

Step 3-4: If there is a job in 𝑌𝑘, go back to step 2-2 otherwise, go back to step 3-1. 

   In figure 2, the scheduling and routing chart of vehicles is drawn for example in the previous section. 

According to Table 1, the production times for each job at each stage (𝑝𝑗.𝑘) and according to Table 2, the 

transportation times of each job (𝑡𝑖.𝑖′) are as follows. The machines are shown with the symbol 𝑀𝑙.𝑘, 

which represents the 𝑙th machine of the 𝑘th production stage. As shown in the Gantt chart, the third job in 
the third stage begins with the presentation of the active solution before the fourth job, while in the initial 

sequence, the priority of the third job, after the fourth job, is given. The reason for this is that without 

other, any delay in other jobs with more priority (that is, the first, second, and fourth jobs in the third 

stage), processing of the third job could be started and finished in the vehicle idleness and before the 
fourth job entering to the next production stage, which is a feature of active solution representation. 

Table1. Processing time values (𝑝𝑗.𝑘) for the example 
Job j   1 2 3 4 5 

Stage 1  1 2 2 3 4 

Stage 2  4 2 2 4 4 

Stage 3  3 1 1 3 1 

 

Table2. Processing time values (𝑡𝑖,𝑖′) for the example 

Location  0 1 2 3 4 5 

0  0 5 2 3 1 4 

1  5 0 6 1 2 4 

2  2 6 0 6 3 4 

3  3 1 6 0 2 3 

4  1 2 3 2 0 1 

5  4 4 4 3 1 0 
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Fig2. Gantt chart of scheduling and vehicles routing 

   According to this solution, the jobs are processed on machines. For example, the second machine of the 

third stage (𝑀2.3) finishes the production process of jobs 1, 4, and 5 at time 8, 11, and 13, respectively. In 
this way, jobs pass the stages in sequence. For example, job 3 starts its process on the first stage at time 2 

until 4, then it stars the second stage at time 5 until 7 and it goes to the third stage at time 7 until 8. 

Finally, it is delivered to the customer at time 14 (after waiting for 5 min to release vehicle 1). 
   jobs 1 and 3 are delivered at the time of 13 and 14, respectively, by the first vehicle, and goods 2, 5, and 

4 are delivered by the second vehicle at the times of 15, 19, and 20 respectively. 
 

4-5-Initial population generation 
   Research on scheduling problems includes many articles that emphasize the impressive impact of a 

good initial solution on metaheuristic algorithms. Today, it is hardly possible to make hyper business at 
least in scheduling, with the initial solution given only by a random solution. Usually, the results of 

randomized solutions are converted into better solutions by methods. Therefore, it is necessary to 

carefully consider the choice of the conversion procedure for the initial solution to achieve a high level of 
performance and competitiveness in scheduling problems.  

   We can use heuristic algorithms to generate the initial population. Depending on the due dates, methods 

for sorting and sequencing such as due date rules can be used. Kim (1993) arranged jobs according to the 

EDD rule, respectively, their non-descending order of delivery. Also, another way of sorting jobs has 
been proposed, in which the job is arranged in an orderly manner of delivery dates, that is, from the 

Longest Due Date (LDD). Also, Kaweegitbundit (2012) conducted a review of the various dispatching 

rules for HFS problems, to minimize the completion time and minimize the total tardiness. In this paper, 
the two-stage HFS with the same parallel machines is considered the performance of the dispatching rules 

is reviewed. He showed that the EDD is better than other rules to minimize the total tardiness as an 

objective. 

   In this paper, the initial population is constructed by the general rule of EDD, based on computational 
experiments. Given the parameter of the EDD method, we use a complete sequence of other jobs. In other 

words, a random number is generated in the interval [1, 0]. When this number is less than γ probability, 

the initial sequence would be created using the EDD rule, while if the random number is greater than 
probability, the initial sequence would be generated randomly. The final sequence for the particle is 

arranged so that it can be in the particle population. We repeat this method for all possible jobs in the 

main permutations, such as the first work, to make the initial population. By doing so, population 
diversity is achieved. The pseudocode of the initial population is presented in figure 5. 

   Then, for each particle, a matrix with random numbers is generated in the interval [1, 𝐽 + 𝑉 − 1], and 

as explained in the representation section, the initial solution is turned on the routing section, and the 

customers' allocation to the paths is done. In this way, the initial solution of the algorithm is created for 
the first particles. 
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4-6-Particles updates 
   In this paper, a discrete PSO algorithm is used, which includes a local search based on the mutation 

operator that operates using hybrid neighborhoods and crossover operators, which is first presented in Pan 

et al. (2008). Considering the importance of the initial solution in the solving method and considering the 
objective function of the problem, which includes minimizing the total tardiness, the initial population 

will be created by a combination of constructive heuristic methods. After updating the particle position 

and creating the next population, the comparison of the particle matching function is performed and the 
best individual and global solution will be updated. 

   Since a solution is indicated by the jobs permutation as (1, 2, …, n), the particle position can be updated 

according to the following constraint (Penn et al., 2008). 

 

X𝑖
𝑡= 𝑐2⊗ 𝐹3 )𝑐1⊗ 𝐹2 )ω ⊗ 𝐹1 )X𝑖

𝑡−1(, P𝑖
𝑡−1(, 𝐺𝑡−1  (  (25) 

                   

   Note that 𝑋𝑖
𝑡 is the particle position 𝑃𝑖

𝑡 is the best individual solution to the particle and 𝐺𝑡 is the best 

global solution. The updated equation contains three components 

1. The first component A𝑖
𝑡
= ω ⊗ 𝐹1 (X𝑖

𝑡−1
)   represents the  particle velocity and 𝐹1 is the mutation 

operator with probability ω. 

2. The second component B𝑖
𝑡
= 𝑐1⊗ 𝐹2 (A𝑖

𝑡,  P𝑖
𝑡−1) is related to the individual section of the particle 

and 𝐹2 is the crossover operator with probability 𝑐1. 

3. The third component C𝑖
𝑡
= 𝑐2⊗ 𝐹3 (B𝑖

𝑡, G𝑖
𝑡−1) is related to the global section of the particle and 𝐹3 

is the crossover operator with probability 𝑐2. 

Various operators can be used for the algorithm; we will continue to describe these operators. 

 

4-6-1-Mutation operator 

   The mutation operator creates random variations in a particle to maintain the diversity of the population 

at a reasonable level. Ho et al. (2008) used an inversion mutation (Gen & Cheng, 1997) in a hybrid 

genetic algorithm to solve the VRP. Mirabi (2014) used an inversion mutation operator in a hybrid 
genetic algorithm to solve the FS scheduling problem. Niu et al. (2010) used a reverse mutation operator 

in the genetic algorithm to solve the HFS scheduling problem. 

   In the proposed algorithm, the inverse mutation is applied equally to one of the two parts of the solution 
vector. In this mutation, two positions are randomly selected, and then the section between the two 

positions is reversed. In this way, two random positions are selected in the solution and a random number 

is generated between 0 and 1. If the generated number is larger than the parameter ω is larger, the job 
sequence is reversed between these two positions.  
   The following example shows the mutating process. Suppose that a problem has been defined with 7 

jobs two vehicles and the following solution is chosen to perform a mutation. First, the selected particle in 

the chromosome will be copied to the new solution. Then two numbers between 1 and the number of jobs 
will be generated randomly in part one of the solution’s vector and two numbers between 1 and the 

number of jobs and vehicles will be generated randomly in part two of the solution’s vector. The sequence 

between these two positions is reversed and transmitted to the new solution in each part (figure 3). In the 
EAPG algorithm mutation operator runs on both parts of the solution vector simultaneously and 

separately. 
 

 

 

 

Fig3. Mutation operator 

 

2 8 9 4 6 1 7 5 3 7 4 1 6 2 5 3 Mutation candidate 

2 1 6 4 9 8 7 5 3 7 4 5 2 6 1 3 Mutated solution 



234 

 

4-6-2-Crossover operator 

   In this paper, the PMX crossover operator is used which is presented by Ahmadizar and Farahani 

(2012). A crossover operator is proposed in which random numbers are used to determine the selected 

parent to create the current child's chromosome. A random number is generated for each job. If the value 

is less than 𝑐1, the amount of the first chromosome will be copied to the new chromosome, whose random 

number generated by them is more than 𝑐1, will be transferred to the new chromosome in the second 

chromosome order. This operator is used for the first time in the PSO algorithm for the production flow 

and the result is a child for two parents, because one of the parents in the PSO will be the personal best or 

global best solution, and only the good genes are transmitted to the child from each particle. 

Step 1. Copy the parent 1 into the child's chromosome. 

Step 2. For 𝑘 = 1 job, do the following: 

2-1. Create a random number 𝑐1 between 0 and 1. 

2-2. If  𝐶1 > 𝑐1, then substitute those jobs in the child's chromosomes by their order in the  

second parent. 

   The example below shows the crossover process. Suppose a problem with 9 jobs is defined and the 

following two solutions are selected for the crossover (figure 4).  

   The child's chromosome has been copied from the beginning of the first parent. Then for each job, a 
random number is generated between 0 and 1. Assume that for all cases, random numbers are less than 

0.7, except for the fifth, seventh, and ninth editions of random numbers greater than 0.7. Therefore, the 

sequence of this job should be replaced. Fifth, seventh, and ninth steps in the second parent with a 
sequence of 7-6-9 are performed, thus they are transmitted to the child with the same sequence (figure 5). 

In the EAPG algorithm crossover operator runs on both parts of the solution vector simultaneously and 

separately. 
 

 

 

Fig4. Crossover operator 

   The child's chromosome has been copied from the beginning of the first parent. Then for each position, 

a random number is generated between 0 and 1. Assume that for all cases, random numbers are less than 
0.7, except for the fifth, sixth, and seventh positions in part one and the fifth, first, and eighth positions in 

part two that random numbers greater than 0.7. Therefore, the sequence of this position should be 

replaced. Fifth, sixth, and seventh position in part one, in the second parent with a sequence of 6-7-5 and 
fifth, first and eighth position in part two, in the second parent with a sequence of 1-8-5 are performed, 

thus they are transmitted to the child with the same sequence (figure 5). In the EAPG algorithm crossover 

operator runs on both parts of the solution vector simultaneously and separately. 
 

 

Fig 5. Offspring in crossover operator 

 

4-7-Stop condition 
   The criterion that is considered to stop the implementation of the PSO algorithm is the maximum 
iteration number. 
 

5-Computational results 
   In this section, to evaluate the performance of the mathematical model and the proposed algorithm, we 

compare the computational results obtained from the CPLEX solver with the algorithm solutions in the 

2 8 9 4 6 1 7 5 3 7 4 1 6 2 5 3 Parent 1 

4 5 8 9 1 7 3 6 2 4 5 7 2 6 3 1    Parent 2 

2 5 9 4 6 8 7 1 3 5 4 1 7 2 6 3 Offspring 
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Matlab environment (the proposed model is nonlinear; we linearize the proposed model by using CPLEX 
solver). The comparison criterion is the average of the solutions in ten iterations of each problem with the 

solution given by the metaheuristic algorithm (and in the case of small sizes, the solution obtained by 

solving with CPLEX solver). To perform the comparison, the problem solving with the proposed 

algorithm, along with the PSO metaheuristic algorithm, is performed in the Matlab software environment 
with a personal computer with a RAM of 6 GB and a 2.20 GHz processor. 

 

5-1-Data generation 
   To data generation, the parameters of the problem are defined as the number of jobs, the number of 

machines, the number of stages, processing times and fixed costs, and the number of vehicles, the 
capacity of vehicles, the cost and time between customers and the due date and the penalty for tardiness. 

Each order is identified. To determine some of the parameter's value, Chao and Qing (2008) have been 

helpful. These values are shown in table 3. A total of 60 problems have been created, which are available 
at http://web.ntust.edu.tw/~ie/index.html as well as the OR library at http://mscmga.ms.ic.ac.uk/info.html. 

For processing times, numbers are generated on standard problems are used. In this article, the locations 

are created by randomly generated latitudes and locations, and for our study; we can calculate the distance 

points of the points from these locations. Because of the calculation of the distance points from their 
geographic coordinates, they guarantee the Triangle inequality, so it is closer to the reality than the 

randomized method of the distance matrix. The data on the problem is described in table 3. 

 
Table3. Different levels of identified factors in the problem 

row parameter 
Parameter 

notation 
Parameter range 

references 

1 Stage numbers 𝑛𝑘 2-5-8-10 

Oguz et al (2004) 2 Machines numbers 𝑛𝑚 2-3-4-5 

3 Job numbers 𝑛𝑗 5-10-20-50-100 

4 Processing time 𝑝𝑗,𝑘 𝑈(1,100) 

5 Due date 𝑑𝑗 ((1 − 𝑇𝐴𝑅 ± 𝑅𝐷𝐷/2) ∑ ∑ 𝑃𝑗,𝑘𝑘𝑗)/2 

 

Ahmadizar and 

Farhadi (2015) 

6 
Travel time between two 

customer’s location 
𝑡𝑖,𝑖′ 

𝑥𝐷𝑒𝑝𝑜𝑡 = 𝑦𝐷𝑒𝑝𝑜𝑡 = U (20, 50) 

𝑥𝑖  = U (0, 2 × 𝑥𝐷𝑒𝑝𝑜𝑡 ) 

𝑦𝑖 = U (0, 2 × 𝑦𝐷𝑒𝑝𝑜𝑡  ) 

𝑑𝑖𝑠𝑖,𝑖′ = √(𝑥𝑖′ − 𝑥𝑖)
2 + (𝑦𝑖′ − 𝑦𝑖)

2 

𝑡𝑖,𝑖′ = 𝑑𝑖𝑠𝑖,𝑖′ 
 

Ramezanian et al 

(2017) 

7 
Travel cost between two 

customer’s location 
𝑐𝑖,𝑖′ 

unitcost = 𝑈(50,200) 

𝑐𝑖,𝑖′ = 𝑢𝑛𝑖𝑡𝑐𝑜𝑠𝑡 ∗ 𝑑𝑖𝑠𝑖,𝑖′ 

8 Vehicle’s capacity 𝑐𝑎𝑝𝑣 

Small size problem 4 

Medium size problem 10 

Large size problem 15 

9 Vehicle’s fix cost 𝑓𝑐 𝑈(150,200) 

10 Tardiness penalty 𝑝𝑖𝑖 𝑈(5,15) 
Generated data 
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    It is noteworthy that the algorithm parameters have been adjusted to match the dimensions of the 
problem in different situations, but the algorithm will also change in these situations. For this reason, a 

constant structure of the algorithm's characteristics, such as the number of iterations and the number of 

particles, has been used to solve the problem. 

 

5-2-Adjusting parameters 
   The various values of the existing parameters have a significant effect on the quality of the solutions 
obtained from the particle swarm algorithm. At this point, we conducted a series of experiments to 

determine the parameters of the proposed algorithm. The parameter 𝐼𝑡𝑒𝑟𝑚𝑎𝑥  is the number of iterations of 

the algorithm, which is proportional to the number of jobs and stages of production and is equal to 

10(𝑛 × 𝑘). Also, the parameter 𝑛𝑝𝑜𝑝 is the number of populations corresponding to the number of jobs 

equal to 3𝑛. The parameters 𝛽 and 𝛾 are respectively the probability of determining the initial solution 

according to the ERT and EDD rules and are determined in the range (0.3, 0.8). The probability 𝜔 is 

determined for applying the mutation operator on each part (scheduling part and vehicle routing part) of 

the solution vector of each particle in the range (0.2, 0.8) and probabilities 𝑐1 and 𝑐2 for applying 

crossover operators on each part (scheduling part and vehicle routing part) of the solution vector of each 

particle and in the range (0.7, 0.9). To obtain the best combination of parameters for the proposed 

algorithm, different combinations of parameters are determined. After solving different problems with 

different sizes, the parameters for the algorithm are obtained as follows. The best combination of the 
parameters mentioned in table 4 is given. 

 

Table4. Adjusting parameters 

Value Parameter Notation 

0.5 mutation probability ω 

0.7 crossover probability with the best personal solution 𝑐1 

0.9 crossover probability with the best global solution 𝑐2 

0.5 EDD probability 𝛾 

0.3 ERT probability 𝛽 

 

5-3- Comparing the results 
   Since we have not found a similar study in the literature, the PSO algorithm has been used to evaluate 

the efficiency of the proposed algorithm. The comparison criterion is the mean of the solutions in ten 
iterations of each problem with the solution given by the metaheuristic algorithm (and in the case of small 

sizes, the solution obtained by solving with CPLEX solver). 

The selected index for comparison is the relative deviation (RPDs) of the average of solutions of these 
iterations from the lowest obtained of algorithms. The deviation from the lowest solution is obtained from 

relation (30). In this equation, the lowest solution is shown by 𝑀𝑖𝑛 and the algorithm solution is shown 

by 𝐴𝑙𝑔. 

 

𝑅𝑃𝐷 =
𝐴𝑙𝑔−𝑀𝑖𝑛

𝑀𝑖𝑛
                                                                                                                                     (26) 

 

   In this section, the comparison between the efficiency of the proposed heuristic algorithm with 
metaheuristic algorithms in literature including GA and PSO is presented in Tables 5 and 6. For each 

dimension of the problem, the proposed PSO algorithm, which we display with EAPG (EDD-ERT-

Active-PSO-GA), is recorded with the above characteristics, and its results are recorded. This algorithm 

searches in an active solution space and uses the EDD and ERT rules as a possible initial representation of 
the initial solution. In the next populations, the particle position update also will be done with mutation 

and crossover operators as described in sections 4-4-1 and 4-4-2. A simpler version of the algorithm is 

also used to examine the components of the algorithm separately in the analysis of the results, which we 
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call the EDD-PSO-GA (PSO3) algorithm, and search the entire space for the solution, and only in the 
Initial population of the EDD rule, randomly and in next populations, it uses mutation and crossover 

operators, but it does not use the ERT rule and search in the active environment. Two algorithms are also 

used to compare the components of the algorithm in the analysis of the results, which we call them the 

PSO-GA (PSO2) algorithm that uses the only mutation and crossover operators and the Classic PSO 
(PSO1) algorithm.  

   Given that the problem is NP-Hard, with the increase in the problem dimensions, CPLEX solver is 

unable to solve the problem in an acceptable time; therefore, in larger problems, the solution CPLEX 
received over two hours in comparisons has been used and for each problem size the solution quality is 

measured by the mean difference from the best-found solution and optimal values are indicated in 

boldface. In this comparison, the proposed algorithm has been run for each instance with the number of 

iterations equal to the 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 , five times and the best one has been chosen, and then, in the time that this 

algorithm reaches its best, other algorithms have been run and the results are recorded. These algorithms 

have been run five times for each instance within every problem size, and then the minimum, average, 

and maximum of the objective function values obtained have been presented.  
   Table 5 shows the comparison between the solutions obtained by CPLEX solver for small size problems 

with the proposed algorithm in this paper, the EAPG algorithm, and the PSO algorithm for different 

modes (number of steps × number of jobs) are presented.  
    Scheduling is a problem at the operational level and needs to be resolved quickly. Given that the 

solution time of the proposed algorithm is much less than the exact solution time; Also, in solving 

problems for some problems even after the maximum time has not been a good solution, the use of this 

algorithm is time-saving. On the other hand, considering the difference between the exact solution and the 
solution of the proposed algorithm in small instances, the use of this algorithm is appropriate in terms of 

solution accuracy. Given the low error rate of the algorithm, it can be inferred that the amount of error is 

not large for medium and large problems that do not have an exact solution; So this algorithm can be used 
to solve large problems. 
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Table5. Comparison between solutions of small-scale problems 

problem 
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3-2-2 

1 0 1  0 0 0  0 0 0  0 0 0  0 0 0 2 

2 0 1  0 0 0  0 0 0  0 0 0  0 0 0 1 

3 0 2  0 0 0  0 0 0  0 0 0  0 0 0 1 

Ave 0 1.3  0 0 0  0 0 0  0 0 0  0 0 0 1 

5-2-2 

1 0 21  0 0.01 0.07  0 0 0  0 0 0  0 0 0 3 

2 0 19  0 0.02 0.08  0 0 0  0 0 0  0 0 0 2 

3 0 14  0.03 0.06 0.10  0 0 0  0 0 0  0 0 0 1 

Ave 0 18  0.01 0.03 0.08  0 0 0  0 0 0  0 0 0 2 

5-2-5 

1 0 48  0.08 0.19 0.35  0 0 0  0 0 0  0 0 0 2 

2 0 65  0.15 0.36 0.52  0 0 0  0 0 0  0 0 0 2 

3 0 95  0.04 0.07 0.11  0 0 0  0 0 0  0 0 0 3 

Ave 0 69.3  0.09 0.20 0.33  0 0 0  0 0 0  0 0 0 2 

5-2-8 

1 0 2  0 0.01 0.04  0 0 0  0 0 0  0 0 0 4 

2 0 8  0.24 0.41 0.68  0 0 0  0 0 0  0 0 0 2 

3 0 4  0.06 0.13 0.24  0 0 0  0 0 0  0 0 0 3 

Ave 0 4.6  0.10 0.18 0.32  0 0 0  0 0 0  0 0 0 3 

5-2-10 

1 0 4  0.29 1.19 2.17  0 0 0  0 0 0  0 0 0 7 

2 0 5  0.04 0.25 0.39  0 0 0  0 0 0  0 0 0 5 

3 0 5  0.07 0.29 0.45  0 0.01 0.03  0 0 0  0 0 0 5 

Ave 0 4.7  0.13 0.58 1.00  0 0 0.01  0 0 0  0 0 0 5.7 

10-3-2 

1 0 6  0.12 0.15 0.18  0 0.06 0.27  0 0 0  0 0 0 14 

2 0 5  0.13 0.21 0.27  0 0.04 0.06  0 0 0  0 0 0 14 

3 0 5  0.16 0.22 0.28  0 0 0.02  0 0 0.01  0 0 0 15 

Ave 0 5.3  0.14 0.19 0.24  0 0.04 0.12  0 0 0  0 0 0 14.3 

10-3-5 

1 0 4  0.05 0.11 0.15  0 0 0  0 0 0  0 0 0 31 

2 0 3  0.57 1.00 1.92  0.09 0.11 0.19  0 0.06 0.09  0 0 0 32 

3 0.2 5  0.20 0.23 0.27  0.05 0.06 0.08  0 0 0  0 0 0 31 

Ave 0.06 4  0.27 0.45 0.78  0.05 0.06 0.09  0 0.02 0.03  0 0 0 31.3 

10-3-8 

1 0 2  0.92 2.08 3.14  0.11 0.23 0.29  0.01 0.19 0.22  0 0 0 48 

2 0 3  0.50 1.59 3.32  0 0.05 0.06  0 0 0  0 0 0 49 

3 0 3  0.42 0.56 0.65  0 0.03 0.08  0 0.02 0.06  0 0 0 52 

Ave 0 2.7  0.61 1.41 2.37  0.04 0.10 0.14  0 0.07 0.09  0 0 0 49.7 

10-3-10 

1 0 4  0.50 0.68 0.88  0.02 0.08 0.12  0.02 0.04 0.07  0 0 0 42 

2 0.3 3  0.32 0.58 1.09  0.07 0.09 0.13  0 0.07 0.11  0 0 0 40 

3 0 3  1.56 1.87 2.40  0 0.01 0.02  0 0 0  0 0.01 0.02 41 

Ave 0.1 3.3  0.79 1.04 1.45  0.03 0.06 0.09  0.01 0.04 0.06  0 0 0 40 

Average  0.02 12.58  0.24 0.45 0.73  0.01 0.03 0.05  0 0.02 0.02  0 0 0 16.6 
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     From table 5, it can be observed that the EAPG obtains much better solutions in a shorter or 
comparable CPU time than other algorithms. Also, when comparing the best results achieved by the 

EAPG with the results of the three other PSO algorithms, the EAPG is superior to PSO1, PSO2, and 

PSO3. Table 6 shows the comparison between the metaheuristic algorithms as mentioned above (PSO1, 

PSO2, PSO3, and EAPG) for large-scale problems. To have a suitable comparison, the time limit of each 
run of PSO1 and PSO2 as well as PSO3 is set equal to the EAPG. 

 

Table6. Comparison between solutions for large-scale problems 

problem 
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20-4-2 

1 0 120  0.84 1.05 1.26  0.01 0.04 0.67  0.02 0.04 0.11  0 0 0.01 47 

2 0 110  0.84 0.88 0.90  0.33 0.42 0.49  0 0.08 0.12  0 0.01 0.02 43 

3 0 395  0.71 0.78 0.83  0.17 0.19 0.20  0.01 0.14 0.18  0 0 0 42 

Ave 0 208  0.79 0.90 1.03  0.17 0.22 0.45  0.01 0.09 0.14  0 0 0.01 44 

20-4-5 

1 0 162  0.26 0.45 0.57  0.80 1.01 1.67  0 0.02 0.04  0 0.03 0.06 117 

2 0 138  0.54 0.63 0.71  0.31 0.39 0.43  0.16 0.18 0.21  0.01 0.03 0.06 110 

3 0.1 144  0.94 1.19 1.51  0.21 0.26 0.31  0.05 0.13 0.20  0 0.01 0.02 110 

Ave 0.03 148  0.58 0.76 0.93  0.44 0.55 0.80  0.07 0.11 0.15  0 0.02 0.04 112.3 

20-4-8 

1 0.4 713  0.46 0.56 0.64  0.53 0.59 0.64  0.38 0.45 0.64  0 0.02 0.05 150 

2 0 818  0.51 0.57 0.69  0.25 0.26 0.27  0.23 0.25 0.27  0 0.09 0.16 170 

3 0 738  0.43 0.60 0.80  0.79 0.86 0.89  0.74 0.78 0.86  0 0.04 0.06 118 

Ave 0.13 756  0.47 0.58 0.71  0.52 0.57 0.60  0.45 0.49 0.59  0 0.05 0.09 146 

20-4-10 

1 0 1240  0.81 0.92 1.15  0.62 0.76 0.87  0.45 0.49 0.55  0 0.11 0.13 164 

2 0 1740  0.64 0.74 1.02  0.49 0.58 0.67  0.22 0.31 0.38  0.06 0.12 0.15 163 

3 0.8 1950  0.61 0.73 0.95  0.31 0.40 0.52  0.25 0.28 0.33  0 0.03 0.09 165 

Ave 0.26 1643  0.68 0.79 1.04  0.47 0.58 0.68  0.31 0.36 0.42  0.02 0.09 0.12 164 

50-5-2 

1 0.74 7200  0.46 0.54 0.69  0.09 0.12 0.19  0.02 0.10 0.12  0 0.02 0.05 131 

2 0.38 7200  0.64 0.76 0.89  0.22 0.35 0.41  0.02 0.04 0.06  0 0.01 0.06 159 

3 1.69 7200  0.73 0.87 0.92  0.53 0.57 0.59  0.05 0.06 0.09  0 0.01 0.04 172 

Ave 0.93 7200  0.61 0.72 0.83  0.28 0.35 0.40  0.03 0.06 0.09  0 0.01 0.05 154 

50-5-5 

1 2.39 7200  0.90 1.09 1.45  0.08 0.13 0.19  0.06 0.09 0.12  0 0.02 0.07 411 

2 4.49 7200  1.54 2.41 3.41  0.09 0.15 0.20  0.11 0.25 0.35  0 0.05 0.03 481 

3 3.43 7200  1.17 2.01 2.14  0.16 0.23 0.30  0.21 0.35 0.44  0 0.02 0.15 544 

Ave 3.44 7200  1.20 1.64 2.23  0.11 0.17 0.23  0.13 0.23 0.30  0 0.03 0.08 479 

50-5-8 

1 2.51 7200  1.13 1.57 2.47  0.31 0.45 0.58  0.05 0.11 0.18  0 0.01 0.07 724 

2 2.62 7200  0.91 1.05 1.27  0.29 0.31 0.23  0.11 0.19 0.23  0 0.01 0.03 716 

3 3.89 7200  0.72 0.93 1.07  0.16 0.20 0.23  0.14 0.21 0.27  0 0.04 0.06 725 

Ave 3.06 7200  0.92 1.18 1.60  0.25 0.32 0.38  0.10 0.17 0.23  0 0.02 0.05 722 

50-5-10 

1 3.95 7200  1.07 1.10 1.47  0.07 0.12 0.20  0.11 0.14 0.20  0 0.03 0.05 386 

2 3.88 7200  0.92 1.06 1.32  0.18 0.25 0.31  0.17 0.23 0.29  0 0.01 0.03 147 

3 3.97 7200  0.81 0.94 0.98  0.24 0.28 0.32  0.17 0.20 0.25  0 0.05 0.11 133 

Ave 3.93 7200  0.93 1.03 1.25  0.16 0.22 0.28  0.15 0.19 0.25  0 0.03 0.06 222 
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100-5-2 

1 5.15 7200  1.02 1.09 1.21  0.39 0.46 0.51  0.18 0.20 0.24  0 0.03 0.06 880 

2 3.28 7200  0.85 0.89 0.96  0.55 0.59 0.65  0.18 0.22 0.28  0 0.03 0.06 872 

3 4.37 7200  0.88 0.91 0.99  0.41 0.52 0.60  0.17 0.21 0.26  0 0.05 0.07 885 

Ave 4.27 7200  0.92 0.96 1.05  0.45 0.52 0.59  0.18 0.21 0.26  0 0.04 0.06 879 

100-5-5 

1 4.51 7200  0.95 1.02 1.06  0.62 0.71 0.82  0.15 0.23 0.28  0 0.05 0.08 935 

2 6.62 7200  1.12 1.15 1.21  0.31 0.35 0.38  0.08 0.13 0.18  0 0.03 0.08 1250 

3 4.89 7200  0.92 1.14 1.23  0.30 0.33 0.37  0.13 0.15 0.17  0 0.07 0.09 1164 

Ave 5.34 7200  1.00 1.10 1.16  0.41 0.46 0.52  0.12 0.17 0.21  0 0.05 0.08 1116 

100-5-8 

1 4.89 7200  1.14 1.24 1.35  0.52 0.61 0.72  0.16 0.27 0.29  0 0.04 0.07 2670 

2 6.23 7200  1.03 1.35 1.94  0.24 0.27 0.34  0.09 0.15 0.19  0 0.05 0.06 2556 

3 6.01 7200  0.98 1.16 1.32  0.25 0.28 0.31  0.16 0.18 0.19  0 0.06 0.09 2280 

Ave 5.71 7200  1.05 1.25 1.53  0.33 0.39 0.46  0.14 0.20 0.22  0 0.05 0.07 2502 

100-5-10 

1 5.80 7200  1.64 1.69 1.76  0.45 0.47 0.52  0.03 0.04 0.06  0 0.04 0.05 3120 

2 5.16 7200  1.68 1.75 1.81  0.46 0.48 0.51  0.04 0.05 0.09  0 0.04 0.06 3185 

3 6.33 7200  1.55 1.57 1.61  0.38 0.42 0.49  0.06 0.05 0.08  0 0.03 0.04 3325 

Ave 5.76 7200  1.62 1.67 1.73  0.43 0.45 0.51  0.04 0.05 0.08  0 0.04 0.05 3210 

Average  2.76 5029  0.89 1.06 1.26  0.34 0.40 0.49  0.14 0.19 0.25  0 0.04 0.06 812 

 
   As expected, and it is clear from Tables 5 and 6, the use of the proposed MILP model is difficult when 
the problem size increases (in particular the number of jobs), and large sample problems cannot be solved 

optimally at a logical time. The efficiency of each algorithm is not better than the other. The reason for 

this difference in performance is that, when the number of stages in the flexible flow shop (FFS) 
production with parallel machines is low, algorithms can easily search the solution space and find the 

optimal solution. But when the number of stages of the problem increases, the solution space will 

increase, and algorithms will require more iteration and, in general, adjust their parameters to obtain the 

optimal solution. However, PSO3 and PSOGA algorithms showed better performance than PSO2 and 
PSO1 algorithms, and the performance of algorithms using the ERT and EDD rules is better than 

algorithms without using these rules. Finally, it is clear from the computational results that the proposed 

hybrid algorithm (EAPG) that searches in the active space and uses both practices has the best 
performance. In comparison between EAPG, PSO2, and PSO1, when the number of jobs increases to 

more than 50 jobs for some instances the worst results founded by PSO3 are better than the best results of 

PSO2, PSO1. Furthermore, in the comparison between EAPG and PSO3, their results are almost the same 
for the instance with up to 20 jobs but when the number of jobs increases to more than 20 jobs for some 

instances the worst results founded by EAPG are better than the best results of PSO3. This confirms the 

important role of local search to find a good solution. 

   From tables 5 and 6, it can then be seen that the EAPG is superior in 20 out of 21 problem sizes 
compared to PSO1, in 17 out of 21 problem sizes compared to PSO2, and in 16 out of 21 problem sizes 

compared to PSO3. On average, the EAPG that searches in the active space and uses both rules (ERT and 

EDD) outperforms these three algorithms (with an average of 0.841).  
   The comparison between the averages of time to reach the optimal solution by two presented algorithms 

for small size instances is shown in Fig 6. Also, the comparison between average values of algorithms for 

medium and large size instances with fixed iterations and fix time is shown in Fig 7 and 8. 

    Furthermore, in order to assess the significance of the differences between the results obtained by 
EAPG and the other metaheuristics, two-tailed paired t tests have been performed. The results of the t 

tests are given in Table 7 and the comparison between the EAPG algorithm and the three algorithms 

PSO1, PSO2, PSO3 is presented in terms of the deviation from the best solution. These 3 paired sample 

test performed at 95% confidence level with SPSS software. Null hypothesis (𝐻0) in these tests indicates 

no difference between algorithms and in alternative hypothesis(𝐻1), there is a difference. Since the value 

of 𝑆𝑖𝑔 (p-value) for all three paired sample tests are less than the error type 1 (α = 0.05) and the upper 
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bound and lower bound intervals do not contain zero, the null hypothesis is rejected in three tests and the 
results of the t tests indicate that, with strong statistical significance, EAPG has a better performance than 

PSO3 as well as PSO1 and PSO2. 
 

Table7. Statistical significance of differences between the results for large-scale problems 

    95% Confidence Interval of the Difference   

  Mean Std. Deviation Lower Upper Sig. (2-tailed) 

Pair 1 PSO1 - EAPG 1.00056 0.42998 0.85507 1.14604 0.000007 

Pair 2 PSO2 - EAPG 0.33444 0.21497 0.26171 0.40718 0.00004 

Pair 3 PSO3 - EAPG 0.12861 0.13964 0.08137 0.17586 0.0003 

 

 

6-Conclusions and suggestions for future research  
    In this paper, the HFS scheduling problem with identical parallel machines and VRP is investigated, 
and for the first time, the problem of HFS scheduling has been integrated with the VRP to minimize the 

tardiness penalty and transportation. In the serial production environment, there are at the same time 

several parallel machines with the same speed and conditions. In the transport section, there are some 
vehicles equal to the number of jobs with limited capacity. A hybrid PSO algorithm with GA that 

searches in an active solution space is suggested to solve the integrated problem. The algorithm structure 

to solve the problem is specific and how to match the particle swarm optimization algorithm with the 
problem is shown. Due to the novelty of the literature studied, the problems are generated using random 

methods to examine the effectiveness and efficacy of the proposed method. To demonstrate the 

effectiveness of the proposed heuristic method, the heuristic algorithms presented in the literature are 

used. All algorithms are coded in the same software environment and its results are recorded. The 
computational results show that the proposed solution approach yields fairly good results in comparison 

with the current algorithms of the literature. The algorithm is capable to generate relatively good solutions 

for sample cases. 
   It is also suggested as a proposal for future research to examine the integrated FS production scheduling 

and routing for other modes of production environment such as heterogeneous machines or taking into 

account the setup time and the job sequence or taking into account the job inventory. The limited number 
of vehicles or the uses of vehicles at different speeds are among the suggestions for future research in this 

area. 
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