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Abstract 
This paper aims in assessing the effects of governmental policies on a maximal 
covering location problem facing stochastic demand which is sensitive to both the 
retail price and facility advertising efforts. A reward-penalty two-stage stochastic 

programming model is proposed to formulate the problem as a supportive approach 
in a mixed integer non-linear programming form. In particular, a stochastic pricing 
and advertising dependent demand model in a facility location configuration is 
developed which sets the retail price for each opened facility and various 
advertising effort levels based on the zone’s attractiveness. To promote customer 
welfare and satisfaction, the legislative counterpart of the reward-penalty model is 
introduced. The legislative model assigns the minimum satisfaction demand level 

to the model as a constraint. In both models, the firm tries to maximize its net profit 
according to government decisions. An analytical method based on the L-shaped 
algorithm is provided to determine the best solutions of the first and second stages 
with coping nonlinearity term of the proposed models. Finally, numerical examples 
are developed to illustrate the governmental policies impacts to reach to the most 
social welfare as well as the least reward-penalty legislation.  
Keywords: Maximal covering location problem, pricing, advertising efforts, 
stochastic demand, government, L-shaped algorithm.  

 

1-Introduction 
   Pricing and advertising efforts are key tools that enable firms to enhance their profit by focusing on 
knowing the consumer behavior (Asamoah and Chovancová 2011, Bashir and Malik 2010). Large firms 

invest amounts of money in recognizing the characteristics of their own and potential customers. In 
economic theory, the most useful instrument for this purpose is the demand function. The demand 
function shows the quantity demanded by customers in a given market as a function of price, income 
level, advertising, social conformity and nonconformity and others (Shy 2008). 
   In this study, the demand function is considered to be influenced by the retail price and advertising 
effort levels in a maximal covering location problem (MCLP). MCLP is a particular kind of facility 
location problem (FLP) that a predefined number of facilities must be located among potential locations 

by a single decision-maker to maximize the covered demand points (Fischetti, et al. 2016; Schlicher, et al. 
2017).  
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   Covering location model has been proven to be useful in many research areas e.g. location emergency 
facilities, communication networks, retail stores (Aziz, et al. 2019, Li, et al. 2011; Lee and Murray 2010; 
Plastria and Vanhaverbeke 2007).  
   Although, in most of the papers the MCLP is investigated from the companies view to capture more 

market share, it may become one of the social concerns and important challenges of the governments 
when a necessary product supply is not enough. Indeed, the unwillingness of companies to engage in 
production activities due to the governmental price cap strategies, low prices, high costs and also high 
uncertainties in quantity demands may lead governments to use motivational and compulsory tools. In the 
other words, in some cases or some situations, it may not be profitable for companies to engage in 
production activities or they prefer to decrease their production because of the low price and production 
related costs, such as opening facilities, transportation costs, and advertising effort payments.  
   Thus, in this paper, a maximal covering location problem is developed to determine retail stores among 

demand points according to the government incentive policies about production regulation. Since the 
facility location designer policies have vital effects on social welfare and sustainability; governments 
enact their supportive policies through incentive/punitive mechanisms to lead firms as a superior 
organization to ensure satisfaction of the desired proportion of customer demand. Of course, governments 
should carefully consider all the implications of enacting rules and regulations to ensure that they are 
appropriate for sub-organizations and provide social welfare enough. In this paper, social welfare is 
represented by the amount of responded demand.  

    For this purpose, a reward-penalty mechanism is applied in assessing the governmental policies impact 
on pricing and advertising decisions of a maximal covering location problem as well as the social welfare 
in an uncertain environment in two configurations based on the government role; 1- supportive role and 2- 
legislative role.  
   Thus, the proposed model is more suitable for products with low price and low cost savings; while 
companies are not interested in producing products and governments should intervene due to the social 
issues, as a superior and legislative entity to force or motivate companies to produce the desired level of 

the products. 
   Figure 1 shows a general structure of the proposed problem. In this figure, bold red nodes represent the 
opened retail stores and bold blue nodes show the demand nodes and circles are the coverage demand 
zone by each facility. 

 

Maximal covering location problem

Covering zone by red 

facility
Retailer facility Demand point

GovernmentGovernment

Supportive role: Target and reward penalty amount

Legislative role: Satisfied demand level

 
 

Fig 1. A schematic view of the stochastic facility location model 
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   As shown in figure 1, some fixed demand nodes exist in the market and each company should 
determines the locations of the retailer facilities based on the each facility covering zone, company profit 
and government policies.   
In addition, customer demand functions are influenced by pricing and advertising effort levels as well as a 

random component. To cope with this uncertainty, a two-stage stochastic programming model in an 
MCLP configuration is proposed.  
    The rest of the paper is organized as follows: The literature review is presented in section 2. In section 
3, the reward-penalty facility location problem model definition and formulation are developed. The L-
shaped algorithm is proposed to solve the proposed two-stage stochastic programming model in section 4. 
In the next section, computational results are analyzed. Finally, conclusions and suggestions for future 
research are presented in the last section. 
    

2-Literature review  
   The MCLP is a classic optimization model from the location science literature (Church and Velle 1974). 
Various strategic and operational aspects of MCLP have been investigated in the last decades. In this 
study, it is attempted to propose a new formulation to deal with pricing and advertising decisions in an 

MCLP model by considering government decision impact as a superior authority in a stochastic 
environment. Thus, the focus of the literature survey in this study is on the MCLP model with demand 
uncertainty, advertising and pricing dependent demand models and governmental regulation interferences 
in an MCLP model. 
 

2-1- Facility location problem under uncertainty 
   Ignoring of the inherent uncertainty in the facility location problem parameters can lead to inferior 
quality and less realistic results. Thus, in most of the recent and relevant studies, FLP and MCLP are 

designed in an uncertain environment. Uncertainty in the demand parameter is most common. Plastria and 
Vanhaverbeke (2009), Albareda-Sambola, et al. (2011), Berman and Wang (2011), Alizadeh (2013), 
Alizadeh, et al. (2015), Bieniek (2015), Vatsa and Jayaswal (2016), Zhang, et al. (2017a), and Correia, et 
al. (2018) have studied uncertainty in demand in facility location problem based on the scenario.  
   Besides, Albareda-Sambola, et al. (2011) studied a capacitated stochastic facility location problem with 
Bernoulli demands in a two-stage stochastic programming configuration. Alizadeh, (2013) and Alizadeh, 
et al. (2015) presented a capacitated location-allocation problem under stochastic customer demands 
based on Bernoulli distribution function. Bieniek (2015) proposed a single capacitated facility location 

model with stochastically distributed demands under various demand distribution functions. Besides, 
Nickel, et al. (2012), Albareda-Sambola, et al. (2013), Hosseini, and MirHassani (2015), Habibzadeh, et 
al. (2016), considered a multi-period facility location problem under demand uncertainty. We refer the 
readers for a detailed review on facility location problem under uncertainty to Snyder, (2006); Correia, 
(2015); Gülpınar, (2013), Farahani, et al. (2012), and Ortiz-Astorquiza, et al. (2017).  
   It can be concluded that facility designers have to deal with uncertainty in the demand parameter while 
markets have become more competitive, transparent and agile. Thus in this paper, a stochastic scenario-

based MCLP model is developed by considering uncertainty in the demand parameter. 
 

2-2- Pricing and advertising dependent demand models 
   Although advertising activities gained more than $300 billion in the United States in 2010 and more 
than $500 billion in the world, few studies have addressed the demand function in facility location models 
(Statistics & Facts on the U.S. Advertising Industry). Based on the report of the IHS Markit company, 
which was published in March 2015, the US economy spent $36.7 trillion on sales activity in 2014. And, 
IHS estimates $2.4 trillion in direct sales were stimulated as a result of the $297 billion that companies 
spent on advertising for their products and services. Thus, approximately 6.5% of US sales activity is 

directly stimulated by advertising (IHS ECONOMICS AND COUNTRY RISK, 2015).  
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   Besides, most of the recent related studies have considered pricing and advertising decisions in a supply 
chain based on game theory approaches (Gutierrez, et al. 2019, Xiao, et al. 2019). All of the studies in this 
area emphasized that higher advertising levels can increase demand. We refer readers for a 
comprehensive review of advertising efforts to Araman and Popescu (2010), and Wu, et al. (2011).  

   The current study aims to determine optimal decisions on the pricing and advertising level 
simultaneously in a facility location model. However, only a few scholars have studied the supply chain 
design problem incorporating joint decisions on pricing and advertising. Ray (2005) addressed a model 
with random demand which is sensitive to both price and non-price factors. Helmes and Schlosser (2013), 
and Schlosser (2016, 2017) addressed stochastic dynamic pricing and advertising model with constant 
demand elasticity based on the game theory approach. Rad, et al. (2016), Maiti and Giri (2017), and Liu, 
et al. (2014) studied a two-stage supply chain design with price and advertisement dependent demand 
based on game theory approach. Liu et al. (2014), investigated an inventory decision under price and 

advertising dependent demand by considering customer welfare. Gou, et al. (2020) investigated the role 
of local media companies in co-op advertising programs and differential pricing strategy on a system 
consisting of a manufacturer, a retailer, and a local media company.   
 

2-3- Government regulation in facility location problem model 
   In recent decades, the government as a legislative and authorized entity tries to lead organizations to 
provide social welfare and sustainability as more as possible. Kulshreshtha and Sarangi (2001), 
Wojanowski, et al. (2007) developed a model to analyze the impact of governmental incentive policy 

based on deposit-refund systems for collecting and recycling. Sheu, et al. (2005), Mitra and Webster 
(2008), Aksen, et al. (2009) proposed a model by considering governmental subsidies for product 
recovery. Plambeck and Wang (2009), found that applying the “fee upon disposal” policy motivates 
manufacturers to design for recyclability. Sheu and Chen (2012), analyzed the effect of green taxation and 
subsidization as governmental financial interventions on green supply chain profits and social welfare. 
Shutao and Jiangao (2011), analyzed the effect of government’s checking, reward-penalty mechanism, 
transportation costs and some policy-making suggestions on energy saving behavior of the industries. 

Wang, et al. (2017), Wang, et al. (2015), and Amini, et al. (2014) proposed a reward-penalty mechanism 
as one on of the government interposition is considered to motivate recycling. Yang and Xiao (2017) 
developed a three-game theory-based models to cope with green supply chain problem with governmental 
interventions under uncertain parameters. Zhang, et al. (2017b), explored the impact of government 
intervention on waste cooking oil to an energy company. Zhao, et al. (2017), explored the impact on 
market incentive and government regulation on vegetable farmer’s behavior. Brawley (2017), addressed 
the role of government regulation on cancer prevention. Niu, et al. (2017), explored the impact of 
government regulation on fashion procurement strategies in punishing and subsidizing forms.  

   A summary of related studies on facility location problem (FLP) is compared in table 1 in terms of 
model configuration, government policy, considering pricing and advertising polices, and uncertainty 
approach. 
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Table 1. A summary of the recent studies on facility location problem 

R
ef

er
en

ce
 

Model 
Governmental policy 

consideration 
features Uncertainty 

FLP MCLP supportive legislative pricing advertising parameter approach 

Gulpnar, et 

al. (2013) 
  - - - - demand 

Robust 

optimization 

Hosseini & 

Mirhassani 
(2015) 

  - - - - 

serve 

traffic 
flow 

two-stage 

stochastic 

Bieniek 

(2015) 
  - - - - demand 

Stochastic 

distribution 

Mestre, et 

al. (2015) 
  - - - - demand 

Scenario-

stochastic based  

Vatsa & 

Jayaswal 

(2016) 

  - - - - 
Server 

(doctors) 

Scenario-

stochastic based 

Zhang, et al. 

(2017a) 
  - - - - demand 

Chance 

constraint 

 Zhang, et 

al. (2017b) 
   

fee and 

penalty  
- - - - 

Mišković, et 

al. (2017) 
  - - - - 

transporta

tion costs 

stochastic & 

Robust 

optimization 

Correia, et 

al. (2018) 
  - - - - demand 

Scenario-

stochastic based 

This study       demand 
Scenario-

stochastic based 

 

   As shown in table 1, despite the fact that the concept of “customer welfare” and “service level” has 
attracted the attention of the researchers, in all variants of MCLP we couldn’t find any direct effort to 
study the impact of the government intervention on the covering location problem configuration. Based 
on the above discussion, pricing and advertising effort consideration, supportive and legislative 
government intervention and demand function uncertainty constitute collectively a significant departure 
from the current studies in the covering location problem.  
   Thus, this paper studies the strategic behavior of a firm under supportive and legislative government 

intervention under demand uncertainty. Two reward-penalty two-stage stochastic programming models 
are provided to evaluate the effects of governmental policies in a supportive and legislative role. In both 
models, the firm tries to maximize its net profit according to government decisions. An analytical method 
based on the L-shaped algorithm is provided to cope with the nonlinearity term of the models. The firm’s 
profit maximization and satisfying social welfare target imposed by the government are examined through 
some numerical examples. 

3-Model definition and formulation 
3-1-Problem definition 
   In this paper, a MCLP is proposed in a two-stage stochastic programming using a reward-penalty 
mechanism. As shown in figure 1, a facility location model under demand uncertainty is designed with 
aiming to achieve the most profit under governmental legislative and supportive policies. According to 
this model, predefined N facilities of retailers must be located among customer’s zones J to respond to 
customer’s demands. The opened facility locations face a random demand that is sensitive to both the 
retail price and facility advertising efforts. By knowing the characteristics of demands, retailers need to 
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set prices for each opened facility and various advertising efforts for each customer’s zone based on its 
attractiveness and costs for the retailers which are reflected as sales effort’s cost in the proposed model.  
Besides, the facility location decisions are made according to the governmental regulations as a reward-
penalty mechanism. The government tends to achieve the most social welfare by leading the facility 

retailers to respond as high as the customer demands by the least reward-penalty amount.  
The sequence of the events in the proposed two-stage stochastic model is as follows: 

(1) The government offers the retailers a reward/penalty contract for a new year in a supportive role 
and fixes a satisfied demand level for retailers in a legislative role. 

(2) Retailers choose facility locations (𝑋𝑖) among the customer’s zones and determine desirable order 

quantity (𝑄𝑖), advertising effort levels (𝑒𝑖𝑗) and prices (𝑝𝑖), according to the government policies. 

(3) The selling season starts and the stochastic component of the demand function (ξ) is observed. 

(4) The products transfer between retailers and demand zones (𝑌𝑖𝑗
ξ
) and also the payments based on 

the agreed contract transfer between government and retailers. 

A schematic view of the two-stage stochastic programming model is presented in figure 2. 

 

Stage 1 Stage 2

Yij(ξ) 
Decisions

Random component of 

demand function (ξ) is 
observed

Decisions

Xi

Pi

Qi

eij

 
Fig 2. A schematic view of two-stage stochastic stages 

 

The main assumptions of the studied problem are listed as follows: 

 A single product maximal covering location problem is proposed. 

 The firm knows the decisions of the government before making any own decision, thus, government 
decisions are considered as parameters in the proposed model.  

 A finite number of candidate locations are considered for the establishment of retailer facilities. 
 The demand function is affected by retailer price, advertising effort, and a random component as a 

linear function. 
 Transportation cost per unit of transport product is proportional to the Euclidean distance. 

 

3-2- Problem formulation 
   In this section, a two-stage stochastic programming facility location with price and advertising level 
effort dependent demand model formulation is presented. The following notations are used in the model 
formulation. 

Indices: 

I : Set of potential retailer’s facility locations, ( 1,2,...,i I ) 

J : Set of fixed locations of demand zones, ( 1,2,...,j J ) 
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Parameters: 

N: The number of the retailer facilities. 
C: Purchasing cost of new product for the retailers. 
T: Sales target of the government. 
λ: The reward or penalty for unit of product.  
V: Salvage value of remained products. 

�̃�𝑖𝑗 : Random variable of customer demand at zone j for facility retailer i. 

𝑑𝑖𝑠𝑖𝑗: Euclidean distance between retailer facility in potential location i and demand zone j. 

𝐾: Transportation unit cost  

𝐶𝑎𝑝𝑖: Capacity of retailer facility i 

𝐷𝑗
𝑚𝑎𝑥: Maximum potential demand in demand zone j 

𝑝𝑖
𝑚𝑎𝑥: Maximum price that retailer facility i can pay 

ξ: Random demand component 

𝑃ξ : Probability of  ξ  accrued 

Decision variables: 

Xi: Binary variable which is equal to 1 if a retailer facility is opened at zone i ; 0, otherwise. 

𝑝𝑖: Retail price of product for retailer facility i. 

𝑒𝑖𝑗 : Advertising effort level of retailer's facility i for demand zone j. 

Qi: Order quantity in facility location i. 

𝑌𝑖𝑗
ξ
: Flow of products between retailer facility i and demand zone j under demand uncertainty ξ . 

θ: Auxiliary variable for Master problem which represents second stage part of the objective function 

OCQ𝑖
𝑣: Coefficient value of variable 𝑄𝑖  in optimality cut 𝑣 

OCp𝑖
𝑣: Coefficient value of variable 𝑝𝑖 in optimality cut 𝑣 

OCe𝑖𝑗
𝑣 : Coefficient value of variable 𝑒𝑖𝑗  in optimality cut 𝑣 

ORH𝑣: Right hand side of optimality cut 𝑣 

FCQ𝑖
𝑟: Coefficient value of variable 𝑄𝑖 in feasibility cut 𝑟 

FCp𝑖
𝑟: Coefficient value of variable 𝑝𝑖 in feasibility cut 𝑟 

FCe𝑖𝑗
𝑟 : Coefficient value of variable 𝑒𝑖𝑗  in feasibility cut 𝑟 

FRH𝑟: Right hand side of feasibility cut 𝑟 

𝜔𝑖𝑗
𝑣 : Dual value of constraint (21) in constructing optimality cut 𝑣 

𝜏𝑖
𝑣: Dual value of constraint (22) in constructing optimality cut 𝑣 

𝛿𝑗
𝑣: Dual value of constraint (23) in constructing optimality cut 𝑣 

𝜋𝑖𝑗
𝑟 : Dual value of constraint (25) in feasibility check problem in constructing feasibility cut 𝑟 

𝜎𝑗
𝑟: Dual value of constraint (26) in feasibility check problem in constructing feasibility cut 𝑟 

𝜌𝑖
𝑟: Dual value of constraint (27) in feasibility check problem in constructing feasibility cut 𝑟 

 
   The proposed two-stage stochastic location facility model is aiming to achieve the highest retailer’s 
profit which is obtained by subtracting income values and costs. Incomes are based on sales and salvage 
values as follow: 

𝐼𝑛𝑐𝑜𝑚𝑒 = ∑ 𝑃ξ (∑ ∑ 𝑝𝑖𝑌𝑖𝑗
ξ

𝑗𝑖

+ ∑ ∑ 𝑉 (𝑄𝑖 − 𝑌𝑖𝑗
ξ
)

𝑗𝑖

)

ξ

 (1) 

And costs are determined according to the purchases, transportations and advertising effort level’s costs 
as: 
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𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑄𝑖

𝑖

+ ∑ 𝑃ξ (∑ ∑ 𝐾𝑑𝑖𝑠𝑖𝑗𝑌𝑖𝑗
ξ

𝑗𝑖

)

ξ

+ ∑ ∑ 𝑔(𝑒𝑖𝑗)

𝑗𝑖

 (2) 

   In the above formulation, g(𝑒𝑖𝑗) is assumed to be the retailer's costs of exerting an effort level 𝑒𝑖𝑗  and is 

considered g(𝑒𝑖𝑗) = µ𝑒𝑖𝑗𝑑𝑖𝑠𝑖𝑗
2  in the proposed model where is set as an advertising constant coefficient. 

According to this formulation, advertising effort costs of the far zones are more than the near one. Thus, 
nears are more attractive to be serviced.  
   Besides, the reward-penalty amount can be considered as an income if customer demand responds more 
than government target and otherwise sets as a cost component. Thus, the model objective function is 
displayed in equation (3): 

𝜋 = ∑ 𝑃ξ (∑ ∑ 𝑝𝑖𝑌𝑖𝑗
ξ

𝑗𝑖

+ ∑ ∑ 𝑉 (𝑄𝑖 − 𝑌𝑖𝑗
ξ
)

𝑗𝑖

)

ξ

− ∑ 𝐶𝑄𝑖

𝑖

+ ∑ 𝑃ξ (∑ ∑ λ (𝑌𝑖𝑗
ξ

− 𝑇)

𝑗𝑖

)

ξ

− ∑ 𝑃ξ (∑ ∑ 𝐾𝑑𝑖𝑠𝑖𝑗𝑌𝑖𝑗
ξ

𝑗𝑖

)

ξ

− ∑ ∑ 𝑔(𝑒𝑖𝑗)

𝑗𝑖

 

  (3) 

   It should be mentioned that customer's demand is denoted by �̃�𝑖𝑗  with probability density function of 

given price and effort levels, 𝑓(𝐷𝑗 |(𝑝𝑖 , 𝑒𝑖𝑗)). Also, we assume that demand is stochastically increasing in 

efforts and decreasing in price, i.e., 
𝜕𝐹(𝐷𝑗 |(𝑝𝑖 , 𝑒𝑖𝑗))

𝜕𝑒
> 0  and 

𝜕𝐹(𝐷𝑗 |(𝑝𝑖 , 𝑒𝑖𝑗))

𝜕𝑝
< 0 (He, et al. 2009). We 

further specify the demand function as �̃�𝑖𝑗 = 𝐿𝑖𝑗(𝑝𝑖 , 𝑒𝑖𝑗) + ξ. ξ is assumed as the random component of 

the demand with density function 𝜑(ξ). Let we arbitrarily choose a linear demand function such as 

𝐿𝑖𝑗(𝑝𝑖 , 𝑒𝑖𝑗) = (𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒𝑖𝑗) for the 𝐿𝑖𝑗(𝑝𝑖 , 𝑒𝑖𝑗) component of the demand function term and a 

uniformed distribution for random component, ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝐴, 𝐵) (C. Petruzzi and Dada 1999). 
   Moreover, in order to obtain price and advertising sales efforts inelastic regions, price and effort levels 
elasticity should be greater than 1 (Shy 2008). Thus, according to the elasticity formulation follows 

constraint should be considered in the proposed model: 

|𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑝)| = |
𝜕𝐷𝑖𝑗

𝜕𝑝
∗

𝑝𝑖

𝐷𝑖𝑗
| ≥ 1 → 𝐷𝑖𝑗 ≥

𝛼 + 𝛾𝑒𝑖𝑗

2
 

|𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦(𝑒𝑖𝑗)| = |
𝜕𝐷𝑖𝑗

𝜕𝑒𝑖𝑗
∗

𝑒𝑖𝑗

𝐷𝑖𝑗
| ≥ 1 → 𝛽𝑝𝑖 − 𝛼 ≥ 0. 

   In terms of the above-mentioned notations, the proposed mixed-integer non-linear programming 
(MINLP) model can be formulated as follows in a supportive role of the government: 
 

𝑀𝑎𝑥 𝜋 = ∑ ∑ ∑ 𝑃ξ(𝑝𝑖 − 𝑉 + λ − 𝐾𝑑𝑖𝑠𝑖𝑗)𝑌𝑖𝑗
ξ

ξ𝑗𝑖 + ∑ (𝑉 − 𝐶)𝑄𝑖𝑖 − λ𝑇 − ∑ ∑ µ𝑒𝑖𝑗𝑑𝑖𝑠𝑖𝑗
2

𝑗𝑖   (4) 

𝑌𝑖𝑗
ξ

≤ (𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒𝑖𝑗)+ ξ ∀𝑖, 𝑗, ξ (5) 

∑ 𝑋𝑖

𝑖

= 𝑁 (6) 

𝑄𝑖 ≤ 𝑋𝑖𝐶𝑎𝑝𝑖                ∀𝑖 (7) 
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𝑄𝑖 ≥ ∑ 𝑌𝑖𝑗
ξ

𝑗

                   ∀𝑖, ξ (8) 

∑ 𝑌𝑖𝑗
ξ

𝑖

  ≤  𝐷𝑗
𝑚𝑎𝑥            ∀𝑗, ξ (9) 

2(𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒𝑖𝑗) ≥ 𝛼 + 𝛾𝑒𝑖𝑗  ∀𝑖, 𝑗 (10) 

𝑝𝑖 ≥
𝛼

𝛽
∗ 𝑋𝑖 

∀𝑖 
(11) 

𝑝𝑖 ≤ 𝑝𝑚𝑎𝑥 ∗ 𝑋𝑖 ∀𝑖 (12) 

 𝑄𝑖 ≥ 0, 𝑒𝑖𝑗 ≥ 0 , 𝑌𝑖𝑗
ξ

≥ 0, 𝑋𝑖 ∈ {0,1} ∀𝑖, 𝑗, ξ (13) 

 
   Equation (4) represents the facility location objective function which is to maximize the facility 

location-allocation’s model profit. Constraint (5) represents each customer’s demand function. Equation 
(6) ensures the model to open a predefined retailer facility number. Constraints (7) and (8) express the 
capacity restrictions of each opened retailer facilities to entries and exits. Constraint (9) ensures each 
demand zone amount served restriction. Constraints (10) and (11) ensure the price and advertising sales 
efforts choose inelastic regions. Finally, each retailer’s price upper bound and variable types are declared 
in constraint (12) and (13), respectively. 
   On the other hand, if the government considered as a legislative entity in the proposed model, the 

minimum satisfaction demand level will be assigned to the model as a constraint. Thus, the proposed 
mixed-integer non-linear programming (MINLP) model can be rewritten as follow: 

𝑀𝑎𝑥 𝜋 = ∑ ∑ 𝑃ξ(𝑝𝑖 − 𝑉 − 𝐾𝑑𝑖𝑠𝑖𝑗)𝑌𝑖𝑗
ξ

𝑗𝑖 + ∑ (𝑉 − 𝐶)𝑄𝑖𝑖 − ∑ ∑ µ𝑒𝑖𝑗𝑑𝑖𝑠𝑖𝑗
2

𝑗𝑖   (14) 

∑ 𝑌𝑖𝑗
ξ

𝑖

≥ 𝐿 ∑(𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒𝑖𝑗 +  ξ)

𝑖

 ∀𝑖, 𝑗 (15) 

(5)-(13)   

   In this model, the government set a predefined satisfied demand level (L) for retailers as a constraint 
against a reward penalty model, which is represented in constraint (15).  
Where L presents the desirable ratio of responded demand by the government and it is as equation (16): 

𝐿 =
𝑇

∑ 𝐷𝑗
𝑚𝑎𝑥

𝑗
 (16) 

It is worth to be mentioned, this regulation may affect the facility location feasibility solution space. Thus, 
the probability of model infeasibility will be increased against the reward-penalty model. 

4-Solution methodology 
   Since the proposed model is a mixed-integer nonlinear programming (MINLP) model, commercial 
solvers such as BARON on GAMS is not efficient to solve the model in large size problem. The 

nonlinearity term of the proposed model is ∑ ∑ 𝑝. 𝑌𝑖𝑗
ξ

𝑗𝑖  in the objective function which is a production of 

two continues variables. Thus, commercial solvers like BARON which are appropriated for non-linear 

models are suitable for small size problems to obtain global solutions. In this section, the L-shaped 
algorithm is applied to deal with non-linearity term by dividing the MINLP model to a mixed-integer 
linear programming (MIP) and a linear programming (LP) models due to solving first and second stages 
of the proposed model separately. Indeed, the L-shaped algorithm copes with non-linearity by dividing 
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the two-stage stochastic programming model in two decomposed models, a master problem with MIP 
feature and a sub-problem which is LP.  
   The master problem represents the first stage of the model which is influenced by an approximation of 
the second stage objective function. And, the sub-problem is the second stage of the proposed stochastic 

model which is used to improve the approximation term of the master problem in some steps. Since the 

nonlinearity term of the proposed model is a production of the first stage variable (𝑝) and a second stage 

one (𝑌𝑖𝑗
ξ
), the L-shaped algorithm is efficient to solve the proposed model by decomposing it to a MIP and 

a LP models.  

 

4-1- L-shaped algorithm 
   In this section, the L-shaped algorithm is considered to solve the proposed two-stage stochastic 
programming model. Slyke and Wets have studied L-shaped linear programming and have proposed an 
algorithm for it. They applied the algorithm to linear optimal control and two stage stochastic linear 
programming (Slyke and Wets 1969). This algorithm is a decomposition method that is useful for solving 
stochastic problems which is used in many previous papers (Bentaha, et al. 2013, Lei, et al. 2014, 
Biesinger, et al. 2016, Li and Grossmann 2018, Placido dos Santos and Oliveira 2019, Mirzapour Al-e-

hashem, et al. 2019). 
    The main idea of the L-shaped algorithm is to approximate the non-linear term in the objective. Since 
the nonlinear objective term involves a solution of the second-stage solution, decomposing the two-stage 
stochastic programming model can be useful to cope with non-linearity. Thus, the L-shaped method is 
applied to solve the proposed model in which the MIP in the preparedness stage is considered as the 
master problem and the LP in the response stage is decomposed into several sub-problems based on 
discrete demand scenarios. The optimal solution could be found through the iterations between the master 
problem and the sub-problem in each scenario. 

   The brief steps of the L-shaped algorithm are presented as follow for the proposed model. Consider r is 

the number of feasibility cut and 𝑣 is the number of optimality cut and 𝑡 is the sign of iterations. 

Step 0: Set r=0, t=1, v=0, S=0, and θ=+∞; 

Step 1: Solve master problem and determine first stage variables (𝑋𝑖(𝑡),𝑄𝑖(𝑡), 𝑝𝑖(𝑡), 𝑒𝑖𝑗(𝑡)); 

Step 2: If s=S go to step 5 otherwise set s=s+1 and solve FCP under scenario s by considering the 
first stage variables as parameters; 

Step 3: If the objective function of FCP equals to zero go to Step 2 otherwise go to step 4. 

Step 4: Set r=r+1, s=0 and calculate parameters for feasibility cut r and return to step 1. 

Step 5: Set s=0 and set first stage variables as parameters in primal sub-problem until s=S Step 6: 
If the second stage objective > θ, obtain the optimality cut v and return to step 1 otherwise the 
optimal solution is obtained.  

 

4-1-1- The master problem 

   According to the main model (constraints (4)-(13)), the first stage variables that impact the second stage 
part of the model take coefficient in the construction of optimality and feasibility cuts. Consider the 
following rewritten proposed model as a Master problem. The objective of the master problem includes 
the total benefit in the preparedness stage and the upper bound θ of the objective function of the response 
stage. 

        𝑀𝑎𝑥 𝜋 = ∑ (𝑉 − 𝐶)𝑄𝑖
𝑖

− λ𝑇 − ∑ ∑ µ𝑒𝑖𝑗𝑑𝑖𝑠𝑖𝑗
2

𝑗𝑖

+ 𝜃  (16) 

𝜃 ≤ ORH𝑣 + OCp𝑖
𝑣 + OCQ𝑖

𝑣 + OCe𝑖𝑗
𝑣  ∀𝑣 (17) 



121 
 

FCe𝑖𝑗
𝑟 + FCp𝑖

𝑟 + FCQ𝑖
𝑟+FRH𝑟 ≤ 0 ∀𝑟 (18) 

Constraints (6), (7), (10), (11) and (12)   

𝑄𝑖 ≥ 0, 𝑒𝑖𝑗 ≥ 0 , 𝑋𝑖 ∈ {0,1} ∀𝑖, 𝑗 (19) 

Constraints (17) and (18) represent the 𝑣th (=1,..., 𝑣∗) optimality cut and the 𝑟th (=1,..., 𝑟*(t*)) feasibility 
cut, respectively which are presented in section 4.1.3.  
 

4-1-2- The primal sub-problem 

   To obtain improvement in the approximation of the 𝜃 in some steps, primal sub-problem should be 
solved for each demand scenario separately by considering the solution (Xi, Qi, pi, eij) obtained from the 
master problem as a parameter. Variable θ in the master problem is seen as the upper bound of the primal 
sub-problem, and its initial value is +∞. In the first iteration (t=1), due to the fact that there are no 
feasibility cuts and optimality cuts, we only solve the part of the master problem (except constraints (17) 
and (18)), and substitute the solution into the primal sub-problem. From the second iteration onward, in 

each iteration, a new cut will be added to the master problem, and the value of r*or t* will increase 
correspondingly. Primal sub-problem can be rewritten as follows: 

𝑀𝑎𝑥 𝜋 = ∑ ∑ 𝑃ξ(𝑝�̂� − 𝑉 + λ − 𝐾𝑑𝑖𝑠𝑖𝑗)𝑌𝑖𝑗
ξ

𝑗𝑖
 

 
(20) 

𝑌𝑖𝑗
ξ

≤ (𝛼 − 𝛽𝑝�̂� + 𝛾𝑒𝑖�̂�)+ ξ ∀𝑖, 𝑗 (21) 

𝑄�̂� ≥ ∑ 𝑌𝑖𝑗
ξ

𝑗

  ∀𝑖 
(22) 

∑ 𝑌𝑖𝑗
ξ

𝑖

≤ 𝐷𝑗
𝑚𝑎𝑥 ∀𝑗 

(23) 

𝑌𝑖𝑗
ξ

≥ 0 ∀𝑖, 𝑗 (24) 

   The dual of the sub-problem is used to obtain feasibility cuts and optimality cuts. To be more specific, 

when the primal sub-problem is feasible, the 𝑣th optimality cut (Constraints (17)) is obtained. If the primal 
sub-problem is infeasible, the dual sub-problem is unbounded. Therefore, the set of extreme dual rays is 
introduced to obtain the feasibility cut.  
   The formulations optimality and feasibility sub-problems of the L-shaped algorithm are presented as 
follows: 

4-1-3- Feasibility and optimality cuts  

   In the formulation of the feasibility check problem, auxiliary variables would be needed in constraints 
that contain first stage variables. In fact, when the dual sub-problem is unbounded, we obtain extreme 
dual rays and add feasibility cut, represented as inequalities (18) into the master problem. The FCP is 
rewritten in the following model (equation (25) to constraint (29)). 

Where 𝑘𝑖𝑗
+ , 𝑘𝑖𝑗

− , 𝐿𝑗
+, 𝐿𝑗

−, 𝑉𝑖
+, 𝑉𝑖

−are auxiliary variables.  

𝑀𝑖𝑛 𝑍 = ∑ ∑ (𝑘𝑖𝑗
+ + 𝑘𝑖𝑗

− ) +𝑗𝑖 ∑ (𝐿𝑗
+ + 𝐿𝑗

−)𝑗  +∑ (𝑉𝑖
+ + 𝑉𝑖

−)𝑖   (25) 

𝑌𝑖𝑗
ξ

+ 𝑘𝑖𝑗
+ − 𝑘𝑖𝑗

− ≤ (𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒)+ ξ ∀𝑖, 𝑗, ξ (26) 
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∑ 𝑌𝑖𝑗
ξ

𝑖

+ 𝐿𝑗
+ − 𝐿𝑗

− ≤ 𝐷𝑗
𝑚𝑎𝑥 ∀𝑗, ξ 

(27) 

𝑄𝑖 ≥ ∑ 𝑌𝑖𝑗
ξ

𝑗

+ 𝑉𝑖
+ − 𝑉𝑖

−                ∀𝑖, ξ 
(28) 

𝑌𝑖𝑗
ξ
, 𝑉𝑖

+, 𝑉𝑖
−, 𝐿𝑖

+, 𝐿𝑖
−, 𝑘𝑖𝑗

+ , 𝑘𝑖𝑗
−   ≥ 0 ∀𝑖, 𝑗, ξ (29) 

If ∑ ∑ 𝜋𝑖𝑗
𝑠 (𝑗𝑖 𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒 + 𝜉) + ∑ 𝜎𝑗

𝑠(𝑗 𝐷𝑗
𝑚𝑎𝑥) + ∑ 𝜌𝑖

𝑠(𝑖 𝑄𝑖) > 0, Then feasibility cut (18) should be 

added to the Mater problem for each scenario s where:  

FRH𝑟 = ∑ 𝜎𝑗
𝑠(

𝑗

𝐷𝑗
𝑚𝑎𝑥) + ∑ ∑ 𝜋𝑖𝑗

𝑠 (

𝑗𝑖

𝛼 + 𝜉) 

FCQ𝑖
𝑟 = ∑ 𝜌𝑖

𝑠(

𝑖

𝑄𝑖) 

FCp𝑖
𝑟 = ∑ ∑ 𝜋𝑖𝑗

𝑠 (

𝑗𝑖

− 𝛽𝑝𝑖) 

FCe𝑖𝑗
𝑟 = ∑ ∑ 𝜋𝑖𝑗

𝑠 (

𝑗𝑖

𝛾𝑒𝑖𝑗) 

   During the process of adding optimality cuts, the lower bound θ will be decreased. The optimal solution 
of two stages will be generated when second stage objective is greater than θ. The optimality cut 
constraint in master problem (17) is: 

𝜃 ≤ ∑ ∑ ∑ 𝑃𝑠

𝑠𝑗𝑖

. 𝜔𝑖𝑗
𝑠 (ξ + α) + ∑ ∑ 𝑝𝑠 . 𝛿𝑖

𝑠

𝑠

. 𝐷𝑗
𝑚𝑎𝑥

𝑗

+ ∑ ∑ ∑ 𝑃𝑠

𝑠𝑗𝑖

. 𝛾. 𝜔𝑖𝑗
𝑠 . 𝑒𝑖𝑗

− ∑ ∑ ∑ 𝑃𝑠

𝑠𝑗𝑖

. 𝛽 . 𝜔𝑖𝑗
𝑠 . 𝑝 + ∑ ∑ 𝑃𝑠. 𝜏𝑖

𝑠. 𝑄𝑖

𝑠𝑖

 

And then: 

ORH𝑣 = ∑ ∑ ∑ 𝑃𝑠

𝑠𝑗𝑖

. 𝜔𝑖𝑗
𝑠 (ξ + α) + ∑ ∑ 𝑃𝑠. 𝛿𝑗

𝑠

𝑠𝑗

𝐷𝑗
𝑚𝑎𝑥 

OCp𝑖
𝑣 = ∑ ∑ ∑ −𝑃𝑠

𝑠𝑗𝑖

. 𝛽 . 𝜔𝑖𝑗
𝑠 . 𝑝𝑖 

OCe𝑖𝑗
𝑣 = ∑ ∑ ∑ 𝑃𝑠

𝑠𝑗𝑖

. 𝛾. 𝜔𝑖𝑗
𝑠 . 𝑒𝑖𝑗 

OCQ𝑖
𝑣 = ∑ ∑ 𝑃𝑠. 𝜏𝑖

𝑠. 𝑄𝑖

𝑠𝑖

 

The pseudo code of the proposed L-shaped for solving the proposed two stage stochastic programming 
model is represented in figure 3.   
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Fig 3. Pseudo code of the proposed L-shaped for solving the proposed model 

5-Computational experiments and managerial insights  
   In order to validate the proposed model and the proposed solution methodology, some numerical 
examples are randomly produced. The parameter’s values are presented in table 2. 

Table 2. Computational study parameters 

Parameter Value Parameter Value 

T 20000 𝑑𝑖𝑠𝑖𝑗 ~Uniform (10,100) 

C 40 K 5 

V 100 𝐶𝑎𝑝
𝑖
 ~Uniform (200,500) 

µ ~Uniform (0.2,1.8)   

 

   As mentioned in section 4, since the proposed model has a non-linear feature, commercial solvers of 

GAMS which are appropriate to solve the non-linear models should be used to solve the proposed model. 
Although, in large scale models, most of these solvers cannot guarantee the achievement of a global 
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solution. Thus, in order to evaluate the efficiency of the L-shaped method the proposed method is 
compared with a commercial solver (BARON) in terms of government and facility location objective 
functions under different reward-penalty amounts. The results are displayed in table 3. All of the 
instances are solved applying commercial solver GAMS 23.5 on a core (TM) i5 computer with 2.40 GHz 

CPU and 4.00 GB RAM. In addition, to represent the demand function uncertainty, finite scenarios of the 
random component of demand function are randomly generated from Uniform (10, 1000). 
 

Table 3. L-shaped algorithm and commercial solver results for the proposed MCLP model 

(I,J,N,S) Instance 
L-shaped algorithm 

Commercial solver 

(BORON) Commercial 

solver statues 
Profit CPU time Profit CPU time 

(10,10,3,10) 

1 119727.27 0:00:33 119727.27 0:00:06 - 

2 121950.2 0:00:26 120966.7 0:00:09 Local solution 

3 125883.33 0:02:16 125883.33 0:01:12 - 

4 131383.33 0:02:23 122983.33 0:01:40 Local solution 

5 106866.67 0:02:14 104666.67 0:01:07 Local solution 

(20,20,5,20) 

1 1325150.33 0:05:51 1325150.33 0:17:07 - 

2 1698233.33 0:05:25 1238033.33 0:16:52 Local solution 

3 1964136.67 0:05:46 1964136.67 0:16:54 - 

4 2072906.06 0:05:19 1618571.52 0:16:53 Local solution 

5 2153448.33 0:05:54 1721355.33 0:17:21 Local solution 

(50,50,10,50) 

1 2896108.33 0:27:24 2266347.33 1:22:09 Local solution 

2 2665194.67 0:25:41 2317763.67 1:17:16 Local solution 

3 3041153.33 0:33:37 2965811.33 1:26:32 Local solution 

4 3334962.21 0:33:26 3036717.33 1:25:22 Local solution 

5 3187856.33 0:28:13 2818783.4 1:21:43 Local solution 

(70,70,15,70) 

1 5116931.33 0:54:17 4981744.33 2:13:27 Local solution 

2 5734855.12 0:46:54 5697701.12 2:06:15 Local solution 

3 6471032.33 0:51:18 6179672.33 2:17:42 Local solution 

4 6724755.06 1:11:07 6308833.33 2:21:24 Local solution 

5 6806334.33 0:56:42 6564813.27 2:17:39 Local solution 

(100,100,30,100) 

1 9772685.33 1:32:06 9667925.33 3:06:18 Local solution 

2 10615256.33 1:34:51 10184471.12 3:26:30 Local solution 

3 14088531.27 1:27:46 12635993.67 3:17:42 Local solution 

4 14768077.33 1:40:13 12829776.33 3:36:07 Local solution 

5 16470489.67 1:40:31 14379043.67 3:28:37 Local solution 

Average 4860556.34 0:37:36 4451874.88 1:27:46 - 
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    According to the obtained results in table 3, it is observed that the proposed L-shaped method has 
acceptable performance comparing to the commercial solver in MINLP proposed model in terms of 
solution quality and the CPU time as shown in figure 4. This Figure shows that in more than 80% 
instances, commercial solver obtains local solution with less objective function.   

 

 

Fig 4. Comparing solution methodologies based on solution quality and CPU time 
 

   To evaluate the performance of the both proposed models, supportive model and legislative model, 
sensitivity on significant parameters are examined. Analytical sensitivity of these parameters will lead to 
the worth managerial results for both government and MCLP designer.  
   The reward-penalty mechanism is applied in the first model as a supportive tool of the government. This 
model is analyzed in terms of government desired target (T) and reward-penalty amount (λ). Firm’s profit, 
customer welfare and government satisfaction indexes are explored influenced by changes in (λ, T). 

Government satisfaction and customer welfare measures are calculated with equation (30) and (31) 
formulas respectively: 

𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = ∑ 𝑝ξ

ξ,i,j

∗
𝑌𝑖𝑗

ξ

𝑇
 (30) 

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑤𝑒𝑙𝑓𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 = ∑ 𝑝ξ

ξ,i,j

∗
𝑌𝑖𝑗

ξ

(𝛼 − 𝛽𝑝𝑖 + 𝛾𝑒𝑖𝑗 +  ξ)
 (31) 

   In some cases, governments should intervene to lead firm decisions in supportive or legislative role to 
force or motivate them to ensure a minimum social welfare level index as well as a minimum profit of the 

firms. Thus, in this paper, these two indexes are prepared to explore the government’s targets. First, the 
“customer welfare index” which calculates the expected production to the real demand accrued and 
second the “government satisfaction index” which calculates the expected production to the predefined 
government target. It is obvious that customers prefer that production be as near as to the real demand, but 
government based on customer welfare, firm limitations and firm profitability sets a predefined 
production target (T). 
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   The selected instances for analyzing are listed in Table 3. The desired target of the instance (3) i.e. 
20000 and reward amount of instance (2) i.e. 400 are considered as a base-case of the analysis. Actually, 
different instances with 10% increase and decrease in target and reward-penalty amount parameters have 
been generated. Table 4, shows the model sensitivity in terms of firm profit on government target and 

reward-penalty amount changes. It shows the model validity as well. Government satisfaction index 
represents the deviation of the service level with government target; positive deviation results gain profit 
and negative deviation loss for the firm. Thus, the firm’s profit will be decreased by increasing 
government desired target for each amount of λ, due to fine for not reaching to the government desired 
target. It means that by growing government target and also decreasing the government satisfaction index, 
the firm’s profit will be decreased. Besides, increasing in the reward-penalty amount leads to the higher 
profit when government satisfaction index is greater than 1 and otherwise leads to less profit. Considering 
instance (2) for each λ amount, since government satisfaction index is greater than 1, the firm will gain 

profit by containing reward. Thus, the firm’s profit will be increased by increasing reward amount (λ). 
Otherwise, if government satisfaction index is less than 1 such as instance (3), the firm’s profit will be 
decreased by growing the penalty amount (λ). As shown in Figure 5, firm profit with λ=440 gets the 
highest amount when government index is higher than 1 and also gets the least amount in government 
index (0.91, 0.83 and 0.76). In this analysis government satisfaction index, 0.91 is the breakpoint.  

Table 4. Sensitivity analysis of (λ, T) in supportive reward-penalty model 

λ Instances T 
Government 

satisfaction index 

Customer 

welfare index 
Firm’s profit 

λ=360 

1 16200 1.12 0.39 2741201.6 

2 18000 1.03 0.38 2194621 

3 20000 0.91 0.37 1474621 

4 22000 0.83 0.38 754621 

5 24200 0.76 0.37 -37379 

λ=400 

1 16200 1.12 0.4 2931021 

2 18000 1.02 0.38 2211021 

3 20000 0.91 0.37 1411021 

4 22000 0.83 0.38 611021 

5 24200 0.76 0.37 -268979 

λ=440 

1 16200 1.13 0.4 3019421 

2 18000 1.02 0.39 2227421 

3 20000 0.93 0.4 1258802 

4 22000 0.83 0.37 467421 

5 24200 0.76 0.36 -500579 

 
   It is worth to be mentioned that if MCLP model without government supportive role intervention 
considered, firm profit will be 1316200 and customer welfare index will be 0.36. 
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Fig 5. Supportive reward-penalty model sensitivity analyses in terms of (λ,T)  

 

   Generally it can be concluded by growing government target, the firm’s profit will be decreased. Note 
that, until the government satisfaction index is greater than 1, it means that the firm’s production is more 
that the desired level. Thus, λ is considered as reward in the proposed model. As shown in figure 5, until 
breakpoint for the lower λ, firm’s profit is lower. On the other hand, when the government satisfaction 
index becomes lower than 1, firm’s profit reduction rate is higher for bigger λ due to considering λ as 
penalty in the model because of losing demand. 
   In this study, the legislative model counterpart of the proposed supportive reward-penalty model is 

proposed in constraints (5)-(15). In this model, the government set a predefined satisfied demand level (L) 
for retailers as a constraint against a reward penalty model, which represents a compulsion for the MCLP 
designer. In this study predefined satisfied demand level is considered as equation (31): 

𝐿 =
𝑇

∑ 𝐷𝑗
𝑚𝑎𝑥

𝑗
 (31) 

   Since the objective of the MCLP is to locate a fixed number of facilities on a network of nodes and arcs 
to maximize the serviced demand nodes, N set as a parameter in the proposed model based on firm 
considerations. Thus in the legislative model, infeasibility of the model due to the high satisfied demand 
level is common (for N=3 and L≥0.35 model will be infeasible). Thus, in this sub-section sensitivity of 
the legislative model in terms of satisfied demand level and the number of facilities (L, N) is examined. 
The results are presented in Table 5. As shown in this Table 5, if the government is tended to reach higher 
satisfied demand level without any subsidies, he should facilitate firm to establish more facility center.    
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Table 5. Sensitivity analysis of (L,N) in legislative model 

N Instances T 𝑳 Firm’s profit 

N=4 

1 16200 0.37 2425848.9 

2 18000 0.41 1555650.4 

3 20000 0.45 Infeasible 

4 22000 0.6 Infeasible 

5 24200 0.7 Infeasible 

N=5 

1 16200 0.37 4402632 

2 18000 0.41 4016177 

3 20000 0.45 3848804.8 

4 22000 0.6 Infeasible 

5 24200 0.7 Infeasible 

N=6 

1 16200 0.37 4898803.6 

2 18000 0.41 4898803.6 

3 20000 0.45 4729730 

4 22000 0.6 2219365.6 

5 24200 0.7 Infeasible 

 
   According to the aforementioned sensitivity analysis, some managerial insights can be obtained which 
are mentioned as follows: 

-  If the government implements incentive mechanisms such as reward-penalty, subsidy or tax 
discount then the MCLP designer will be tended to increase customer welfare index and service 
level.  

- Government should carefully consider all the implications of enacting rules and regulations to 

ensure that they are appropriate for the circumstances and provide benefits enough to the 
consumers and companies, simultaneously. So the government can reach to this purpose by 
reducing the MCLP costs in the supportive model or facilitating using more facility centers for 
the MCLP in legislative model counterpart. 

 

6-The expected value of perfect information and the expected value model  
   In order to deal with the uncertainty of the demand function in the proposed model, expected value 
(EV) approach is applied as one of the first simple approaches in solving this type of problems. In fact, in 
this approach, each uncertain parameter is replaced by the expected value of the parameter in different 
scenarios. Since this approach applies only an average of each uncertain parameter, infeasibility 

occurrence will be so probable. Hence, to evaluate the performance of the EV solution (EEV), the result 
of the first stage variables of the EEV was fixed in the EV model and then the model feasibility was 
evaluated for each scenario separately (it is reported as feasibility probability in table 6). Value of 
stochastic solution index (VSS) is used to evaluate the difference between stochastic programming 
solution and EEV. Besides, to determine the amount of reasonable investment on demand function 
prediction, perfect information (PI) model value which called wait-and-see (Madansky 1960) value 
should be obtained. The Wait-and-see value is the expected of all these optimal values which can evaluate 

the expected performance of complete information. In wait-and-see approach prior information of the 
demand function is known, thus, decisions will be taken simultaneously. The expected value of perfect 
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information (EVPI) is used to evaluate the difference between stochastic programming solution and 
perfect information solution. Thus, this is an upper limit of the reasonable payment in return for complete 
information about the future. The results to test the performance of the stochastic programming solution 
comparing EEV and PI solution are reported in table 6.  

Table 6. Comparing the Expected value, stochastic programming and prefect information approach’s results 

EVPI 

= (PI-

SP) 

VSS 

= ( EEV- 

SP) 

Perfect 

information 

(PI) profit 

Stochastic 

programming 

(SP) profit 

EEV 

Instance Feasibility 

probability  
Profit 

1979 189.3 121706.3 119727.3 80% 119016.6 Instance 1 

4496.8 2443.8 126447 121950.2 100% 124394 Instance 2 

4272 566.7 130155.3 125883.3 60% 126450 Instance 3 

5039.3 2397.7 136422.6 131383.3 60% 133781 Instance 4 

2109.4 800.1 108976.7 106866.6 80% 107666.7 Instance 5 

 

   When we bring the EEV to each random component of demand function scenario, we find that the EEV 
couldn’t meet all of the demand scenarios. As it is reported in Table 6, in most of the instances, the 
constraints will be violated. It also means there is no feasible EEV, as it is shown in instances 1, 3, 4 and 
5. However, in our work, the stochastic programming solution can ensure the rescue effect by hard 
constraints. Besides, Stochastic programming approach leads the firm to take a more conservative 
decision to decrease the infeasibility risk. 

 

6-Conclusion 
   In this study, the effects of governmental policies in a supportive role and legislative role on a maximal 

covering location problem facing stochastic demand were examined. Government considered as a 
legislative and authorized entity which can lead companies to produce enough product and ensure 
responding the desired amount of the demand. For this purpose, a reward-penalty two-stage stochastic 
programming model was proposed to cope with an uncertain component of the demand function. Demand 
function was considered to be influenced by the retail price and facility sales effort levels as a pricing and 
advertising linear demand function to sets retail prices for each opened facilities and various level efforts 
based on zone’s attractiveness.  

    The proposed model is more suitable for essential products such as food and medicine with low price 
because of legal restrictions to increase; while companies are not interested in producing products and 
governments should intervene due to the social issues to force or motivate them to produce the desired 
level of the products. Indeed, we suppose that increasing the social welfare level is the aim of the 
government, and government does not take any financial advantages.  
To cope with non-linearity term of the proposed MINLP model, the L-shaped algorithm was applied. 
Numerical examples were randomly generated and used to evaluate the solution method efficiency. 
Computational results showed that the L-shaped method has acceptable performance comparing to the 

commercial solvers in terms of solution quality and the CPU time. Besides, the sensitivity of the both 
supportive and legislative proposed models to the critical parameters was examined to illustrate the 
governmental policies impacts the MCLP model. As results, some managerial insights due to the 
government policies effect on customer welfare and firm benefit were proposed. Government should 
carefully set all the enacting rules and regulations to ensure that they are appropriate for the circumstances 
and provide benefits enough to the consumers and firms, simultaneously.    
   Moreover, the EV model was given and corresponding EV solution was compared with the stochastic 

programming solution in terms of the firm’s profit and feasibility probability. Furthermore, the EVPI was 
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calculated to assess the value and necessity of obtaining perfect information of stochastic demand 
function.  
   Also considering more factors such as the price of substitutes or complements goods and services, 
income levels, time of delivery, bundling and tying, social conformity and nonconformity, environmental 

concerns, in the demand function and applying the proposed model for a real case study can be employed 
as a future sight. Using real case study can lead the authors to achieve more reliable predicted demand 
function based on previous data. Also using both stochastic and robust approaches in MCLP and 
government decisions in a leader-follower configuration can be considered as another direction for the 
future works.  
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