
9

 A lower bounding method for earliness and tardiness

minimization on a single batch processing machine

Taha Keshavarz1*

1Department of Industrial Engineering, Semnan University, Semnan, Iran

taha_keshavarz@semnan.ac.ir

Abstract

In this research, the problem of scheduling a single batch processing
machine with non-identical job sizes is considered. The objective is to

minimize the total earliness and tardiness of all the jobs. A batch

processing machine can process a group of jobs simultaneously as a batch

as long as its capacity is not violated. The processing time of a batch is
equal to the maximum processing time of all the jobs in the batch. Since

the problem under study is shown to be NP-hard, a lower bounding method

based on column generation is proposed. The proposed lower bound can be
used for evaluating the performance of the heuristic and metaheuristic

algorithms developed for the research problem. The computational

experiments are designed to analyze the performance of the proposed lower
bound. The results show that the column generation approach can

considerably generates better lower bound than the best known lower

bounding method in the literature.

Keywords: Batch processing machine, just-in-time, lower bound, column
generation

1-Introduction
 Batch processing systems are one of the most important production systems in practice. A batch

processing machine (BPM) can process several jobs simultaneously. A batch of jobs referred to a
group of jobs that are processed together on the machine. All the jobs in a batch have the same start

and completion time on the machine. In parallel BPM, the processing time of a batch is equal to the

largest processing time of the jobs in the batch. There are several applications of batch processing
machines in industry practice. Chemical processes performed in tanks or kilns and burn-in oven

operations in semiconductor industries are the examples of such problems. A comprehensive literature

review of scheduling semiconductor manufacturing operations is performed by Mönch et al. (2011).

 The most studies on BPM are related to its application in semiconductor manufacturing. Heat-stress
test of integrated circuit chips are done by using Burn-in oven machines. Burn-in ovens are batch

processing machine and several chips can be tested in a burn-in oven simultaneously. The burn-in

process is often a bottleneck step in the back-end process of semiconductor manufacturing because its
processing time is much longer than that of the other steps. Therefore, efficient scheduling on burn-in

ovens can considerably reduce the cost of production in semiconductor manufacturing. In high-tech

manufacturing such as semiconductor manufacturing where the product life cycles are short,

developing appropriate strategies to reduce the production costs is so essential.
 Just-in-time (JIT) scheduling is another popular strategy for improving the efficiency and cost-

effectiveness of a production system. A JIT strategy improves a production system by reducing in-

process inventories.

*Corresponding author

ISSN: 1735-8272, Copyright c 2021 JISE. All rights reserved

Journal of Industrial and Systems Engineering

Vol. 13, No. 2, pp. 9-26

Spring (April) 2021

mailto:taha_keshavarz@semnan.ac.ir

10

 The earliness and tardiness penalties are important measurement in Just-in-time production systems.
Early jobs may increase holding costs and costs related to the deterioration of finished or perishable

goods. However, tardy jobs lead to lost sales and customer dissatisfaction and hence loss of

reputation. Minimizing the earliness and tardiness penalties can improve the efficiency and cost-

effectiveness of a production system. So, incorporating earliness and tardiness considerations is so
important in the current competitive environment.

 In this paper, minimization of total earliness and tardiness on a single batch processing machine

with non-identical job sizes is considered. In other words, two important classes of scheduling
problems, BPM scheduling problems and JIT scheduling problems are investigated in this research. It

is assumed that all the jobs have a common and loose due date. Common due date assumption is

applicable in many production systems, such as base wafers in the front-end of burn-in ovens. Base
wafers are preprocessed wafers that held on stock for further processing based on the specific

customer requests. In this situation, a large number of chips have the same external due date and

hence the same internal due date with respect to the burn-in oven (Mönch et al., 2006).

 Despite the research problem is shown to be NP-hard by Brucker et al. (1998), there are a few
research that propose effective algorithms for the research problem in the literature. Some researchers

proposed several heuristic and metaheuristic for the research problem. However, there is not a good

lower bound on the optimal solution of the problem. To evaluate the performance of the heuristic and
metaheuristic algorithms, a tight lower bound can be very helpful. This is a motivation to focus on

developing a lower bounding method based on column generation approach for the research problem.

 The rest of the paper is organized as follows: Related literature to the research problem is briefly
provided in section 2. The characteristics of the problem and a mathematical formulation are

presented in section 3. The details of the proposed column generation approach are introduced in

section 4. The experimental design to evaluate the effectiveness of the proposed approach is reported

in section 5. Finally, conclusions and directions for the future research are discussed in section 6.

2-Related literature
 In recent years, scheduling problems related to the batch processing machines have been
investigated extensively by many researchers. In this section, only the papers having the most

similarities with our assumptions are reviewed; especially the papers investigating the single batch

processing machine problem with non-identical job sizes.
 Uzsoy (1994) investigated the single batch processing machine problem with non-identical job sizes

and gave the complexity results for both makespan minimization and total flow time minimization for

the first time. He developed some heuristics and a branch and bound algorithm for the research

problem and showed that these procedures provide near optimal solutions. Several heuristics were
proposed by Jolai and Dupont (1998) for minimizing the total flow time. The same problem was

considered by Dupont and Jolai (1998) and various heuristics were developed to minimize makespan.

Their computational experiments revealed the performance of these heuristics. A branch and bound
algorithm was developed by Azizoglu and Webster (2000) to minimize the total weighted flow time

on a single batch processing machine. They showed that the problem instances with less than 25 jobs

can be solved in a reasonable amount of time.
 Dupont and Dhaenens-Flipo (2002) considered the problem of makespan minimization on a single

BPM and proposed a branch and bound procedure. Rafiee Parsa et al. (2010) proposed a column

generation approach and a branch and price algorithm for the same problem. They showed that the

branch and price algorithm has a better performance than the proposed algorithm by Dupont and
Dhaenens-Flipo (2002). Chen et al. (2011) introduced definition of waste ratio of a batch and

proposed a clustering algorithm to minimize makespan. They showed that their algorithm outperforms

the previous algorithms. Lee and Lee (2013) developed construction-based heuristics and
improvement-based heuristics to minimize the makespan. They showed that their suggested heuristics

produce high quality solutions in most cases. S. Li et al. (2005) investigated the problem with job

release times and provided an approximation algorithm for minimizing makespan. They proved that

the worst-case ratio of the proposed approximation algorithm is 2 + 𝜀. Zhou et al. (2014) considered
the problem with dynamic job arrivals and proposed constructive heuristics for this problem.

 Wang (2011) proposed a two-phase heuristic for the problem of minimizing total weighted

tardiness. Malapert et al. (2012) developed a constraint programming approach to minimize the

11

maximum lateness. They decomposed the problem into two sub-problems. In the first sub-problem, an
assignment of the jobs to the batches was determined. Then, minimizing the lateness of the batches

was considered in the second sub-problem. A new neighborhood search algorithm to minimize the

maximum lateness of the jobs was introduced by Cabo et al. (2015). Their computational experiments

show the effectiveness of the proposed neighborhood search algorithm.
 There are several research efforts focused on developing various metaheuristic algorithms for the

single batch processing machine. A simulated annealing algorithm for single BPM problem with non-

identical job sizes was proposed by Melouk et al. (2004) to minimize the makespan. Kashan et al.
(2006) developed two different genetic algorithms based on different representation schemes. They

showed that the performance of the proposed algorithms have a superior performance than the

simulated annealing approach proposed by Melouk et al. (2004). Investigating the bi-criteria
scheduling problem of minimizing the makespan and maximum tardiness was considered by Kashan

et al. (2010). They proposed two multi-objective genetic algorithms based on different encoding

schemes. Xu et al. (2012) proposed an ant colony optimization algorithm for the single BPM problem

with dynamic job arrivals to minimize the makespan. They introduced a definition of waste and idle
space for batches. Damodaran et al. (2013) developed a Greedy Randomized Adaptive Search

Procedure to minimize the makespan. They compared their proposed approach with the algorithms

proposed by Melouk et al. (2004) and Damodaran et al. (2006). Jia and Leung (2014) formulated
makespan minimization as a problem of minimizing the wasted space and presented an improved ant

system algorithm. Al-Salamah (2015) proposed an artificial bee colony approach to minimize the

makespan. Rafiee Parsa et al. (2016) developed a max-min ant system to minimize total completion
time. Recently, Rafiee Parsa et al. (2019) designed a hybrid neural network approach for the same

problem.

 Considering non-regular objective functions, Brucker et al. (1998) proved that all the batch

scheduling problems with due date related criteria are NP-hard. Hence, the minimization of earliness
and tardiness is also NP-hard. Qi and Tu (1999) proposed a dynamic programming algorithm for the

earliness and tardiness minimization problem. They considered identical job sizes and the same

processing times for all the jobs and assumed jobs have a distinct due date. Mönch et al. (2006)
considered the earliness and tardiness minimization problem with a common due date and identical

job sizes under a maximum allowable tardiness constraint. They proposed a hybrid genetic algorithm

for the problem. Zhao et al. (2006) developed a polynomial time heuristic algorithm for minimizing

the total weighted earliness and tardiness when there is a common due window for the jobs. Several
heuristic algorithms were developed to minimize the earliness and tardiness on parallel burn-in ovens

by Mönch and Unbehaun (2007). They assumed that jobs have unit job size and a common due date.

Z. Li et al. (2015) considered the case of non-identical job sizes and proposed a hybrid genetic
algorithm for the problem with a common due date. Polyakovskiy et al. (2017) investigated the JIT

batch scheduling problem with two dimensional bin packing constraints. They proposed a constraint

programming based heuristic and an agent based modeling heuristic. Rafiee Parsa et al. (2017)
proposed exact and heuristic algorithms for JIT scheduling in a batch processing system. They

considered a common and loose due date and developed a mixed integer linear programming for the

problem. They also proposed several heuristics and an exact algorithm. Ogun and Alabas-Uslu (2018)

developed three different mathematical models for minimization of total earliness and tardiness of
customer orders to provide on-time completion of customer orders and also, to avoid excess final

product inventory. Jia et al. (2020) developed a new history-guided multi-objective evolutionary

algorithm for a multi-objective scheduling problem on parallel batching machines with three
objectives, the minimization of the makespan, the total weighted earliness/tardiness penalty and the

total energy consumption, simultaneously.

 Concluding from the literature review, there are a few research that considered the single BPM
problem with minimization of the total earliness and tardiness with non-identical job sizes. In

addition, there is no efficient lower bounding method for this problem. The valid and tight lower

bounds can be used for evaluating different heuristic and metaheuristic algorithms developed for the

research problem. Investigating on this problem is both academically interesting and practically
important. In addition, the results can provide insights that can be used to solve more complicated

batch scheduling problems more effectively.

12

3-Problem description
 Consider a single batch processing machine with 𝑛 jobs to be processed. Each job 𝑗 is available at

time 0 and has a processing time (𝑝𝑗) and a corresponding size (𝑠𝑗). The capacity of batch processing

machine is 𝐶 and the sum of the size of jobs in each batch cannot exceed 𝐶. Processing of a batch

cannot be interrupted after it is started, and other jobs cannot be inserted into the machine until

processing is completed. The processing time of a batch is given by the longest processing time
among the jobs within the batch. In other words, the batch processing machine is considered to be a

parallel batch processing machine. The completion time of the jobs in a batch is equal to the

completion time of the batch. All the jobs have a common and loose or nonrestrictive due date 𝑑,

which is greater than or equal to the makespan of the given set of jobs, so we assume that 𝑑 ≥ ∑ 𝑝𝑗𝑗 .

The goal is to find the best schedule of jobs in order to minimize the total earliness and tardiness.

Based on the standard classification scheme for scheduling problems (Graham et al., 1979), the

problem can be noted as 1|𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑠𝑗 ≤ 𝐶| ∑(𝐸𝑗 + 𝑇𝑗). 1 refers to single machine scheduling, 𝑝 −

𝑏𝑎𝑡𝑐ℎ denotes the parallel batch processing assumptions, 𝑠𝑗 ≤ 𝐶 indicates that there are non-identical

job sizes and the machine capacity is 𝐶, and ∑(𝐸𝑗 + 𝑇𝑗) demonstrates the objective function. Rafiee

Parsa et al. (2017) proposed a binary mixed integer linear programming model for the research

problem. The parameters, decision variables and the mathematical model are as follows:

Parameters and notations:

𝑛 : Number of jobs

𝑗 : Index used for jobs

𝑏 : Index used for batches

𝑠𝑗 : Size of job 𝑗

𝑝𝑗 : Processing time of job 𝑗

𝐶 : Capacity of machine

𝑑 : Common loose due date

𝑀 : A large positive number

 Decision variables:

 𝑥𝑗𝑏 = {
1 If job 𝑗 is assigned to batch 𝑏

0 Otherwise

Dependent variables:

𝑃𝑏 : Processing time of batch 𝑏

𝐶𝑏 : Completion time of batch 𝑏

𝐸𝑇𝑏 : Absolute deviation of the completion time of batch 𝑏 from the due date 𝑑

𝐸𝑇𝑗 : Absolute deviation of the completion time of job 𝑗 from the due date 𝑑

The model:

Minimize ∑ 𝐸𝑇𝑗

𝑛

𝑗=1
 (1)

13

Subject to: ∑ 𝑥𝑗𝑏 = 1
𝑛

𝑏=1
 𝑗 = 1, … , 𝑛 (2)

 ∑ 𝑠𝑗𝑥𝑗𝑏

𝑛

𝑗=1
≤ 𝐵 𝑏 = 1, … , 𝑛 (3)

 𝑃𝑏 ≥ 𝑥𝑗𝑏𝑝𝑗 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛 (4)

 𝐶1 ≥ 𝑃1 (5)

 𝐶𝑏 ≥ 𝐶𝑏−1 + 𝑃𝑏 𝑏 = 2, … , 𝑛 (6)

 𝐸𝑇𝑏 ≥ 𝑑 − 𝐶𝑏 𝑏 = 1, … , 𝑛 (7)

 𝐸𝑇𝑏 ≥ 𝐶𝑏 − 𝑑 𝑏 = 1, … , 𝑛 (8)

 𝐸𝑇𝑗 ≥ 𝐸𝑇𝑏 − 𝑀(1 − 𝑥𝑗𝑏) 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛 (9)

 𝑃𝑏 , 𝐶𝑏 , 𝐸𝑇𝑏 , 𝐸𝑇𝑗 ≥ 0 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛 (10)

 𝑥𝑗𝑏 ∈ {0,1} 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛 (11)

 Minimizing the total earliness and tardiness of jobs is expressed by equation (1) as the objective

function. Constraint set (2) ensures that each job is assigned exactly to one batch. The total size of all

the jobs in a particular batch cannot exceed the machine’s capacity. Constraint set (3) is incorporated
into the model for this reason. Constraint set (4) determines the processing time of each batch.

Constraint sets (5) and (6) ensure that the completion time of each batch is greater than or equal to the

completion time of its predecessor batch plus its processing time. The absolute deviation of the

completion time of batch 𝑏 from the due date 𝑑 is determined by constraint sets (7) and (8). If job 𝑗 is

assigned to batch 𝑏, then 𝐸𝑇𝑗 is equal to 𝐸𝑇𝑏. Constraint set (9) is incorporated into the model for this

reason. In this constraint, 𝑀 is a large enough positive number. Since the value of earliness and

tardiness of batches is less than sum of the processing time of jobs, we can set 𝑀 = ∑ 𝑝𝑗
𝑛
𝑗=1 .

Constraint sets (10) and (11) specify the type of decision variables. The number of variables and the

number of constraints in this model are 𝑛2 + 4𝑛 and 2𝑛2 + 5𝑛, respectively.

4-Lower bounding method – the column generation approach
 The column generation approach has been known as an efficient method for solving linear and

integer programming problems with huge number of variables. The details of the column generation

approach can be found in Barnhart et al. (1998), Wilhelm (2001), and Wilhelm et al. (2003).
 In this section, a column generation approach is proposed for finding the lower bound of the

research problem. The reformulated mathematical model, and the details of the column generation

approach are discussed in the following sections.

4-1-Dantzig-Wolf decomposition model
 A decomposition formulation for the research problem by reformulating it as a set-partitioning

Master Problem by using Dantzig–Wolfe decomposition is proposed. In the set partitioning

formulation, 𝑚 positions are considered for scheduling the batches and each column corresponds to a

set of jobs assigned to a batch that placed in a defined position. Since the number of batches may be

less than the number of positions, it is assumed that empty batches are placed in the positions with no

batch. The following parameters and decision variables beside the defined ones in Section 3 are
required to present this model:

14

Parameters:

𝐵𝑖 𝑖 = 1, … , 𝑚 The set of all feasible batches in position 𝑖

𝐾𝑖 𝑖 = 1, … , 𝑚 Number of all feasible batches in position 𝑖, i.e. |𝐵𝑖|

𝑏𝑖
𝑘 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 The 𝑘th feasible batch in position 𝑖

𝑃𝑖
𝑘 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 The processing time of the 𝑘th feasible batch in position 𝑖

𝐶𝑖
𝑘 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 The completion time of the 𝑘th feasible batch in position 𝑖

𝐸𝑖
𝑘 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 The earliness of the 𝑘th feasible batch in position 𝑖

𝑇𝑖
𝑘 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 The Tardiness of the 𝑘th feasible batch in position 𝑖

𝑥𝑖𝑗
𝑘 = {

1

0

If job 𝑗 is assigned to the 𝑘th feasible batch in position 𝑖

Otherwise

𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖
𝑗 = 1, … , 𝑛

Decision variables:

𝜆𝑖
𝑘 = {

1

0

If batch 𝑏𝑖
𝑘 ∈ 𝐵𝑖 is selected in posiotion 𝑖

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The processing time of the batch in position 𝑖 𝑖 = 1, … , 𝑚 𝑃𝑖

The completion time of the batch in position 𝑖 𝑖 = 1, … , 𝑚 𝐶𝑖

The earliness of the batch in position 𝑖
𝑖 = 1, … , 𝑚

𝐸𝑖

The tardiness of the batch in position 𝑖
𝑖 = 1, … , 𝑚

𝑇𝑖

 Each column corresponds to a feasible batch in a position. A feasible batch 𝑏𝑖
𝑘 is defined by the jobs

belonging to it. In other words, 𝑏𝑖
𝑘 = {𝑥𝑖𝑗

𝑘 , 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛} where 𝑥𝑖𝑗
𝑘 define a feasible

assignment of jobs to a batch by considering the machine capacity. The master problem can be written

as follows:

(12)

Min 𝑍𝑀𝑃 = ∑ ∑ ∑ 𝜆𝑖
𝑘𝑥𝑖𝑗

𝑘

𝑛

𝑗=1

𝑚

𝑖=1

𝐾𝑚

𝑘=1

(𝐸𝑖
𝑘 + 𝑇𝑖

𝑘)

 𝑠. 𝑡.

(13) 𝑖 = 2, … , 𝑚 ∑ 𝜆𝑖
𝑘𝐶𝑖

𝑘

𝐾𝑖

𝑘=1

≥ ∑ 𝜆(𝑖−1)
𝑘 𝐶(𝑖−1)

𝑘

𝐾(𝑖−1)

𝑘=1

+ ∑ 𝜆𝑖
𝑘𝑃𝑖

𝑘

𝐾𝑖

𝑘=1

15

(14) 𝑗 = 1, … , 𝑛 ∑ ∑ 𝑥𝑖𝑗
𝑘 𝜆𝑖

𝑘

𝑚

𝑖=1

= 1

𝐾𝑖

𝑘=1

(15) 𝑖 = 1, … , 𝑚 ∑ 𝜆𝑖
𝑘

𝐾𝑖

𝑘=1

= 1

(16) 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 𝜆𝑖
𝑘 ∈ {0,1}

Minimization of total earliness and tardiness as the objective function is presented by equation (12).

Constraint set (13) ensures that the completion time of a batch in position 𝑖 is greater than or equal to

the completion time of the batch in position (𝑖 − 1) plus its processing. This constraint set deals with

the completion time of two consecutive batches. Constraint set (14) ensures that each job is assigned

exactly to one batch selected for one position. Constraint set (15) is the convexity constraint and
ensure that only one batch is selected for each position.

There are so many feasible batches for each position, so explicitly considering all of them into the

model is not possible. Therefore, column generation approach is used to solve the linear programming
relaxation of the master problem by adding new batches with negative reduced costs to the model as

needed. Initial batches are generated by using the ETFF-LPT algorithm proposed by Rafiee Parsa et

al. (2017) for the research problem. The linear programming master problem, which includes only a

subset of all possible batches, is called the restricted linear master problem (RLMP) and can be
written as below:

(17)

Min 𝑍𝑅𝐿𝑀𝑃 = ∑ ∑ ∑ 𝜆𝑖
𝑘𝑥𝑖𝑗

𝑘

𝑛

𝑗=1

𝑚

𝑖=1

𝐾𝑚

𝑘=1

(𝐸𝑖
𝑘 + 𝑇𝑖

𝑘)

 𝑠. 𝑡.

(18) 𝛾𝑖 𝑖 = 2, … , 𝑚 ∑ 𝜆𝑖
𝑘𝐶𝑖

𝑘

𝐾𝑖

𝑘=1

≥ ∑ 𝜆(𝑖−1)
𝑘 𝐶(𝑖−1)

𝑘

𝐾(𝑖−1)

𝑘=1

+ ∑ 𝜆𝑖
𝑘𝑃𝑖

𝑘

𝐾𝑖

𝑘=1

(19) 𝛽𝑗 𝑗 = 1, … , 𝑛 ∑ ∑ 𝑥𝑖𝑗
𝑘 𝜆𝑖

𝑘

𝑚

𝑖=1

= 1

𝐾𝑖

𝑘=1

(20) 𝛼𝑖 𝑖 = 1, … , 𝑚 ∑ 𝜆𝑖
𝑘

𝐾𝑖

𝑘=1

= 1

(21) 𝑖 = 1, … , 𝑚; 𝑘 = 1, … , 𝐾𝑖 0 ≤ 𝜆𝑖
𝑘 ≤ 1

Define 𝛾
𝑖
, 𝛽𝑗, and 𝛼𝑖 as the dual variables corresponding to constraint sets (18), (19), and (20),

respectively. The dual problem of RLMP is presented to facilitate the presentation of the sub-

problems. Sub-problems are used to identify if there is any column to add to RLMP to improve the

objective function value. The dual of RLMP is generated as the following:

(22)

Max 𝑍𝐷𝑢𝑎𝑙 = ∑ 𝛼𝑖

𝑚

𝑖=1

+ ∑ 𝛽𝑗

𝑛

𝑗=1

 𝑠. 𝑡.

(23) 𝑘 = 1, … , 𝐾1
−𝛾2𝐶1

𝑘 + 𝛼1 + ∑ 𝑥1𝑗
𝑘 𝛽𝑗

𝑛

𝑗=1

≤ ∑ 𝑥1𝑗
𝑘 (𝐸1

𝑘 + 𝑇1
𝑘)

𝑛

𝑗=1

16

(24)

𝛾𝑖(𝐶𝑖
𝑘 − 𝑃𝑖

𝑘) − 𝛾𝑖+1𝐶𝑖
𝑘 + 𝛼𝑖 + ∑ 𝑥𝑖𝑗

𝑘 𝛽𝑗

𝑛

𝑗=1

≤ ∑ 𝑥𝑖𝑗
𝑘 (𝐸𝑖

𝑘 + 𝑇𝑖
𝑘)

𝑛

𝑗=1

𝑖 = 2, … , 𝑚 − 1; 𝑘 = 1, … , 𝐾𝑖

(25)
𝛾𝑚(𝐶𝑚

𝑘 − 𝑃𝑚
𝑘) + 𝛼𝑚 + ∑ 𝑥𝑚𝑗

𝑘 𝛽𝑗

𝑛

𝑗=1

≤ ∑ 𝑥𝑚𝑗
𝑘 (𝐸𝑚

𝑘 + 𝑇𝑚
𝑘)

𝑛

𝑗=1

𝑘 = 1, … , 𝐾𝑚

(26) 𝑖 = 2, … , 𝑚 𝛾𝑖 ≥ 0

(27) 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛 𝛼𝑖, 𝛽𝑗 unrestericted

To simplify representing the sub-problems, define 𝛾
1

= 0 and 𝛾𝑚+1 = 0. In order To find the batch

with the most negative reduced cost in the 𝑖th position (𝑖 = 1, … , 𝑚), the value of

𝑀𝑖𝑛
1≤𝑘≤𝐾𝑖

(𝛾𝑖+1 − 𝛾𝑖)𝐶𝑖
𝑘 + 𝛾𝑖𝑃𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑛
𝑗=1 + ∑ 𝑥𝑖𝑗(𝐸𝑖

𝑘 + 𝑇𝑖
𝑘)𝑛

𝑗=1 −𝛼𝑖 should be determined. It is

equivalent to solve the following sub-problem:

(28) M𝑖𝑛 𝑍𝑆𝑃𝑖 = (𝛾𝑖+1 − 𝛾𝑖)𝐶𝑖 + 𝛾𝑖𝑃𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑛

𝑗=1

+ ∑ 𝑥𝑖𝑗(𝐸𝑖 + 𝑇𝑖)

𝑛

𝑗=1

−𝛼𝑖

 𝑠. 𝑡.

(29)

∑ 𝑠𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝐶

(30) 𝑗 = 1, … , 𝑛 𝑃𝑖 ≥ 𝑥𝑖𝑗𝑝𝑗
(31) 𝐶𝑖 ≥ 𝑃𝑖

(32) 𝐸𝑖 ≥ 𝑑 − 𝐶𝑖

(33) 𝑇𝑖 ≥ 𝐶𝑖 − 𝑑

(34) 𝐶𝑖 ≥ 0, 𝑃𝑖 ≥ 0, 𝐸𝑖 ≥ 0, 𝑇𝑖 ≥ 0

(35) 𝑗 = 1, … , 𝑛 𝑥𝑖𝑗 ∈ {0,1}

There are 𝑚 sub-problems with similar structure and every sub-problem corresponds to a position.

The non-linear term 𝑥𝑖𝑗(𝐸𝑖 + 𝑇𝑖) is appeared in the objective function of the sub-problems. To

linearize the sub-problems, set 𝑥𝑖𝑗(𝐸𝑖 + 𝑇𝑖) = 𝑒𝑗 + 𝑡𝑗. The sub-problems can be rewritten as follows:

(36) M𝑖𝑛 𝑍𝑆𝑃𝑖 = (𝛾𝑖+1 − 𝛾𝑖)𝐶𝑖 + 𝛾𝑖𝑃𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑛

𝑗=1

+ ∑(𝑒𝑗 + 𝑡𝑗)

𝑛

𝑗=1

−𝛼𝑖

 𝑠. 𝑡.
(37)

∑ 𝑠𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝐶

(38) 𝑗 = 1, … , 𝑛 𝑃𝑖 ≥ 𝑥𝑖𝑗𝑝𝑗

(39) 𝐶𝑖 ≥ 𝑃𝑖

(40) 𝐸𝑖 ≥ 𝑑 − 𝐶𝑖

(41) 𝑇𝑖 ≥ 𝐶𝑖 − 𝑑

(42) 𝑗 = 1, … , 𝑛 𝑒𝑗 ≥ 𝐸𝑖 − 𝑀(1 − 𝑥𝑖𝑗)

(43) 𝑗 = 1, … , 𝑛 𝑡𝑗 ≥ 𝑇𝑖 − 𝑀(1 − 𝑥𝑖𝑗)

(44) 𝐶𝑖 ≥ 0, 𝑃𝑖 ≥ 0, 𝐸𝑖 ≥ 0, 𝑇𝑖 ≥ 0

(45) 𝑗 = 1, … , 𝑛 𝑥𝑖𝑗 ∈ {0,1}, 𝑒𝑗 ≥ 0, 𝑡𝑗 ≥ 0

17

If the optimal value of at least one of the sub-problems are negative, there are batch(es) that can be
added to the master problem and improve the objective function value. The process of solving sub-

problems and adding new bathes to RLMP continues until all sub-problems have positive optimal

objective function values.

4-2-Solving the sub-problems for generating improving columns
It is not necessary that the sub-problems be solved optimally during the intermediate iterations of

column generation approach and finding an improving column is adequate. Thus, a metaheuristic is
used to solve the sub-problems during early iterations. When the metaheuristic is unable to find a

suitable column for all sub-problems, the sub-problems are solved optimally. At the end of the column

generation approach, all sub-problems must be solved optimally to make sure that the optimal solution

of the node is found. After solving the sub-problems using the metaheuristic, if at least one of the sub-
problems have a negative objective function, new columns are added to the RLMP. By solving

updated RLMP, new dual values are obtained to update sub-problem objective functions. In this

research, memetic algorithm is used for solving sub-problems heuristically. The details of the
proposed memetic algorithm are briefly described in the following sub-sections.

4-2-1-Solution representation

 Solution representation is one of the most important aspects of the metaheuristic algorithms. Every
solution to sub-problems determines that which jobs are assigned to the batch. Hence, binary

representation can be used for determining that a job is assigned to the batch or not. A chromosome

can be defined as 𝑄 = [𝑎1, 𝑎2, … , 𝑎𝑛] in which 𝑎𝑗 ∈ {0,1}, 𝑗 = 1, … , 𝑛. In this notation, 𝑎𝑗 = 1 means

that job 𝑗 is assigned to the batch, and 𝑎𝑗 = 0 denotes that it is not assigned. The fitness or objective

function value of a chromosome is calculated based on the objective function value of the sub-
problem.

4-2-2-Selection strategy for recombination

 There are various methods for selecting chromosomes for crossover. In this research, the random

tournament selection strategy is used. In this selection strategy, first two chromosomes are selected

randomly from the population. Then, the random number 𝑟 is drawn from continuous uniform

distribution 𝑈[0, 1]. If 𝑟 is greater than 0.5, then the better chromosome is selected and the worse

chromosome is selected otherwise. The better chromosome is the one with better sub-problem
objective function. For selecting two parents and applying the crossover operator, the tournament

strategy should be executed twice (once for every parent).

4-2-3-Crossover and mutation operators

 In order to perform reproduction operations and to generate new solutions, it is necessary to use
operators such as crossover and mutation. The crossover operator generates new solutions by

combining the properties of the parents. Two-point crossover is used in this research. The mechanism

of this operator is that after the selection of two parents, two points are randomly selected in the
parents, and all the genes between these two points are transferred from one parent to the new

offspring, and the rest of the genes are completed according to the another parent. An example of

combination by applying two-point crossover for a problem with 10 jobs is presented in Figure 1.

Parent 1 1 0 0 0 1 1 1 0 1 1

Parent 2 0 0 1 0 0 1 0 1 1 0

Offspring 1 0 0 0 0 1 1 1 1 1 0

Offspring 2 1 0 1 0 0 1 0 0 1 1

Fig 1. Two-point crossover operator

Mutation operator plays an important role in providing population diversity. In this research, a
uniform mutation operator is used. In this operator, two genes are randomly selected first, and the

18

amount of selected genes is reversed (from zero to one or from one to zero). Uniform mutation
operator is demonstrated in figure 2.

0 0 0 0 1 1 1 1 1 0

0 0 1 0 0 1 1 1 1 0

Fig 2. Uniform mutation operator

4-2-4-Local search procedure

Local search procedures rely on the neighborhood structures. The neighborhood structure indicates
the relationship between solutions in the solution space. The neighborhood of a solution can be

defined as all the solutions that can be achieved by performing any of the possible changes according

to the neighborhood structure. In this study, a neighborhood is generated by changing a gene from one
to zero or from zero to one. A hill climbing algorithm for this kind of neighborhood structure is as

follows: start with an initial chromosome and perform a change on the chromosome, i.e. change a

gene from one to zero or from zero to one. A change is accepted whenever it reduces the value of the
objective function. But if the change increases the value of the objective function, it will be rejected

and the chromosome will not change. After a successful change, this cycle continues on the improved

chromosome. After a thorough check, local search will end if all possible changes are accomplished

without achieving any improvement, otherwise another cycle of changes will run on the improved
chromosome.

4-2-5-Updating the population

After generating new chromosomes through crossover and mutation steps the population should be
updated. An intensive strategy is used for accepting new chromosomes in this research. Only if the

fitness of the newly generated chromosome is better than at least one of the participating parents in

crossover, then the worse parent is replaced with the new offspring. This mechanism increases the rate
of improvement of the best solution. However, it reduces the diversification of the algorithm. To

overcome this trap, the algorithm restarts from another region in the search space randomly.

After replacing new offspring with their parent if at least one of the new offspring is chosen to
enter the population, the algorithm is continued with the updated population; otherwise, the

population should be regenerated. For this purpose, the algorithm replaces all the current

chromosomes with new randomly generated ones except the best elite chromosome that is obtained so

far. Every time regenerating the population occurs the algorithm restarts its process from another
region in the search space. A detailed flowchart of the proposed memetic algorithm for solving sub-

problems is depicted in figure 3.

19

Start

End

Generate initial population by

generating N chromosomes

randomly

Calculate the Fitness of initial

chromosomes

Determine Best_Chromosome

and Best_Fitness

Generation = 1

Stopping

Criterion?

Yes

Apply resetting population if

needed

Update Best_Chromosome and

Best_Fitness

Generation++

Update population by inserting

offspring with better Fitness

i = 1

i <= N*Crossover_rate?

Apply crossover on selected

chromosomes for generating new

offsprings

Apply mutation on new

offsprings

Select two chromosomes

randomly

Apply local search on new

offsprings

i++

No

YesNo

Report Best_Chromosome and

Best_Fitness

 Fig 3. The flowchart of the proposed algorithm for solving sub-problems

5-Computational results
In this section, after describing the specifications of the random test instances, the performance of

the proposed column generation approach is analyzed. ILOG CPLEX 12.0, a commercial optimization

software, is used to solve the mathematical model. The proposed column generation approach is also

coded with visual C++ 2008 using ILOG CPLEX (version 12.1) concert technology. All the
algorithms are executed on a laptop with 2.53 GHz processor and 4 GB RAM.

20

 Rafiee Parsa et al. (2017) generate a set of test instances for the 1|𝑝 − 𝑏𝑎𝑡𝑐ℎ, 𝑠𝑗 ≤ 𝐶| ∑(𝐸𝑗 + 𝑇𝑗)

problem. These test instances are used for computational experiments in this research. The

specifications of the test instances are as follows:

 The number of jobs ranges from 10 to 200 (𝑛 =10, 20, 40, 60, 80, 100, 200).

 The capacity of machine 𝐵 is assumed to be 40 in all the experiments.

 The job sizes are generated from a discrete uniform distribution in four categories:

- Combination of small and large jobs (Discrete uniform [1, 40]).

- Medium jobs (Discrete uniform [10, 20]).

- Large jobs (Discrete uniform [10, 30]).

- Small jobs (Discrete uniform [1, 10]).

 The processing time 𝑝𝑗 of a job is drawn from a uniform random distribution with lower and

upper limit 1 and 100.

The presented mathematical model in Section 3 can be used to solve the small sized instances

optimally. CPLEX as an optimization software is employed to solve the mathematical model.
Problems with 10 number of jobs are considered and 10 instances are generated randomly in each

category of job sizes. Then the optimal solution (𝑜𝑝𝑡) is compared with the lower bound (𝑙𝑏) obtained

by the proposed column generation approach. The results of this experiment are shown in table 1. The
average percentage error of the column generation approach is reported in the last column. As can be

seen from the results, the proposed lower bound is very close to the optimal solution in the small-

sized instances.

Table 1. Comparison the results of CPLEX and CG for small-sized instances

Job size CPLEX (𝒐𝒑𝒕) Column Generation (𝒍𝒃)

𝟏𝟎𝟎 × (𝒐𝒑𝒕 − 𝒍𝒃)/𝒐𝒑𝒕

[1, 40] 470.9 470.9 0%

[10, 20] 388.0 388.0 0%

[10, 30] 555.8 555.8 0%

[1, 10] 146.8 143.7 2%

To evaluate the performance of the proposed lower bounding method in the large sized instances, it

is compared with the best known lower bounding method in the literature. Rafiee Parsa et al. (2017)

proposed a lower bound for the research problem through a relaxation. They relax the constraint that
jobs must be processed as a batch. It means that the batch processing machine is replaced by parallel

identical unit-capacity machines. In other words, this corresponds to the relaxation of the constraint

that all the jobs within a batch should be completed simultaneously. In their method, a batch

processing machine with the capacity 𝐵 is replaced by 𝐵 parallel identical unit-capacity machines.

Hence, at most B jobs can be processed at the same time.

The results obtained from the proposed lower bounding method by Rafiee Parsa et al. (2017) that is

based on relaxation (LBR) and the proposed lower bounding method in this research that is based on
column generation (CG) approach are presented in table 2. For each combination of the number of

jobs and the job sizes, 20 instances are considered, for a total of 480. All the instances are solved by

LBR and CG algorithms to find a lower bound for the problem. The average lower bound values of

21

LBR and CG are reported in columns 3 and 4, respectively. The last column represents the average

percentage gap between LBR and CG. The percentage gap is calculated as 100 × (𝐶𝐺 −
𝐿𝐵𝑅)/(𝐿𝐵𝑅).

Table 2. Comparison the results of LBR and CG

Job size 𝒏 LBR CG Gap (%)

[1, 40]

20 1468.4 1770.5 20.6

40 6177.7 7546.5 22.2

60 12649.2 17283.7 36.6

80 20133.0 31269.3 55.3

100 29878.7 48071.3 60.9

200 100258.6 184153.3 83.7

 Average 46.5

[10, 20]

20 1317.5 1474.5 11.9

40 4277.8 5423.7 26.8

60 8905.9 11970.3 34.4

80 14109.5 21757.9 54.2

100 19718.2 32861.4 66.7

200 76395.1 130137.7 70.3

 Average 44.1

[10, 30]

20 1922.1 2089.9 8.7

40 6959.3 8176.2 17.5

60 15646.5 18263.3 16.7

80 28364.8 31272.9 10.3

100 43895.7 50136.4 14.2

200 178193.0 194812.7 9.3

 Average 12.8

[1, 10]

20 423.7 540.3 27.5

40 1341.1 2186.9 63.1

60 2658.2 4444.7 67.2

80 4800.5 7999.4 66.6

100 7253.7 12190.0 68.1

200 26492.4 45630.6 72.2

 Average 60.8

The results show that the column generation approach increases the lower bound around 41% in

average. It also can be observed that the performance differences between two algorithms become
more considerable by increasing the number of jobs. The average percentage gap based on different

category of job sizes is depicted in T 4. It is noteworthy that the differences between two methods for

the instances with large job sizes, the category [10, 30], are not as the other categories. When the job
sizes are larger, more jobs are processed individually, and thus the influence of batching on the

solutions would not be significant. In other words, the solution space is not as large as the other

categories. It leads to almost similar performance for two methods.

Since LBR is based on a simple relaxation and calculates the lower bound in one iteration, its
computational time is less than one second. On the other hand, column generation is an iterative

approach and needs more computational efforts. A time limitation of 300 seconds is considered for

the column generation in this research. It should be mentioned that, it is obvious that column
generation needs more computational time to find the lower bound. However, in finding the lower

bound the quality of lower bound is more important than the speed of finding it.

22

Another way to analyze the efficiency of the proposed column generation approach is to compare it
with the lower bound obtained by CPLEX. Since the research problem is NP-hard, CPLEX could not

solve the mathematical model for large-sized instances in a reasonable time. However, it could

provide a valid lower bound based on linear programming relaxation of the mathematical model after

a time limitation. The quality of lower bound provided by the column generation approach can be
compared with the standard lower bound that is obtained by CPLEX. Totally 48 random instances (2

in each category of job sizes and number of jobs) are solved by CPLEX and the lower bounds are

reported after 3600 seconds. The average lower bound of CPLEX is compared with the average of

proposed lower bounding method in table 3. The percentage gap is calculated as 100 × (𝐶𝐺 −
𝐶𝑃𝐿𝐸𝑋)/(𝐶𝑃𝐿𝐸𝑋). The results show that the proposed lower bound is significantly better than the

lower bounds provided by the CPLEX and so the proposed method outperforms CPLEX.

Table 3. Comparison the results of CG and CPLEX

Job size 𝒏 CPLEX CG Gap (%)

[1, 40]

20 1928.1 1947.5 1.0

40 7279.3 7999.3 9.9

60 12942.0 16592.3 28.2

80 20937.9 30393.7 45.2

100 28304.4 43783.4 54.7

200 97785.4 164080.6 67.8

 Average 34.5

[10, 20]

20 1253.3 1253.3 0.0

40 4540.7 4935.5 8.7

60 8618.6 11491.5 33.3

80 13707.5 19582.2 42.9

100 18977.4 31054.0 63.6

200 56609.9 96803.0 71.0

 Average 36.6

[10, 30]

20 2110.8 2110.8 0.0

40 8516.3 9157.3 7.5

60 16656.1 18738.1 12.5

80 22016.1 30960.1 40.6

100 30773.7 49138.7 59.7

200 91172.3 157798.3 73.1

 Average 32.2

[1, 10]

20 462.0 486.3 5.3

40 1790.6 1946.3 8.7

60 2977.5 3866.9 29.9

80 5505.2 8879.3 61.3

100 8370.9 15944.5 90.5

200 22340.7 43805.4 96.1

 Average 48.6

23

Fig 4. Comparison of average percentage gap based on category of job sizes

6-Conclusions
 The minimization of total earliness and tardiness on a single batch processing machine is
investigated in this research. A lower bounding method based on column generation approach is

proposed. First, the problem reformulated as a Dantzig-Wolf decomposition model. Then, the master

problem and the sub-problems are derived. An evolutionary algorithm is developed for solving the
sub-problems and finding improving columns during early iterations. The computational results are

conducted to analyze the performance of the proposed column generation approach. The results show

that the proposed method can enhance the lower bound around 41% in average in comparison with the

best known lower bounding method in the literature. Even though we have focused on instances
where earliness and tardiness have the same importance, the proposed algorithms can be easily

extended to handle other situations. Incorporating the proposed lower bound in a branch and bound

tree and developing a branch-and-price algorithm for the research problem is an interesting extension
and opportunity for the future research. It’s also possible to extend the proposed method for other

batch scheduling problems. Considering assumptions such as distinct due date and release time for

jobs can help to make the problem more realistic.

References

Al-Salamah, M. (2015). Constrained binary artificial bee colony to minimize the makespan for single

machine batch processing with non-identical job sizes. Applied Soft Computing, 29, 379-385.

Azizoglu, M. & Webster, S. (2000). Scheduling a batch processing machine with non-identical job

sizes. International Journal of Production Research, 38(10), 2173-2184.

Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P. & Vance, P.H. (1998). Branch-

and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316-

329.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C., Tautenhahn, T. & Van De Velde,

S. (1998). Scheduling a batch machine. Journal of Scheduling, 1, 31–54.

Cabo, M., Possani, E., Potts, C.N. & Song, X. (2015). Split–merge: Using exponential neighborhood

search for scheduling a batching machine. Computers & Operations Research, 63, 125-135.

0

10

20

30

40

50

60

70

[1, 40] [10, 20] [10, 30] [1, 10]

P
er

ce
n

ta
g
e

g
ap

Category of job sizes

24

Chen, H., Du, B. & Huang, G.Q. (2011). Scheduling a batch processing machine with non-identical
job sizes: a clustering perspective. International Journal of Production Research, 49(19), 5755-5778.

Damodaran, P., Ghrayeb, O. & Guttikonda, M.C. (2013). GRASP to minimize makespan for a

capacitated batch-processing machine. The International Journal of Advanced Manufacturing
Technology, 68(1-4), 407-414.

Damodaran, P., Kumar Manjeshwar, P. & Srihari, K. (2006). Minimizing makespan on a batch-
processing machine with non-identical job sizes using genetic algorithms. International Journal of

Production Economics, 103(2), 882-891.

Dupont, L. & Dhaenens-Flipo, C. (2002). Minimizing the makespan on a batch machine with non-

identical job sizes: an exact procedure. Computers & Operations Research, 29(7), 807-819.

Dupont, L. & Jolai, F. (1998). Minimizing makespan on a single batch processing machine with non-
identical job sizes. European Journal of Automation Systems, 32, 431-440.

Graham, R.L., Lawler, E.L., Lenstra, J.K. & Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of discrete Mathematics, 5, 287-326.

Jia, Z.-h., Gao, L.-y. & Zhang, X.-y. (2020). A new history-guided multi-objective evolutionary
algorithm based on decomposition for batching scheduling. Expert Systems with Applications, 141,

112920.

Jia, Z.-h. & Leung, J.Y.T. (2014). An improved meta-heuristic for makespan minimization of a single
batch machine with non-identical job sizes. Computers & Operations Research, 46(0), 49-58.

Jolai, F. & Dupont, L. (1998). Minimizing mean flow times criteria on a single batch processing
machine with non-identical jobs sizes. International Journal of Production Economics, 55(3), 273-

280.

Kashan, A.H., Karimi, B. & Jolai, F. (2006). Effective hybrid genetic algorithm for minimizing
makespan on a single-batch-processing machine with non-identical job sizes. International Journal of

Production Research, 44(12), 2337-2360.

Kashan, A.H., Karimi, B. & Jolai, F. (2010). An effective hybrid multi-objective genetic algorithm for

bi-criteria scheduling on a single batch processing machine with non-identical job sizes. Engineering

Applications of Artificial Intelligence, 23(6), 911-922.

Lee, Y.H. & Lee, Y.H. (2013). Minimising makespan heuristics for scheduling a single batch machine

processing machine with non-identical job sizes. International Journal of Production Research,

51(12), 3488-3500.

Li, S., Li, G., Wang, X. & Liu, Q. (2005). Minimizing makespan on a single batching machine with

release times and non-identical job sizes. Operations Research Letters, 33(2), 157-164.

Li, Z., Chen, H., Xu, R. & Li, X. (2015). Earliness–tardiness minimization on scheduling a batch

processing machine with non-identical job sizes. Computers & Industrial Engineering, 87, 590-599.

Malapert, A., Gueret, C. & Rousseau, L.-M. (2012). A constraint programming approach for a batch

processing problem with non-identical job sizes. European Journal of Operational Research, 221(3),

533-545.

25

Melouk, S., Damodaran, P. & Chang, P.-Y. (2004). Minimizing makespan for single machine batch
processing with non-identical job sizes using simulated annealing. International Journal of

Production Economics, 87(2), 141-147.

Mönch, L., Fowler, J.W., Dauzère-Pérès, S., Mason, S.J. & Rose, O. (2011). A survey of problems,
solution techniques, and future challenges in scheduling semiconductor manufacturing operations.

Journal of Scheduling, 14(6), 583-599.

Mönch, L. & Unbehaun, R. (2007). Decomposition heuristics for minimizing earliness–tardiness on

parallel burn-in ovens with a common due date. Computers & Operations Research, 34(11), 3380-

3396.

Mönch, L., Unbehaun, R. & Choung, Y.I. (2006). Minimizing earliness–tardiness on a single burn-in

oven with a common due date and maximum allowable tardiness constraint. OR Spectrum, 28(2), 177-

198.

Ogun, B. & Alabas-Uslu, Ç. (2018). Mathematical models for a batch scheduling problem to

minimize earliness and tardiness. Journal of Industrial Engineering and Management (JIEM), 11(3),
390-405.

Polyakovskiy, S., Makarowsky, A. & M'Hallah, R. (2017). Just-in-time batch scheduling problem
with two-dimensional bin packing constraints. In: Proceedings of the Genetic and Evolutionary

Computation Conference (pp. 321-328).

Qi, X. & Tu, F. (1999). Earliness and tardiness scheduling problems on a batch processor. Discrete
Applied Mathematics, 98(1), 131-145.

Rafiee Parsa, N., Karimi, B. & Husseini, S.M.M. (2017). Exact and heuristic algorithms for the just-
in-time scheduling problem in a batch processing system. Computers & Operations Research, 80,

173-183.

Rafiee Parsa, N., Karimi, B. & Husseinzadeh Kashan, A. (2010). A branch and price algorithm to
minimize makespan on a single batch processing machine with non-identical job sizes. Computers &

Operations Research, 37(10), 1720-1730.

Rafiee Parsa, N., Karimi, B. & Moattar Husseini, S.M. (2016). Minimizing total flow time on a batch

processing machine using a hybrid max–min ant system. Computers & Industrial Engineering, 99,

372-381.

Rafiee Parsa, N., Keshavarz, T., Karimi, B. & Moattar Husseini, S.M. (2019). A hybrid neural

network approach to minimize total completion time on a single batch processing machine.

International Transactions in Operational Research, n/a(n/a).

Uzsoy, R. (1994). Scheduling a single batch processing machine with non-identical job sizes.

International Journal of Production Research, 32(7), 1615-1635.

Wang, H.-M. (2011). Solving single batch-processing machine problems using an iterated heuristic.

International Journal of Production Research, 49(14), 4245-4261.

Wilhelm, W.E. (2001). A technical review of column generation in integer programming.

Optimization and Engineering, 2(2), 159-200.

Wilhelm, W.E., Damodaran, P. & Li, J. (2003). Prescribing the content and timing of product

upgrades. IIE Transactions, 35(7), 647-663.

26

Xu, R., Chen, H. & Li, X. (2012). Makespan minimization on single batch-processing machine via ant
colony optimization. Computers & Operations Research, 39(3), 582-593.

Zhao, H., Hu, F. & Li, G. (2006). Batch scheduling with a common due window on a single machine.

In: Fuzzy Systems and Knowledge Discovery (pp. 641-645): Springer.

Zhou, S., Chen, H., Xu, R. & Li, X. (2014). Minimising makespan on a single batch processing

machine with dynamic job arrivals and non-identical job sizes. International Journal of Production
Research, 52(8), 2258-2274.

	1-Introduction
	2-Related literature
	3-Problem description
	4-Lower bounding method – the column generation approach
	4-1-Dantzig-Wolf decomposition model
	4-2-Solving the sub-problems for generating improving columns
	4-2-1-Solution representation
	4-2-2-Selection strategy for recombination
	4-2-3-Crossover and mutation operators
	4-2-4-Local search procedure
	4-2-5-Updating the population

	5-Computational results
	6-Conclusions

