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Abstract 
Joint optimal inventory control and preventive maintenance is a rich area of academic 

research that is still in its infancy and has the potential to affect manufacturing systems' 
performance. Also, due to uncertainties in demand, maintenance and inventory loss are 

virtually unavoidable. Therefore, determining the optimal amount of inventory storage, 

the time to create an additional inventory for storage, and the time of maintenance 
operations is a concern of many manufacturers. In this paper, a joint optimization model 

has been developed. In which, for the proximity of reality, demand is considered as an 

uncertain parameter. The strategy is such that the production component is placed under 

maintenance as soon as it reaches the 𝑚 level or in the event of a malfunction earlier 

than 𝑚, stopped system and placed under maintenance and repairs. Inventory of 𝐴 

period with level ℎ is created, which during maintenance operations, stochastic demand 

will be provided. Finally, a model for joint optimization of maintenance and inventory 
control with random failure is used that minimize the cost and create the maximum level 

of accessibility. A numerical study is conducted to show the effectiveness and 

applicability of the proposed integrated model. An accurate algorithm is provided to 

solve the model. The results show that the model is generally sensitive to the cost. 
Keywords: Preventive maintenance, stochastic demand, inventory control, joint 
optimization 

1-Introduction 
   Nowadays, modern systems are more complex but more reliable than ever. However, the 
performance of production systems is still under the influence of the unavoidable failure of machines 

that lead to a reduction in production. Equipment may fail during actual production processes and 

should be provided with their repair requirements. As a result, regular maintenance and preventive 
measures (PM should be implemented to eliminate production requirements on the equipment to 

prevent both unpredictable and deterministic interruptions (Chen, 2013, Guo and et al., 2013, 

Ghodratnama and et al., 2010). 

   The failure of devices and equipment is a non - deterministic resource in reducing production 
efficiency so that it is necessary to ensure that devices and equipment can be used at maximum access 

levels to produce units with maximum capacity. One of the most important ways to achieve this goal 

is to implement preventive maintenance policies. Of course, the creation and implementation of 
maintenance operations may lead to a complete stoppage of production units within a period of time. 

To minimize the effect of production parameters on the overall performance of the production system, 

maintenance policies and production control are simultaneously considered. For this reason, the 
review of production and maintenance policies and production planning has become an important 
research area divided into three categories: (i) environmental; (ii) inventory; and (iii) quality control.  
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    That is why a maintenance policy can be effective when combined with a suitable inventory policy 
(Horenbeek and et al. 2013). In this area, other issues such as application, frequency, service 

continuity, and cost savings techniques should be considered (Lynch and et al., 2013). Panagiotidou 

(2014) proposed two policies for identical replacement parts to eliminate failure: continuous review 

policy and periodic review policy. These strategies are based on current optimization policies for the 
maintenance and maintenance of solid parts. Van Jaarsveld et al. (2011) also stressed how key 

elements influence the scope of maintenance strategy. One of the most important research topics in 

recent years can be referred to as the current optimization of production control and maintenance 
policies, most of which focus on optimizing production control and project management policies 

aimed at minimizing the projected cost per unit. Over the past decade, many preservation and 

maintenance studies have been considered simultaneously and have pointed to improving the overall 
performance of production systems by conventional optimization of production and maintenance 

control policies. Kaio and Osaki, (1978) also introduced a simultaneous optimization policy 

considering the costs of inventory. If the maintenance costs and inventory costs are not compensated 

with the system's earnings, the result will not be optimal, but the production will be improved when 
both costs are considered and compensated. In a case study of the engine production line, the 

simultaneous optimization reduced the maintenance cost by 53 % and made 6 % improvement in 

monthly production (Ilgin and Tunali, 1978). Van Horenbeek et al. (2013) combined maintenance and 
maintenance policies (based on the criteria) and inventory control policies (periodic review and 

continuous review) and classify them. 

   Liu et al. (2015) are proposed two scenarios for the multi- product system that one of the two 
scenarios was implemented at the end of the production period and the other at the beginning of the 

system. Chakraborty et al. (2013) investigated the joint effect of machine failure, maintenance, the 

threshold level of a being in an economic output model with a random value (EMQ), in which failure 

was a function of production. In most cases, a failure occurs in a full production period. Berthaut et al. 
(2011) proposed a single –product system in a single production unit, a preventive and production 

/store policy based on the modified block policy (MBRP), and the Hedging point policy (HPP). This 

simulation model was presented to simulate the dynamic and stochastic behavior of the generating 
unit under the joint MBRP/ HPP policy. 

   Maintenance models in the literature are divided into two categories: time-based, which includes 

alternative replacement and age-based switching (Wang, 2002); and conditions based on Alaswad and 

Xiang, (2017) and Olde Keizer and et al. (2017), which include periodic inspection models. They are 
replaced only with defective components. An inspecting policy, if financially profitable, Scarf and 

Cavalcante, (2012) replaces a time-based replacement policy, that is, regardless of the condition or 

condition of its components after a certain period of time. The classic inspection model is a time delay 
model (Christer1999), which was examined by Wang (2012) and developed by many others (Berrade 

and Scarf 2017). In the past decades, many studies have focused on integrating PM and improving 

product quality. Ayed et al. (2012) introduced a system with a failure rate of random they considered 
the randomness and tried to reach the level of service according to the amount of production they 

produce, in fact, they provided an optimal production plan with preventive maintenance of policies, 

which led to a reduction in the total cost and device failure. 

   Yeung et al. (2007) introduced the process called Marquee and optimized the system economically 
by using a process control graph with time-based maintenance policies. Chalbi et al. (2004) analyzed 

the integrated system with a fixed failure rate and failure rate based on the analytical approach and 

integrated / inventory policy. Using a mathematical model to minimize total annual production costs, 
they minimize the optimization of buffer inventory and periodic inventory, which should be based on 

preventive maintenance performance. Radhoui and et al. (2009) provided a quality-based model in 

which decisions were made on the type of maintenance measures after quality control and 
determining the failure rate of the products. In this model, in each production period, a buffer 

inventory is maintained to meet demand during the production interruption period. 

    Liao (2012) developed several other models in which the effect of poorly produced products was 

studied in an incomplete process; in fact, they have the least cost production policy in random-rate 
processes with minimal maintenance and preventive maintenance. Liu et al. (2015) also provided a 

production, inventory, and preventive model of a multi-dimensional production system. Setak and et 

al. (2019) developed a model for pricing and control the inventory of perishable products with 
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exponential demand. That research, sales profit was maximized by presenting a mathematical model 
to determine the price change points and the optimal price and order quantity for perishable products 

with an exponential and price- and time-dependent distributed demand. Minou and et al. (2017) 

considered the joint optimization of condition-based maintenance and spares planning for multi-

component systems. They formulated their model as a Markov Decision Process, and minimize the 
long-run average cost per time unit.  Ribeiro et al. (2008) jointly optimized the maintenance of a 

capacity-constrained resourced, its feed machine, and inlet buffer size with a mixed-integer linear 

programming model. Gan et al. (2015) focused on the joint optimization for maintenance, buffer, and 
spare parts for a production system with a genetic algorithm. The buffer inventory affects the 

inventory holding cost. To determine the significance of optimizing four variables related to 

maintenance, buffer, and spare parts simultaneously, comparisons were made among four-variable 
optimization, three-variable optimization, and two-variable optimization. The optimization results are 

different. When only two of them are optimized, the decision on the third variable may be improper, 

therefore leads to undesired optimization results. Hwang and Samat (2019) presented a review on 

joint optimization of maintenance with production planning and spare part inventory management.  
   Polotski, et al. (2019) considered two machines: one uses raw materials for manufacturing, while 

another utilizes end-of-life products returned from the market for remanufacturing. Machines are 

failure-prone, demand and return rates fluctuate in time reflecting market behavior due to economical, 
seasonal, and environmental changes. The system performance is characterized by a long-term 

discounted cost that integrates several partial costs (those of manufacturing, remanufacturing, 

disposal, holding costs in serviceable and return inventories). Liu et al. (2019) present an integrated 
decision model that coordinates predictive maintenance decisions based on prognostics information 

with a single-machine scheduling decision so that the total expected cost is minimized. In the 

integrated model, the health status and dummy age subjected to machine degradation are considered.       

Babaeimorad and et al. (2019) provided joint optimization of maintenance and production scheduling 
with considering the back of order and probabilistic demand. Their results showed that, in the 

presented model, the total cost and decision variables are highly sensitive to the inventory holding 

cost but not also for the occurred scenario. 
   The EOQ model assumes inventory situation with constant demand and delivery lead time which 

does not conform to reality because in most cases demands are uncertain and therefore require the 

development of models that can handle stochastic demand situation (Çetinkaya and Lee, 2000). Hsieh 

(2004) emphasized that the reason for keeping safety stock is an attempt to curb arbitrary variations in 
customer demands and delivery lead time.  Ling Wang and et al. (2008), presented a condition-based 

order-replacement policy for a single-unit system, aiming to optimize the condition-based 

maintenance and the spare order management jointly. La Fata and Passannanti (2017), propose a 
model for the combined optimization of production/inventory control and PM policies to minimize the 

total expected cost per unit time. The model is formulated referring to a continuous production system 

characterized by a random deteriorating behavior so that the presence of a buffer is considered to 
ensure the supply of a continuous during interruptions of service caused by breakdowns or planned 

maintenance actions on the production system. 

   In this paper a model is developed that is a joint optimal inventory control and preventive 

maintenance policy in which an approximation of reality, demand is considered as a random 
parameter (Rezg et al., 2008). Since the failure in the production unit in just-in-time problem is one of 

the effective factors in system disturbance and productivity reduction, implementing preventive 

maintenance policies is necessary to maintain the efficient capacity of the system and ensure high-
level access as a result. On the other hand, taking maintenance and repairing actions requires a 

complete stoppage of the production system. We should consider maintenance and production control 

policies simultaneously to minimize cessations rate. The issue of this paper is the unit of production 

with an incremental rate of failure, as soon as the 𝑚 period or the failure that preceded it has been 

stopped and under maintenance, an additional period of period 𝐴 with the level ℎ is created and 

during the periodic maintenance operations, random demand occurs. Finally, a mathematical model 

and a numerical approach are used to simultaneously obtain optimal values for the variables that use 
the least cost and work for access constraints. The first innovation of the paper is that instead of 

optimizing separately in the production system, the proposed model optimizes inventory control and 

maintenance and operations together. The second innovation, close to real demand is considered 

https://www.sciencedirect.com/science/article/abs/pii/S0377221716306026#!
https://www.sciencedirect.com/science/article/abs/pii/S0736584518304939#!
https://www.sciencedirect.com/topics/engineering/predictive-maintenance
https://www.sciencedirect.com/science/article/pii/S0307904X07001898#!
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probable. And the third innovation is to provide an accurate algorithm for solving the integrated 
model. A summary of the literature review and study gaps are given in table 1. 

Table1. A summary of the literature review 

 

Single unit or 

multiunit 

system 

Maintenance 

policy 

Considering 

the buffer 

Consider 

uncertainty 

 

Provide 

algorithms 

 

N. Rezg et al (2008)  Single unit Age-based Yes No Yes 

Wang et al (2008a)  
Multiunit 

Condition 

based 
No Yes No 

Nguyen and Bagajewicz (2009)  Multiunit Age-based No No No 

Shuyuan Gan et al. (2015)  Multiunit Periodic Yes No No 

Anis Mjirda et al. (2016)  multi-unit Periodic No No No 

Xiaohong Zhang and Jianchao 

Zeng (2017)  
multi-unit Condition-based No Yes No 

Leila Jafari et al.  multi-unit condition-based No No No 

Nabil Nahas and Mustapha 

Nourelfath 
multi-unit Periodic Yes No Yes 

Kaican Kang and Velusamy 

Subramaniam (2018)  
Single unit Periodic No No No 

This study Single unit Age-based Yes Yes Yes 

 

2-Proposed model 
    This model is developed based on the Rezg et al. (2008). Consider a production system that 

includes a machine with a random failure rate. It has a demand value of (𝑑) that for the approximation 

of reality, 𝑑 is considered probable. The desired machine has a maximum production rate that is 

displayed with 𝑈𝑚𝑎𝑥. This system normally produces at the rate of d. In some periods, the machine 

produces at its highest power,𝑈𝑚𝑎𝑥, to store inventory and avoid possible deficiencies during 

maintenance. And after storing the specified size, it resumes production at d rate. It is assumed that 

𝑈𝑚𝑎𝑥 is greater than 𝑑. This production system will be under maintenance during specified periods of 

time (𝑚). Due to the complete stop of the machine during maintenance, the buffer is considered to 

meet the stochastic demand. The production system at any time period (𝐴), starts buffer storage so 

that can be used when the machine is stopped. The buffer storage period should be earlier than 

maintenance (𝐴 < 𝑚). This system is capable of storing a certain amount of inventory. The maximum 

inventory that can be saved is shown with (ℎ). The maintenance policy includes the complete stopping 

of the machine as soon as it reaches the desired period or failure to perform maintenance. It is 

assumed that each time the maintenance is carried out, the machine returns to its original state. Figure 

(1) shows the structure of the production system. This structure has 4 phases, including the first phase; 
there is no inventory in stock. The product is following the stochastic demand, the second phase, starts 

at the production rate 𝑈𝑚𝑎𝑥 also responds to demand and value for the buffer storage. Phase 3 refers 

to the period when the level of buffer inventory is filled and the manufacturing system produces just 
as much demand. Phase 4 is the start of maintenance. The manufacturing system is completely 

stopped and there is only as much demand as consumption. Simultaneously provided model optimizes 

inventory control, and maintenance operations. In many previous studies, this concept has been used 
separately. In the scenarios presented in this paper, To obtain the appropriate time for maintenance 

and the amount of inventory that must be saved and will be available when it is starting to storage. 

Because the production system is completely stopped during the maintenance operations and 

considering the possibility of demand is not clear how much demand is there. Therefore, different 
scenarios should be considered in such a way that the lowest cost is applied to the system under any 

circumstances and a high level of availability is met. In this paper, the demand parameter is random. 

In previous studies, researchers considered demand at a fixed rate; however, demand faces many 
uncertainties in reality. So we consider the production system in 5 scenarios with demand 
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randomization as an assumption. The demand function is a uniform random variable, indicated in 
section 2-2. In formulas, as we consider the demand d randomly with uniform distribution in the range 

[a, b], we substitute d with its mathematical expectation in the following equations. 

  

 

Fig.1.The inventory level evolution during a production cycle 

2-1- Notations 
2-1-1-parameters 

𝐶s : Holding cost of a product unit during a unit of time 

𝐶𝑙 ∶ Loss cost due to an unsatisfied demand of one produced item during a unit of 

time 

𝑑: Demand  with uniform distribution~ (a, b) 

𝜇 ∶ Machine average time to failure 

𝜀: Instant of failure of the machine 

𝑈𝑚𝑎𝑥 A maximum production rate 

 

2-1-2-distribution functions  

𝑓(𝑡): Probability density function associated with the machine time to failure 

𝐹(𝑡): Probability distribution function associated with the machine time to failure 

𝑅(𝑡): Reliability function associated with the machine, 𝐹(𝑡): 1 − 𝑅(𝑡) 

𝑟(𝑡): Machine instantaneous failure rate function 

𝑔𝑝(𝑡): Probability density function associated with the duration of a preventive maintenance 

action 

𝑔𝑐(𝑡): Probability density function associated with the duration of a corrective maintenance 

action 

 

 

TCYC 

Phase 2 Phase 3 Phase 4 

𝛿=0 

𝛿=𝑈𝑚𝑎𝑥−𝑑 𝛿=-d 

ℎ 

l 
TBM TTR 

Phase 1 

TIME 

Inventory 
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2-1-3-Decisions variables 
𝐴: Time to start storing safety stock 

𝑚: Time to start preventive maintenance 

ℎ: Maximum level of safety stock 

𝜕(𝐴, ℎ,𝑚): Expected inventory cost 

𝜑(𝑚): maintenance cost 

𝐶𝑇(𝐴,𝐻,𝑚): The total average cost per time unit over an infinite horizon as a function of the three 

decision variables 

 
2-2- Calculate inventory control costs 
   The system's goal is to minimize costs by considering the level of availability. For values (A, h, m), 

there are 5 scenarios that each of these may occur. The following five scenarios include 1. The 

machine according to figure 2 continues and maintenance operations are completed before the end of 

the buffer, 2. The machine continues to maintenance and repair operations will end after the end of the 
buffer, and there will be a loss of inventory, 3. The machine will fail before reaching the maximum 

inventory, and maintenance operations will end before the end of the buffer, 4. The machine will fail 

before reaching the maximum inventory, and maintenance will end after the end of the buffer, 5. The 
machine will fail before starting buffer storage. The scenarios are as follows. 

2-2-1-Scenario 1 
   In scenario 1, the machine produces as much as stochastic demand. Then, period A, starts to storage 

as much as h, so, continues its production at an initial rate until the period m. Maintenance operations 

before the end of the inventory end and does not face loss. Scenario 1 is shown in figure 2. 

Assumptions: 𝑇𝐵𝑀 > 𝐴  𝑎𝑛𝑑  (𝑇𝐵𝑀 − 𝐴)(𝑈𝑚𝑎𝑥 − 𝑑)   𝑎𝑛𝑑   𝑇𝑇𝑅 ≤
ℎ
𝑑⁄   (This phrase indicates that 

the level of buffer stock level reached h) and     𝑇𝑇𝑅 ≤ ℎ 𝑑⁄  It shows that the system downtime period 

of the system is less than the consumption period of the buffer inventory. The cost of inventory 

(𝐿𝑆1(A, h)) given in equation (1) is equal to the surface below the graph in figure 2. Since the demand 

parameter is randomly assigned to the uniform distribution function [a,b], in equations(3 and 4), we 

substitute the demand variable with its mathematical expectation. 
 

𝐿𝑆1(𝐴, ℎ) = (𝑇𝑇𝑅 + 𝑇𝐵𝑀 − 𝐴)𝐶𝑆 −
𝐶𝑆[ℎ

2 + 𝑑𝑇𝑇𝑅2𝑈𝑚𝑎𝑥 − 𝑑
2𝑇𝑇𝑅2]

2[𝑈𝑚𝑎𝑥 − 𝑑]
 

(1) 

The average cost of inventory in scenario 1 is shown in equation (2).  

𝐸 (𝐿𝑆1(𝐴, ℎ)) = (𝐸(𝑇𝑇𝑅) + 𝐸(𝑇𝐵𝑀) − 𝐴)𝐶𝑆

− 𝐸(
𝐶𝑆[ℎ

2 + (𝑑)𝐸(𝑇𝑇𝑅2)𝑈𝑚𝑎𝑥 − (𝑑
2)𝐸(𝑇𝑇𝑅2)]

2[𝑈𝑚𝑎𝑥 − 𝑑]
) 

(2) 

𝐸 (
𝐶𝑆ℎ

2

2[𝑈𝑚𝑎𝑥 − 𝑑]
) = 𝐶𝑆ℎ

2∫
1

2(𝑈𝑚𝑎𝑥 − 𝑑)
𝑓(𝑑)

𝑏

𝑎

𝑑𝑑 = 𝐶𝑆ℎ
2∫

1

2(𝑈𝑚𝑎𝑥 − 𝑑)
(

𝑏

𝑎

1

𝑏 − 𝑎
)𝑑𝑑 

 

𝐸(𝐶𝑆
(𝑑)𝐸(𝑇𝑇𝑅2)(𝑈𝑚𝑎𝑥)

2[𝑈𝑚𝑎𝑥 − 𝑑]
) = 𝐶𝑆(𝐸(𝑇𝑇𝑅

2)(𝑈𝑚𝑎𝑥))∫
𝑑

2(𝑈𝑚𝑎𝑥 − 𝑑)
(

𝑏

𝑎

1

𝑏 − 𝑎
)𝑑𝑑 

 

𝐸(𝐶𝑆
(𝑑2)𝐸(𝑇𝑇𝑅2)

2[𝑈𝑚𝑎𝑥 − 𝑑]
) = 𝐶𝑆(𝐸(𝑇𝑇𝑅

2))∫
𝑑2

2(𝑈𝑚𝑎𝑥 − 𝑑)
(

𝑏

𝑎

1

𝑏 − 𝑎
)𝑑𝑑 

(3) 
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𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴) =

{
 

 1        𝑖𝑓  𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴    

0        𝑖𝑓  𝑚 <
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴

 

(4) 

 

The probability of scenario 1 is expressed in equation (5) and (6). 

 

𝑃(𝑆1)= 𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴) ∗ 𝑃(𝜉 ≥

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)𝐺𝑑(

ℎ
𝑑⁄ ) 

𝑃(𝑆1)= 𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴) ∗ 𝑅(

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)𝐺𝑑(

ℎ
𝑑⁄ ) 

𝑤ℎ𝑒𝑟𝑒 𝐺𝑑(
ℎ
𝑑⁄ ) = ∫ 𝑔𝑑(𝑢)

ℎ
𝑑⁄

0

= 𝑔𝑝(𝑢)𝑅(𝑚) + 𝑔𝑐(𝑢)𝐹(𝑚) 

 

(5) 

 

(6) 

 
(7) 

 

Fig 2. Scenario 1 

2-2-2-Scenario 2 

   In scenario 2, the machine produces as much as stochastic demand. Then, from period A, starts 
to store as much as h, so, continues its production at an initial rate until the period m. 

Maintenance after the end of the inventory ends, and face loss. Scenario 2 is shown in figure3. 

Assumptions: 𝑇𝐵𝑀 > 𝐴  𝑎𝑛𝑑  (𝑇𝐵𝑀 − 𝐴)(𝑈𝑚𝑎𝑥 − 𝑑)   𝑎𝑛𝑑   𝑇𝑇𝑅 >
ℎ
𝑑⁄ The inventory cost 

Ls2(𝐴) corresponding to scenario 2 is expressed in equation (8). This expression is obtained from 

the sum of inventory costs 𝐶𝑆𝐴𝑆 and shortage cost 𝐶𝑙𝑁𝑙. Where in 𝐴𝑆is equal to the surface below 

the graph in figure 3. 𝑁𝑙 Indicates the unsatisfied demand during the 𝑑 (𝑇𝑇𝑅 ℎ/𝑑) period. 

 

𝐿𝑆2(𝐴, ℎ) =
𝐶𝑆(𝑈𝑚𝑎𝑥 − 2𝑑)

2𝑑(𝑈𝑚𝑎𝑥 − 𝑑)
ℎ2 + [𝐶𝑆(𝑇𝐵𝑀 − 𝐴) − 𝐶𝑙]ℎ + 𝐶𝑙𝑑𝑇𝑇𝑅 

(8) 

 
The average cost of inventory in scenario 2 is shown in equation (9). 

 

 

𝐸(𝐿𝑆2(𝐴, ℎ)) = 𝐸(
𝐶𝑆(𝑈𝑚𝑎𝑥 − 2𝑑)

2𝑑(𝑈𝑚𝑎𝑥 − 𝑑)
)ℎ2 + [𝐶𝑆(𝐸(𝑇𝐵𝑀) − 𝐴) − 𝐶𝑙]ℎ + 𝐶𝑙𝐸(𝑑)𝐸(𝑇𝑇𝑅) 

(9) 

 

𝐸 (
𝐶𝑆(𝑈𝑚𝑎𝑥 − 2𝑑)

2𝑑(𝑈𝑚𝑎𝑥 − 𝑑)
) = 𝐶𝑆∫

(𝑈𝑚𝑎𝑥 − 2𝑑)

2𝑑(𝑈𝑚𝑎𝑥 − 𝑑)

𝑏

𝑎

𝑓(𝑑)𝑑𝑑 

 

= 𝐶𝑆∫
(𝑈𝑚𝑎𝑥 − 2𝑑)

2𝑑(𝑈𝑚𝑎𝑥 − 𝑑)
(

𝑏

𝑎

1

𝑏 − 𝑎
)𝑑𝑑 

 

(10) 

TCYC 

Phase 2 Phase 3 Phase 4 

𝛿=0 

𝛿=𝑈𝑚𝑎𝑥−
𝑑 

𝛿=-d 
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𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴) =

{
 

 1        𝑖𝑓  𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴    

0        𝑖𝑓  𝑚 <
ℎ

(𝑈𝑚𝑎𝑥 − 𝑑)
+ 𝐴

 

(11) 

 

The probability of scenario 2 is expressed in equation (12). 

 

𝑃(𝑆2)= 𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴) ∗ 𝑃(𝜉 ≥

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)(1 − 𝐺𝑑(

ℎ
𝑑⁄ )) 

 

𝑃(𝑆1)= 𝑖𝑛𝑑 (𝑚 ≥
ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴) ∗ 𝑅(

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)(1 − 𝐺𝑑(

ℎ
𝑑⁄ )) 

𝐺𝑑(
ℎ
𝑑⁄ ) = ∫ 𝑔𝑑(𝑢)

ℎ
𝑑⁄

0

= 𝑔𝑝(𝑢)𝑅(𝑚) + 𝑔𝑐(𝑢)𝐹(𝑚) 

(12) 

 

 

Fig 3. Scenario 2 

2-2-3-Scenario 3 

   In scenario 3, after the period A and before the inventory is completed, the machine is damaged and 

maintenance operations begin. And the stock will be filled up to 𝑆(𝑇𝐵𝑀). Maintenance operations 

before the end of the inventory end and does not face loss. Scenario 3 is shown in figure 4. 

Assumptions: 𝑇𝐵𝑀 > 𝐴   𝑎𝑛𝑑     (𝑇𝐵𝑀 − 𝐴)(𝑈𝑚𝑎𝑥 − 𝑑) < ℎ      𝑎𝑛𝑑     𝑇𝑇𝑅 ≤
𝑆(𝑇𝐵𝑀)

𝑑
⁄ .The 

inventory cost 𝐋𝐬𝟑(𝑨) corresponding to scenario 3 is expressed in equation (13). It is equal to 

the surface below the graph in figure 4. 
 

𝐿𝑠3(𝐴) = (𝑇𝑇𝑅 + 𝑇𝐵𝑀 − 𝐴)𝐶𝑠(𝑆𝑇𝐵𝑀) −
𝐶𝑠[(𝑆𝑇𝐵𝑀)

2 + 𝑑𝑇𝑇𝑅2𝑈𝑚𝑎𝑥 − 𝑑
2𝑇𝑇𝑅2]

2(𝑈𝑚𝑎𝑥 − 𝑑)
 

With 
(𝑆𝑇𝐵𝑀) = (𝑇𝐵𝑀 − 𝐴)(𝑈𝑚𝑎𝑥 − 𝑑) 
 

(13) 

 
 

(14) 

The average cost of inventory in scenario 3 is shown in equation (15).  

𝐸(𝐿𝑠3(𝐴)) = (𝜇𝑑 + 𝐸(𝑇𝐵𝑀) − 𝐴)𝐶𝑠(𝐸(𝑆𝑇𝐵𝑀)) − 𝐶𝑠[∫
((𝐸(𝑆𝑇𝐵𝑀))2

2(𝑈𝑚𝑎𝑥 − 𝑑)

𝑏

𝑎

𝑑𝑑

+∫
(𝑑)𝐸((𝑇𝑇𝑅)2)𝑈𝑚𝑎𝑥

2(𝑈𝑚𝑎𝑥 − 𝑑)
𝑑𝑑 − ∫

(𝑑2)𝐸(𝑇𝑇𝑅)2

2(𝑈𝑚𝑎𝑥 − 𝑑)

𝑏

𝑎

𝑏

𝑎

𝑑𝑑 

(15) 
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With 

((𝐸(𝑆𝑇𝐵𝑀))) = (𝐸(𝑇𝐵𝑀) − 𝐴)(𝑈𝑚𝑎𝑥 − 𝐸((𝑑)) 

= (∫ 𝑅(𝑡)𝑑𝑡 − 𝐴
𝑚

0

) (𝑈𝑚𝑎𝑥 − (
𝑎 + 𝑏

2
)) 

 

 

(16) 

The probability of scenario 3 is expressed in equation (17). 
 

𝑃(𝑆3) = 𝑖𝑛𝑑(𝑚 > 𝐴)𝑃(𝜉 > 𝐴) 

× (1 −
𝑖𝑛𝑑 (𝑚 ≥

ℎ

𝑈𝑚𝑎𝑥−𝑑
+ 𝐴)𝑃 (𝜉 ≤

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)

𝑃(𝜉 > 𝐴)
)𝐺𝑑((𝐸(𝑆𝑇𝐵𝑀))/𝑑) 

 
 

 

(17) 

𝑃(𝑆3) = 𝑖𝑛𝑑(𝑚 > 𝐴)𝑅(𝐴)(1 −
𝑖𝑛𝑑 (𝑚 ≥

ℎ

𝑈𝑚𝑎𝑥−𝑑
+ 𝐴)𝑅 (

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)

𝑅(𝐴)
)

× 𝐺𝑑((𝐸(𝑆𝑇𝐵𝑀))/𝑑 

With 

(18) 

𝐺𝑑(𝐸(𝑆𝑇𝐵𝑀))

𝑑
= ∫ 𝑔𝑑(𝑢)

𝑠(𝐸(𝑇𝐵𝑀))/𝑑

0

𝑑𝑢 
(19) 

 

 

Fig 4. Scenario 3 

2-2-4-Scenario 4 
   In scenario 4, after period A and before the inventory is completed, the machine is damaged and 

maintenance operations begin. And the stock will be filled up to 𝑆(𝑇𝐵𝑀). Maintenance operations 

after the end of the inventory end, and face loss. Scenario 4 is shown in figure 5. 

Assumptions: 𝑇𝐵𝑀 > 𝐴   𝑎𝑛𝑑  (𝑇𝐵𝑀 − 𝐴)(𝑈𝑚𝑎𝑥 − 𝑑) ℎ   𝑎𝑛𝑑     𝑇𝑇𝑅 >
𝑆(𝑇𝐵𝑀)

𝑑
  

The inventory cost 𝐋𝐬𝟒(𝑨) corresponding to scenario 4 is expressed in equation (20): 

 

𝐿𝑠4(𝐴) =
𝐶𝑠(𝑆𝑇𝐵𝑀)

2

2𝑑
+ [
𝐶𝑠(𝑇𝐵𝑀 − 𝐴)

2
− 𝐶𝑙] (𝑆𝑇𝐵𝑀)𝐶𝑙𝑑𝑇𝑇𝑅 

(20) 

The average cost of inventory in scenario 4 is shown in equation (21). The probability of scenario 4 is 

expressed in equation (23).  

𝐸(𝐿𝑠4(𝐴)) = ∫
𝐶𝑠(𝑠𝐸(𝑇𝐵𝑀))

2

2𝑑

𝑏

𝑎

+ [
𝐶𝑠(𝐸(𝑇𝐵𝑀) − 𝐴)

2
− 𝐶𝑙] (𝐸(𝑆𝑇𝐵𝑀))𝐶𝑙𝐸(𝑑)𝜇𝑑 . 

(21) 
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With 
  

(𝐸(𝑆𝑇𝐵𝑀)) = (𝐸(𝑇𝐵𝑀) − 𝐴)(𝑈𝑚𝑎𝑥 − 𝐸(𝑑)) 

= (∫ 𝑅(𝑡)𝑑𝑡 − 𝐴
𝑚

0

) (𝑈𝑚𝑎𝑥 −
𝑎 + 𝑏

2
) 

 

(22) 

 

𝑃(𝑆4) = 𝑖𝑛𝑑(𝑚 > 𝐴) × 𝑅(𝐴) × (1 −
𝑖𝑛𝑑 (𝑚 ≥

ℎ

𝑈𝑚𝑎𝑥−𝑑
+ 𝐴) × 𝑅 (

ℎ

(𝑈𝑚𝑎𝑥−𝑑)
+ 𝐴)

𝑅(𝐴)
)

× (1 − 𝐺𝑑 (
𝑠(𝐸(𝑇𝐵𝑀))

𝑑
) 

 
(23) 

 
With 

𝐺𝑑(𝐸(𝑆𝑇𝐵𝑀))

𝑑
= ∫ 𝑔𝑑(𝑢)

(𝐸(𝑆𝑇𝐵𝑀))/𝑑

0

𝑑𝑢 

 
 

 

(24) 

 
 

 

 

Fig 5. Scenario 4 

2-2-5- Scenario 5 
   In scenario5, before period A, the machine is damaged and maintenance operations begin. Scenario 

5 is shown in figure 6. Assumptions: 𝑇𝐵𝑀 < 𝐴The inventory cost 𝐋𝐬𝟓(𝑨) is restricted only to the 

incurred loss: 

𝐿𝑠5(𝐴) = 𝐶𝑙(𝑑𝑇𝑇𝑅) (25) 

The average cost of inventory in scenario 5 is shown in equation (26).  

𝐸(𝐿𝑠5) = 𝐶𝑙(𝐸(𝑑))(𝜇𝑑) (26) 

The probability of scenario 5 is expressed in equation (27).  

𝑃(𝑠5) = (1 − 𝑖𝑛𝑑(𝑚 > 𝐴)𝑃(𝜉 > 𝐴)) = (1 − 𝑖𝑛𝑑(𝑚 > 𝐴)𝑅(𝐴)) (27) 

Given the scenarios in the preceding sections, the sum of the probabilities of the scenarios must be 

 equal to (1) according to equation (28). 

S(TBM) 

TCYC 

Phase 2 Phase 3 

𝛿=0 

𝛿=𝑈𝑚𝑎𝑥−𝑑 𝛿=-d 

ℎ 

l TBM TTR 

  Phase 1 

TIME 

Inventory 

Phase 4 



173 
 

∑𝑃(𝑠𝑖)

5

𝑖=1

= 1             ∀(𝑚, 𝐴, ℎ) 

 

 

 (28) 

 

Fig 6. Scenario 5 

 

2-3-The average total cost per time unit 
    The total average cost per time unit is the sum of the unitary costs related to maintenance and 
inventory control as they have been presented in this section. This total expected cost is expressed as a 

function of the three decision variables: 𝑚, ℎ and  𝐴: 

𝐶𝑇(𝑚, 𝐴, ℎ) = 𝛿̅(𝐴, ℎ,𝑚) + 𝜑(𝑚) (33) 

𝐶𝑇(𝑚, 𝐴, ℎ) =
∑ 𝑃(𝑠𝑖)𝐸(𝐿𝑠𝑖) + 𝐶𝑐𝑚
5
𝑖=1 𝐹(𝑚)+ 𝐶𝑝𝑚𝑅(𝑚)

∫ 𝑅(𝑢)𝑑𝑢 + 𝜇𝑝
𝑚

0
𝑅(𝑚) + 𝜇𝑐𝐹(𝑚)

 
(34) 

 

2-4- Optimization 
   The objective consists of finding the optimal values of the decision variables that minimize the total 

average cost per time unit under the constraint of a minimum required stationary availability level 𝐾. 

 

𝑆𝐴(𝑚) =
∫ 𝑅(𝑢)𝑑𝑢
𝑚

0

∫ 𝑅(𝑢)𝑑𝑢 + 𝜇𝑝𝑅(𝑚) + 𝜇𝑐𝐹(𝑚)
𝑚

0

 
(35) 

   For systems with increasing failure rates (for which preventive maintenance is generally 
recommended), the stationary availability function is concave in m, which means that it has a unique 

maximum. Hence, obtained for a given situation, the following nonlinear optimization problem: 

 

min𝑍 = 𝐶𝑇(𝑚, 𝐴, ℎ) 
𝑆𝑡: 𝑆𝐴(𝑚) ≥ 𝐾 

(𝑚, ℎ, 𝐴) ∈ (𝑅∗ × 𝑅∗ × 𝑁)                                                                                                                  (36) 

                                                                                                                         

2-5- Description of the algorithm 
   A numerical algorithm is presented with an iterative method to determine the time interval between 

[m1 , m2], [A1, A2], and the buffer inventory value [h1 , h2] to minimize the total cost is shown in 
equation (34) (Rezg and et al. 2008). Figure 7 shows the graphical process of solving, as the failure 

rate increases and the production system is concave, the values of [m1 , m2], [A1, A2], [h1 , h2], are first 

determined. If there are values of the decision variables, the acceptable level of availability will be 
calculated. The maximum availability is introduced by k (see figure 7).  In the next section numerical 

algorithm to find strategy is developed. (𝐴, ℎ) are random and d to be stochastic. The algorithm is 
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implemented using 𝑀𝐴𝑇𝐿𝐴𝐵 software and the results are presented in numerical examples in tables 3 
and 4. 

 

Case 1:  𝐾𝜖[0, 𝑆𝐴(+∞)] → [𝑚1, 𝑚2] = [𝑚𝑘 , +∞] 

Case 2:𝐾𝜖[𝑆𝐴(+∞), 𝑆𝐴∗] → [𝑚1,𝑚2] = [𝑚1,𝑚2] 

Case 3: 𝐾𝜖[𝑆𝐴∗, 1] → [𝑚1, 𝑚2] Not available 

With: 

SA*     is maximum of availability level 
And 

𝑆𝐴(+∞) = lim
𝑚→+∞

𝑆𝐴(𝑚) = 
𝜇

𝜇 + 𝜇𝑐
 (37) 

   In this paper, the inventory control optimization model and maintenance and repair operations are 

presented in a single-machine production system, taking into account the potential demand. There are 

5 scenarios for solving that the total probability of 5 scenarios should be equal to 1.As shown in figure 
7, we entered the initial value of the input data, and then calculated the maximum availability level. If 

the availability level is in the range [𝑆𝐴∗. 1](case 3), there is no answer for 𝑚1. 𝑚2 If not, it means that 

the availability level is in the range [𝑆𝐴(+∞). 𝑆𝐴∗] (case 2), the values of 𝑚1.𝑚2are calculated. Since 

the present algorithm is of numerical type, we convert continuous space into discrete space, use 

different values of cost for different m, h, and A values, and calculate an optimal value.  

 

Fig7. Presented algorithm 

3-Results and discussion 
3-1-Numerical example 
   Consider a single machine manufacturing system with a random failure, and provides the amount 

Yes

   
   

Yes

No

i = i+1

There is No Answer
(Availability constraint is not met)

Find (m1,m2)
SA(m) = K

Find:  
& Save  :  

Determine: 
For i = 1 , 2 , … , n

No

Input Data:
  ,  ,  (0),  ,  ,   ,   ,   ,     ,  (0),   (0),  ,  

Calculate:
SA(+∞)= /( + _ ) , (  )∗=max (SA)

State of 1
Find:
 1=(  )^(−1) ( )
 2=min(((  )^(−1) =(   /( +  ))))

State of 3
 ∈[(  )∗,1]

State of 2
 ∈[(SA (+∞),  ( 

 )∗]

∆=(( 2− 1)/ )
  =  + ∆
ℎ =ℎ + ∆
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stochastic demand value of uniform (0.15, 0.90) unit/time unit. The ability to produce a machine, the 

maximum is 1 unit/ time unit. When is not in storage or defective, it produces the size of 𝑑 at other 

times 𝑈𝑚𝑎𝑥. It is assumed that 𝑈𝑚𝑎𝑥is greater than 𝑑. When there is a loss of machines being 

produced at a rate of 𝑈𝑚𝑎𝑥, the excess production amount is stored as a protective inventory till the 

time of maintenance, the machine is completely stopped responding to the demand. At the starting 

time the production rate is 𝑈𝑚𝑎𝑥. Based on the production policy, maintenance must be done during 

the time 𝑚 or when a failure occurs, depending on which one happens sooner. Historic data show that 

the failure time of machines in production systems follows the Weibull distribution; The average life 
of the production system is assumed to be 88.6 units of time, also, Time operation, maintenance of 

log-normal distribution with (𝜇𝑐= 50, 𝛿𝑐 = 2), Distribution preventive maintenance 𝑔𝑝(𝑡) follows a 

lognormal distribution follow with (𝜇𝑝 = 10,  𝛿𝑐 = 1.5). Costs include holding cost 𝐶𝑠= 2, loss cost 𝐶𝑙 

= 250, preventive maintenance 𝐶𝑐𝑚 = 2,000 and corrective maintenance action 𝐶𝑝𝑚 = 300, Demand 

follow uniform distribution 𝑑 = uniform (0.15,0.90) unit/time unit, maximum production rate: 𝑈𝑚𝑎𝑥   
= 1 unit/time unit, probability distribution function associated to the machine time to failure 𝐹(𝑡): 
Weibull distribution with (2,100) parameters, maximum level of accessibility: 𝐾 =  70%. A 

summary of the input data are given in table 2 and 3.Using the algorithm in figure 7, with 𝐾 =  70% 

and [m1, m2] = [37, 72], the values in table 4 are obtained for optimal strategies. The values of the 

decision variables are proportional to the optimal scenario and the probability of each scenario as 
shown in tables 4 and 5. 

Table 2. Summary of input data 

 Parameter Distribution  

50 𝜇𝑐 log-normal distribution 
Time operation 

maintenance: 𝑔𝑐(𝑡) 2 𝛿𝑐 

10 𝜇𝑝 
log-normal distribution 

Distribution preventive 

maintenance: gp(t) 1.5 𝛿𝑐 

(0.15,0.90) 𝑑 uniform distribution Demand 

(2,100) Parameters weibull distribution Time To Failure: F(t) 

Table 3. Summary of cost input data 

 

Table 4.The values of the decision variables are proportional to the optimal scenario with Cs = 2 

𝑚*(time units) 𝐴*(time units) ℎ* 𝐶𝑇* (monetary units/time unit) 

38 28.03 28.23 301.47 

 

 

 

Table5. Optimal the probability of each scenario with Cs= 2 

𝑝𝑠1= 𝑝𝑠2  𝑝𝑠3  𝑝𝑠4  𝑝𝑠5  

0.3333 0 0.6667 0 0 

   As shown in table 5, scenarios 1 and 3 are more probability to occur and the most possible of the 

scenario is almost 0.The most probable scenario is scenario 2, where the production system begins to 

stock buffers but before reaching level h in 𝑚=38, the machine crashes and starts maintenance. It is a 

2 Cs holding cost 

Costs 

250 Cl loss cost 

2,000 Ccm preventive maintenance 

300 Cpm 
corrective maintenance 

action 
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small probability (𝑝𝑠1 = 0.3333) to occur after the buffer level is completed and then preventive 

maintenance is made and a new cycle begins. Now reduce the cost of 𝐶𝑠 from 2 to 1. The results are 
shown in tables 6 and 7. 

Table 6.The values of the decision variables are proportional to the optimal scenario with 𝐶𝑠 = 1 

𝑚*(time units) 𝐴*(time units) ℎ* 𝐶𝑇* (monetary units/time unit) 

41 27.59 11.81 287.27 

 

Table 7.Optimal the probability of each scenario with 𝐶𝑠 = 1 

𝑝𝑠1= 𝑝𝑠2  𝑝𝑠3  𝑝𝑠4  𝑝𝑠5  

0.1538 0 0.8462 0 0 

 

   As shown in table 6, scenarios 1 and 3 are more probable to occur and the most possible of the 

scenario is almost 0. By reducing the cost from 1 to 2, the buffer stock time for the most probable 
scenario is reduced from 28.03 to 27.59. Scenario 3 is the most optimal strategy in which, before 

reaching the ℎ level, the machine is failed and maintenance begins and ends before the loss occurs and 

a new cycle begins. In this scenario buffer stock equals 11.81. While in the former case is equal to 
28.23. The total cost is also reduced compared to the first case. Reducing maintenance costs from 2 to 

1 has had an impact on maintenance operation times. In fact, in each replication, the best value is 

calculated for 𝐴, ℎ, and scenario, and then it is observed which one has a lower cost. Finally, for 

minimum cost, the value of 𝐴, ℎ,𝑚, and scenario probability is calculated.  As other factors are 
consistent, sensitivity analysis in figure 8 is shown to reduce inventory costs. 

 

 

Fig 8.Sensitivity analysis 

4-Conclusion 
   In this paper, a model for joint optimization of maintenance and inventory control with random 
failure is presented. The decision-maker is able, using a decision-maker, to find the decision variables 

by the desired quantities of production capacity, demand, maintenance and repair costs, and the 

distribution of machine failure, which minimizes the total cost. These decision variables are Time to 

create a protective inventory size and when the machine stops for maintenance operations. 

280
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   Finally, a numerical example was used to examine the proposed solution approach. The model was 
solved using numerical example parameters by the proposed algorithm. The results show that the 

preventive maintenance policy contributes to a reduction in the overall incurred cost. The results show 

that the joint optimal policy is generally sensitive to the cost, In other words, by reducing the cost of 

inventory, the total cost is reduced. The production/maintenance of the manufacturing cell considered. 
Also, the results show the most probable scenario 3 is a scenario that is not a loss but failed machine 

before it reaches level ℎ. The optimal value is ℎ=11.81. For future studies, shortages can be 

considered as a back of order; other methods can be used to make demand possible, such as robust, 
etc. Instead of the production system of a single machine, several machines can be used. 
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Appendix A 

 
Proof: 

𝐸(𝑇𝐵𝑀) = ∫ 𝑅(𝑡)𝑑𝑡
𝑚

0
                                                                                                           (A.1) 

𝐸(𝑇𝑇𝑅) = 𝜇𝑑  ,               𝜇𝑑 = 𝜇𝑝𝑅(𝑚)+ 𝜇𝑐𝐹(𝑚)                                                                 (A.2) 

𝑑~𝑈(𝑎, 𝑏) →→→ 𝐸(𝑑) =
𝑎+𝑏

2
,             𝑉𝐴𝑅(𝑑) =

(𝑏−𝑎)2

12
,                                                      (A.3) 

   𝐸(𝑑2) =
(𝑏−𝑎)2

12
+ (

𝑎+𝑏

2
)2                                                                                                     (A.4)  

 
 

 
 


