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Abstract 
Appointment scheduling systems are applied in a broad variety of healthcare 

environments to reduce costs and increase quality of services. This study is 

concerned with the problem of appointment scheduling in a distributed multi-

hospital network of echocardiography departments. In this paper, a centralized 

master schedule is presented to maximize profit margin through maximizing 

the number of performed echoes and minimizing overtime. Developing such a 

schedule requires handling shift scheduling and capacity allocation problems 

simultaneously. Based on real-world settings, a mixed integer linear 

programming model is proposed for the research problem. Since this model 

requires a large amount of time and memory to provide good solutions, and 

fails to find feasible solutions for most of the test problems, two 

metaheuristics are proposed with different approaches. The first one is 

combined variable neighborhood search with simulated annealing (VNS-SA) 

and the second one is hybrid particle swarm optimization (HPSO). Also two 

lower bounding techniques based on patients’ assignment (𝐿𝐵1) and 

specialists’ assignment (𝐿𝐵2) are presented. Then the efficiency of the 

proposed model and algorithms is evaluated using a set of practical-sized test 

problems. The results showed that VNS-SA is capable of providing high 

quality solutions in reasonable amount of time for all test problems and 

outperforms HPSO. Furthermore, the superiority of 𝐿𝐵1 over 𝐿𝐵2 and the 

lower bound provided by the mathematical model was shown from both the 

quality and computational time points of view. Finally, some managerial notes 

and suggestions for extension are presented. 

Keywords: Centralized appointment scheduling, distributed echocardiography 

network, shift scheduling, capacity allocation, variable neighborhood search, 

particle swarm optimization 

1-Introduction 

   Due to the growth in healthcare expenditures and demand, as wel as patients’ expectations of service 

quality, developing efficient healthcare systems has become very important to governments and 

healthcare authorities (Hulshof et al., 2012); this gets more critical in outpatient clinics because of the 

importance of preventive medical measures, shorter hospital length of stays, and providing outpatient 

services (Cayirli & Veral, 2003).  
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   Echocardiography, or simply echo, is the most used cardiac test after electrocardiography (Trang et al., 

2019). It uses ultrasound waves to produce moving pictures of the heart. Echo provides prognostic 

information on the structure and performance of the heart and also facilitates specialists’ consultation 

(Cabell et al., 2004). Furthermore, it is ordered by non-cardiology specialists in many cases. Thus, many 

parts of a patient’s journey depend on echo (Munt et al., 2006). There are several types of echo, which are 

done by trained sonographers in echo laboratories provided with ultrasound machines, probes, etc.  

   Echo department is usually a busy place in which patients experience long waiting times; this may lead 

to delay in the illness recognition, delay in the beginning of cure process, deterioration of the patient 

condition (Castro & Petrovic, 2012), mental distress (Saure et al., 2012), and patient’s dissatisfaction 

(Pena & Lawrence, 2017). Long waiting times are either caused by insufficient available resources or 

inefficient patient scheduling (Murray & Berwick, 2003; Saure et al., 2012).  

Patient scheduling, or generally appointment scheduling, is a key management tool that can increase 

resource utilization and decrease patient waiting time. The goal of appointment scheduling is to present an 

efficient system by optimizing a specific performance measure (Cayirli & Veral, 2003). The most 

appropriate objective function is a combination of hospitals’ revenue management measures and patients’ 

satisfaction measures (Tsai & Teng, 2014). This being the case, we defined our objective function as 

maximization of profit margin (i.e., revenue of performed echoes minus overtime costs). In order to 

simplify the calculations, we eliminated fixed costs and just focused on variable costs. In Section 3, we 

will discuss how this objctive function can improve patients’ satisfaction as well.  

In an echo department, a group of trained specialists with different specialty and quickness levels 

work. Also there are echo labs provided with different facilities, where various types of echo with 

different characteristics in terms of duration, required specialty level and facility are performed. Since an 

echo requires a lab and a specialist to be performed, we are going to deal with a dual-resource 

appointment scheduling problem. These characteristics and many other complicating factors of an echo 

department make the echocardiography appointment scheduling very challenging. A manual and 

empirical process to develop a schedule for this system is very time-consuming and probably limited to 

find a feasible solution without focusing on optimality. Therefore, it may lead to long waiting time, waste 

of capacity, and increase of overtime. Furthermore, it probably does not consider specialists’ preferences.  

We developed the idea of this paper based on our interviews and observations in Tehran Heart Center 

(THC). As our motivating case, THC is one of the most advanced and best-equipped diagnostic and 

therapeutic cardiology centers in Iran and the Middle East. It contains 460 inpatient beds. During the past 

16 years, around 2,394,122 outpatients and 296,857 inpatients have received services in THC. Also near 

544,933 echocardiography cases of different types have been performed in its echo department. Echo labs 

of this department are provided with modern imaging equipment and the specialists are from the best in 

their field ("about Tehran Heart Center," 2017). Based on conducted interviews with the authorities of 

THC, the echo department is the most crowded department of the hospital. Demands for different types of 

echo are from outpatients referred to this department from other clinics and hospitals all over the country 

plus inpatients of THC. Because of the huge demand for echo, inpatients have to experience prolonged 

length of stay. Also outpatients have to either experience long indirect waiting time (the average interval 

between requests for appointment by patients to the actual dates of appointment), or leave the department 

without setting appointments, since there is no available capacity in their requested time. All these cause 

patients’ dissatisfaction and disrupt patients’ flows, especially in hospitalization step. In addition, when 

patients cannot set appointments, they have to search for another reliable center. Finding a center in which 

the requested echo can be performed with acceptable quality and appropriate insurance is very difficult. It 

gets more difficult for patients coming from other cities. 

Regarding what mentioned above, this idea can be developed that several echo departments/clinics 

cooperate with each other in terms of a distributed network to generate synergy. The motivation of this 

study is to present an efficient centralized master schedule for the echocardiography departments/clinics, 

allowing hospitals/clinics interaction from a system-wide perspective. To keep the quality of this network, 

these centers should be at the same quality level and reliable to each other. 
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Centralized management tools are critical in healthcare (Heath, 2017). Based on a case study by 

Parallon (2013), centralized scheduling has brought both consistency and cost efficiency to a 45-hospital 

group. Some other benefits provided by centralized scheduling include greater revenue resulting from 

improved capacity utilization, ability to generate data and measure performance, improved physicians’ 

and patients’ satisfaction, expanded access to care, easier addressing billing concerns (Reliasmedia, 2014) 

and streamlining patients flow by letting them choose the most convenient location and time for their 

treatment (Scisolutions, 2017).  

Our developed centralized appointment scheduling system i) determines the assignment of specialists 

to different labs in each echo department or clinic in each shift, ii) allocates the available capacity to 

different groups of inpatients and outpatients, iii) predicts the required overtime, and finally, iv) 

maximizes profit margin. According to these outputs, we named our proposed schedule Centeralized 

Master Echocardiography Schedule (CMES). Decisions addressed in this paper are concerned with 

specialists’ assignment to shifts and labs, and patients’ assignments to shifts, labs, and specialists. So, it is 

required to handle the problems of shift scheduling and capacity allocation, taking the possibility of 

overtime into account. 

The main contributions of this paper are as follows: 

 Designing and proposing an efficient master schedule for centralized management of a distributed 

network of echo departments/clinics 

 Joint shift scheduling and capacity allocation in the dual-resource echo environment with non-

identical resources of the same type, considering the preferences and possibility of overtime 

 Presenting a Mixed Integer Linear Programming (MILP) model along with two metaheuristics and 

lower bounding techniques, and finding the most efficient ones for CMES. 

 

2-Literature review 
   Due to the increasing demand and expenditures in healthcare, designing and organizing processes in 

order to provide high-quality care and optimize available resource utilization has turned into a very 

important and challenging task for healthcare authorities (Hulshof et al., 2012). Appointment scheduling 

as a key management tool has attracted much attention, especially during the recent decades. Among the 

earliest researches on appointment scheduling, the works of Bailey (1952) and Welch and Bailey (1952) 

can be mentioned. The complicated inherent of appointment scheduling problems in healthcare lies in the 

fact that many conflicting goals and a variety of constraints regarding efficiency, cost, quality of care, 

capacity of resources, preferences, overtime, waiting time, etc. should be taken into account.  

  Decisions made in healthcare contexts with respect to considered goals, constraints and requirements are 

usually classified into three levels of strategic, tactical and operational; however, there are no clear 

boundaries for these levels (Aringhieri et al., 2015). Strategic decisions (long-term decisions) deal with 

designing the general structure of the appointment scheduling system. Tactical decisions (medium-term 

decisions) address the scheduling and general capacity allocation problems for different groups of 

patients. Finally, operational decisions (short-term decisions) handle the scheduling and sequencing 

problems of all patients (Ahmadi-Javid et al., 2017). Decisions addressed in this paper, concerned with 

specialists’ assignment to shifts and labs and patients’ assignments to shifts, labs and specialists, can be 

categorized primarily as tactical. 

   As mentioned, to develop a CMES, it is required to consider shift scheduling and capacity allocation 

problems simultaneously. Hence, the first part of this section has been allocated to review the most related 

papers on shift scheduling and capacity allocation. 

    As for shift planning and scheduling, usually a lot of regulations and requirements should be 

considered like providing standard level of patient care, hospitals’ policies, labor laws, educational 

opportunities, and preferences. Hamid et al. (2018) considered nurse scheduling problem. They presented 

a mathematical model with the objectives of reducing costs, maximizing nurses’ satisfaction, and 

balancing the workload of nurses. They developed a two-step procedure to solve the problem. Rabani and 

Niyazi (2017) proposed an approach based on graph coloring and bipartite graph concept to solve the shift 
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scheduling problem of nurses. Volland et al. (2017) combined flexible shift scheduling with a task 

scheduling problem. They developed a mixed integer model to optimize the number of logistic assistants 

and a column generation-based approach to find optimal solutions. Hong et al. (2018) presented an 

integer programming-based approach embedded within a recursive algorithm to provide a set of Pareto-

dominant solutions for shift scheduling in an emergency department. Smalley and Keskinocak (2016) 

presented two integer programming models to construct rotation schedules for resident physicians at 

academic teaching hospitals. Brech et al. (2019) discussed the problem of constructing monthly training 

schedules for medical residents with the goal of minimizing the tardiness of training. They developed a 

mixed integer programming model and a metaheuristic combining benders decomposition and ant colony 

optimization to find the number and type of surgical procedures a resident performs each month. 

   The next decision is capacity allocation to patient groups, which is a tactical decision. Tactical decisions 

mainly deal with increasing productivity and accessibility of high-quality care services (Ahmadi-Javid et 

al., 2017). Nguyen et al. (2015) discussed allocating the capacity of the healthcare providers to the patient 

demand in a re-entry system regarding predetermined appointment lead-times for patients. They presented 

a mixed-integer programming model for planning capacity with the objective of minimizing the 

maximum required capacity. They solved this model with a network flow approach based on Branch and 

Cut algorithm. Zhou et al. (2017) discussed allocating the capacity of imaging facilities to different types 

of patients considering equity. They proposed a nonlinear mixed integer programming model with the 

objective of maximizing revenue. They defined the problem as a M/D/n queuing system and developed an 

approximated model. Zhou et al. (2018) focused on allocating the limited capacity of wards to different 

types of patients with the goal of maximizing both revenue and equity. They used a data-driven discrete-

event simulation model to propose a multi-objective integer linear programming model. They also 

developed an adaptive improved ε-constraint algorithm and a multi-objective genetic algorithm to solve 

the problem. Bakker and Tsui (2017) presented a data-driven algorithmic approach to allocate specialists 

to activities and patient groups. They evaluated the performance of their approach using discrete-event 

simulation. It is worth mentioning that, in the present study, we determined the number of echos of each 

type that should be performed in each shift and by each specialist while making decisions on capacity 

allocation. Determining the number of patients that can be scheduled in each consultation session is 

another tactical decision that has been discussed in some studies. For example, LaGanga and Lawrence 

(2012) developed a flexible appointment scheduling model to mitigate the negative effects of no‐shows. 

They presented an effective approach to create near‐optimal overbooked appointment schedules to 

balance the advantages of serving additional patients with the potential costs of waiting time and 

overtime.  

   Moreover, we reviewed the most relevant literature considering appointment scheduling in operating 

room (OR) or specialty clinics. Vogl et al. (2019) considered the problem of scheduling radiotherapy 

treatment appointments with the aim of minimizing the operation time of the particle beam, while 

simultaneously minimizing penalties of time window violations. They developed three metaheuristic 

approaches based on genetic algorithm to solve the problem. Zhang et al. (2019) discussed outpatient 

appointment scheduling when a team of clinicians, technicians, and staff provide treatment in a single 

patient visit. The objective was minimizing a combination of closing time and total patient waiting time. 

They developed a two-stage stochastic optimization model to solve the problem. Vali Siar et al. (2017) 

addressed a multi-period and multi-resource OR scheduling and rescheduling problem with elective and 

semi-elective patients. The objective was minimization of tardiness, idle-time and overtime. They 

proposed a scheduling-rescheduling framework based on rolling horizon approach. The core of their 

proposed framework was a mixed-integer linear programming model that incorporated pre-operative 

holding unit beds and recovery beds. Klassen and Yoogalingam (2019) considered the addition of mid-

level service providers such as physician assistants or nurse practitioners as less costly capacity. They 

discussed how scheduling policies for single-stage environment could be adjusted for a multi-stage 

environment, and proposed some scheduling rules using simulation optimization. Nazif (2018) discussed 

OR surgery scheduling problem. They considered uncertainty in surgery durations by means of fuzzy 

numbers and proposed an ant colony metaheuristic algorithm for sequencing patients and allocating 
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resources. Tohidi et al. (2019) presented an integrated physician and clinic scheduling problem in 

ambulatory cancer treatment polyclinics. They developed a multi-objective optimization model and a 

hybrid algorithm based on iterated local search and variable neighborhood descent methods to solve the 

problem. Hamid et al. (2019) addressed the scheduling problem of inpatient surgeries. To improve the 

compatibility level within the surgical teams in ORs, the decision-making styles of the surgical team 

members were considered. They developed two metaheuristics based on genetic and particle swarms 

optimization to find Pareto solutions. Also, as examples of scheduling in a network of hospitals, the 

works of Santibáñez et al. (2007) and Roshanaei et al. (2017) can be mentioned. Santibáñez et al. (2007) 

presented a system-wide model to create trade-offs between OR availability, bed capacity, surgeons’ 

booking privileges, and wait lists. They developed a mixed integer programming model to schedule 

surgical blocks of ORs considering post-surgical capacities. Roshanaei et al. (2017) developed logic-

based Benders’ decomposition approaches and a cut propagation mechanism to schedule patients and 

ORs across a network of hospitals. The goal was scheduling the patients with the highest priority scores 

in the current planning horizon and determining the number of surgical suites and ORs required to create 

the schedule at minimum cost.  

   From another standpoint, we reviewed the papers that focused on process improvement regarding 

echocardiography. Katsi et al. (2014) proposed descriptive productivity measures of echocardiography 

studies. According to their analysis, the number of studies per physician per day is a good measure to 

assess productivity. Bakshi (2013) applied a descriptive study and case study method with intensive 

observation of patient flow, delays, and short comings in patient movement and workflow in a cardiology 

department. Deploying process reengineering methods, he examined the processes of the existing system 

and recommended necessary suggestions. Geronimo (2017) focused on improving access to stress echo in 

an emergency department via observations, time studies and Plan-Do-Study-Act process. Deploying root 

cause analysis and team discussions, she proposed to add a stress echo lab, purchase new stress test 

facility, and change the schedule of some nurses. Gandhi (2013) discussed the appointment scheduling 

problem in an echo department in order to increase the number of scans per day. To deal with this 

problem, she developed a simulation model and six different policy change scenarios. All scenarios 

showed significant improvements, specially the scenario which eliminated sonographer schedules. 

In conclusion, many remarkable studies have been performed in the field of healthcare appointment 

scheduling or echocardiography productivity improvement. However, to the best of our knowledge, there 

is no research on the centralized appointment scheduling in a network of echocardiography departments 

in a multi-hospital system, considering shift scheduling and capacity allocation problems simultaneously. 

 

3-Problem description and formulation 
   In this section, our developed MILP for CMES is presented. As already mentioned, we considered a 

two-part weighted objective function to maximize profit margin. The first part is the maximization of 

revenue through maximization of the weighted number of performed echos. This part increases the 

hospital revenue and decreases underutilization of resources. Furthermore, it provides the highest possible 

level of access to care for patients, and consequently, decreases patients’ indirect waiting times and thus 

increases patients’ satisfaction. The second part of our objective function is the minimization of overtime. 

This part decreases hospitals’ variable costs and personnel dissatisfaction.  

   In this study, we propose a centralized shift scheduling and capacity allocation system for a distributed 

network of several echo departments and clinics (at the same quality level and reliable to each other) in 

cooperation. Various types of echos, each requiring specific facilities and specialty level, are performed in 

these departments/clinics. Each department/clinic is composed of several echo labs. Different facilities are 

located in each lab; thus, the echo labs are not exactly the same. Moreover, there are several specialists 

with different specialty and quickness levels in this network. These specialists work at one or more of 

these centers. They are only capable of performing echos compatible with their specialty level. They work 

at echo labs in predefined shifts. In this network, demands for different types of echo are either from the 
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inpatients of this network, or from outpatients. Obviously, echos of inpatients should be performed in the 

echo department of the hospitals they are in; however, there is no such limitation for outpatients. 

   In this study, we attempt to assign specialists to different shifts and echo labs, considering their 

characteristics, preferences,  availability, the hospital they work in, and the allowable usual and overtime 

hours. Also we allocate the available capacity of the network (specialists and echo labs) to different 

groups of inpatients and outpatients. As mentioned, this study focuses on tactical level decisions and does 

not directly addresses operational level decisions; however, the structure of the output let us determine the 

date of appointments, considering patients’ or their doctors’ preferences, as well. In our CMES, it is clear 

that what parts of capacity are available for each inpatient/outpatient. Hence, for the demand of each 

inpatient, his/her doctor decides the most appropriate date and specialist amongst the available options to 

have his/her echo done. Additionally, each outpatient can choose the most appropriate option amongst the 

available ones based on his/her preferences. Patient’s preference might be having his/her echo done by a 

specific specialist, in a specific date, in a specific hospital/clinic, or just as soon as possible.  

Some other assumptions of our problem are: a) each type of echo can be performed only in a lab with 

the required facilities, and only by a specialist with the required specialty level, b) at any time and in each 

echo lab, at most one specialist can perform echo, and at most one patient can be visited, c) each specialist 

in any shift can be assigned to at most one lab, d) due to difference in the specialists’ quickness level, the 

echo duration not only depends on the echo type, but also on the quickness of the specialist that performs 

it, e) often two shifts are defined in each day; therefore, the planning horizon of the developed schedule is 

made up of date-shift combinations. In the rest of the paper, for the sake of simplicity, combinations of 

date-shift are just referred to as shifts. Furthermore, we allow the possibility of overtime on different 

shifts of the planning horizon. 

   Many hospitals repeat their weekly cyclic schedule over a month or even a period of several months. 

Also many hospitals maintain it with minor modifications until a substantial change occurs (Penn et al., 

2017). For our proposed CMES, the planning horizon of one week seems to be apporopriate. Since the 

weekly demand in each month does not differ significantly from one week to another, an efficient master 

schedule can be obtained by our proposed method for one week; this schedule can be repeated for a 

month or until demand rates or any other essential parameters of the system change. 

   Since the decisions made at the tactical level are less affected by the uncertainty in patients’ arrival and 

service times (Ahmadi-Javid et al., 2017), we presented a deterministic mixed integer linear programming 

model for the research problem. Sets, parameters and variables of the model are as follows: 

Sets and indices  

𝑇 Set of all shifts in the planning horizon, indexed by 𝑡  𝑇 = {1,2, … , 𝑡, … , |𝑇|} 
J Set of all specialists, indexed by 𝑗 J= {1,2, … , 𝑗, … , |𝐽|} 

𝐼 Set of all patient types (echo types), indexed by 𝑖 𝐼 = {1,2, … , 𝑖, … , |𝐼|} 

𝐻 Set of all hospitals (or clinics), indexed by ℎ 𝐻 = {1,2, … , ℎ, … , |𝐻|} 

𝐵 Set of all situations for inpatients and outpatients, indexed by 𝑏 𝐵 = {1,2, … , 𝑏, … , |𝐻| + 1} 

 
𝑏 = ℎ for inpatients in hospital ℎ 

𝑏 = |𝐻| + 1 for outpatients 
 

𝐿 Set of all echo labs, indexed by 𝑙 𝐿 = {1,2, … , 𝑙, … , |𝐿|} 
 

Parameters  

S𝑖𝑗 {
1, if echo type 𝑖 can be performed by specialist 𝑗, according to the specialist′s specialty level         
0, otherwise                                                                                                                                                                 

 

𝐸𝑖𝑙 {
1, if the facility needed by echo type 𝑖 is available in echo lab 𝑙                                    
0, otherwise                                                                                                                                   

 

𝑁𝑙𝑏 
{
1, if performing echo of a patient in situation 𝑏 in echo lab 𝑙 is possible                              
0, otherwise                                                                                                                                             

 

𝑃𝑖𝑗 Expected duration of echo of type 𝑖 performed by specialist 𝑗  

𝑊𝐻𝑙𝑡 Regular available time of echo lab 𝑙 in shift t 
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𝑀𝑂𝑗 Total maximum allowable overtime for specialist j in the planning horizon 

𝑇𝑂𝑙𝑡 Maximum allowable overtime of echo lab 𝑙 in shift t 

𝐷𝑖𝑏 Total demand of patients of type i in situation 𝑏 in the planning horizon 

𝑘𝑖𝑏 The minimum percentage of echos of type i and situation 𝑏 that should necessarily be 

performed within this planning horizon 

CO Overtime cost per hour 

𝑊𝑖𝑏 Obtained revenue by performing each echo of type i in situation 𝑏 

𝑍𝐿𝑗 Minimum allowable hours to work for specialist j in the planning horizon 

𝑍𝑈𝑗 Maximum allowable hours to work for specialist j in the planning horizon 

𝑂𝑗ℎ {
1, if specialist 𝑗 works at hospital  ℎ                                                                                                             
0, otherwise                                                                                                                                                         

 

𝐹𝑗𝑡ℎ {
0.1 ≤  𝐹𝑗𝑡ℎ < 1,   the preferance of specialist 𝑗 to work at hospital  ℎ in shift 𝑡                                            

0, if specialist 𝑗 is strictly reluctant to work at hospital ℎ in shift 𝑡                                                                
                                        

𝑀 A large number 
 

Decision variables 

𝑌𝑗𝑡𝑙 {
1, if specialist 𝑗 is assigned to lab 𝑙 in shift 𝑡           
0, otherwise                                                                      

 

𝑋𝑖𝑏𝑙𝑡 Number of echoes of type i in situation 𝑏, assigned to shift t to be performed in lab l 

𝑂𝐻𝑡𝑗 Length of overtime of specialist j in shift t 

Note that 𝑁𝑙𝑏 = 1 if either 𝑏 = |𝐻| + 1 (i.e., for outpatients) or 𝑙 is a lab of hospital ℎ = 𝑏 for 

inpatients in hospital ℎ = 𝑏. The 𝑀𝐼𝐿𝑃  is developed as follows: 

 

(1)  max  𝑍 = ∑ (𝑊𝑖𝑏𝑋𝑖𝑏𝑙𝑡)

𝑖∈𝐼,𝑏∈𝐵,𝑡∈𝑇,𝑙∈𝐿

− 𝐶𝑂 ∑ 𝑂𝐻𝑡𝑗

𝑡∈𝑇,𝑗∈𝐽

 

(2) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑖∈𝐼,𝑏∈𝐵

𝑃𝑖𝑗 ≤ 𝑊𝐻𝑙𝑡 + 𝑂𝐻𝑡𝑗 + 𝑀(1 − 𝑌𝑗𝑙𝑡) 

(3) ∀𝑗 ∈ 𝐽 ∑ 𝑂𝐻𝑡𝑗

𝑡∈𝑇

≤ 𝑀𝑂𝑗 

(4) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽  𝑂𝐻𝑡𝑗 ≤ ∑ 𝑇𝑂𝑙𝑡Y𝑗𝑙𝑡

𝑙∈𝐿

 

(5) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≥ 𝑘𝑖𝑏𝐷𝑖𝑏 

(6) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≤ 𝐷𝑖𝑏 

(7) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 𝑋𝑖𝑏𝑙𝑡 ≤ 𝐷𝑖𝑏 ∑ 𝑆𝑖𝑗Y𝑗𝑙𝑡

𝑗∈𝐽

 

(8) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇

≤ 𝐷𝑖𝑏𝐸𝑖𝑙𝑁𝑙𝑏 

(9) ∀𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑗∈𝐽

≤ 1 

(10) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 ∑ Y𝑗𝑙𝑡

𝑙∈𝐿

≤ 1 
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(11) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≤ ZU𝑗 

(12) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≥ ZL𝑗 

(13) ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑡∈𝑇

≤ 𝑇 ∑ 𝑂𝑗ℎ

ℎ∈𝐻

𝑁𝑙ℎ 

(14) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 Y𝑗𝑙𝑡 ≤  𝑀 ∑ 𝐹𝑗𝑡ℎ

ℎ∈𝐻

𝑁𝑙ℎ 

(15) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 𝑌𝑗𝑙𝑡 = 0 𝑜𝑟 1 

 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿, 𝑏 ∈ 𝐵 𝑋𝑖𝑏𝑙𝑡 ≥ 0, 𝑖𝑛𝑡 

 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 𝑂𝐻𝑡𝑗 ≥ 0 

 

   The objective function, as presented in equation (1), is defined to maximize the profit margin. The first 

part calculates the obtained revenue, and the second part determines the overtime cost. Constraint set (2) 

ensures that the total time of all echoes assigned to each shift-lab is less than or equal to the sum of 

regular shift’s length and the overtime of the specialist assigned to that lab in that shift. Constraint sets (3) 

and (4) determine the overtime of specialist j in shift t. Constraint set (3) ensures that the total overtime of 

specialist j does not exceed the maximum allowable overtime for that specialist. Constraint set (4) 

guarantees that if specialist j does not work at shift t, then the decision variable related to the overtime of 

specialist j in shift t should be equal to zero. In addition, it accounts for the limitation on the maximum 

allowable overtime in shift t and lab 𝑙. Constraint set (5) is incorporated into the model to make sure that 

the total number of scheduled patients of each echo type and situation covers at least a predefined 

percentage of that echo type and situation in the planning horizon. Constraint set (6) accounts for the 

limitation on the total demand of each echo type. Constraint set (7) supports the fact that the assignment 

of patients of echo type i to specialist j is possible, if and only if specialist j has the required specialty 

level related to echo type i. Constraint set (8) guarantees that the assignment of patients of echo type i to 

lab l is possible, if and only if lab l is equipped with the required facilities. Besides, it assures the fact that 

echoes of inpatients in hospital b can only be performed in the labs (with required facilities) of hospital b, 

while echoes of outpatients can be assigned to any lab (with required facilities). Constraint set (9) ensures 

that at most one specialist should be assigned to each shift-lab combination. Constraint set (10) supports 

the fact that each specialist in any shift can be assigned to at most one lab. Constraint sets (11) and (12) 

guarantee that the sum of regular hours that specialist j works is in the range of minimum and maximum 

allowable hours for that specialist in the planning horizon. Constraint set (13) assures that a specialist can 

only be assigned to the labs of hospitals that he/she works at. Constraint set (14) is incorporated into the 

model to make the assignment of a specialist to a specific lab and shift impossible if he/she is strictly 

unwilling to work at that hospital in that shift. Finally, Constraint set (15) defines the binary, integer and 

continuous variables. 

 

4-Solution methods 
   Assignment of labs and shifts to specialists is similar to the Knapsack Problem since there are several 

specialists (multiple knapsacks) with limitation on the total number of hours to work (capacity of each 

knapsack). Also there are several lab-shift combinations with different lengths (items with different sizes) 

that should be assigned to each specialist (be put into each knapsack). As a specialist cannot work at two 

labs in one shift, lab-shift combinations with the same shift cannot be assigned to the same specialist. This 

is similar to the Knapsack Problem with incompatible items in which incompatible items cannot be put in 

the same knapsack. The Knapsack Problem with incompatible items is called Knapsack Problem with 

Conflict Graph (KPCG), which is an extension of basic Np-Hard Knapsack problem (Bettinelli et al., 

2017). So, the problem discussed in this study is Np-Hard. 
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   This being the case, we focused on developing efficient algorithms to heuristically solve the problem. 

Such algorithms are supposed to accomplish three tasks: 1) specialists’ assignment to lab-shift 

combinations, 2) patients’ assignment to lab-shift-specialist combinations, and 3) determination of 

required overtime for each specialist in each shift. In the following subsections, our proposed VNS-SA 

and HPSO, which are developed with different approaches, are described in detail. 

 

4-1-Combined Variable Neighborhood Search and Simulated Annealing algorithm (VNS-SA) 

   Variable Neighborhood Search (VNS) algorithm is a metaheuristic proposed by Mladenović and 

Hansen (1997). VNS selects a set of neighborhood structures and an initial solution. Through a shaking 

procedure, it systematically changes the neighborhood structure in order to escape from getting trapped in 

the local optima, and by a local search procedure, it searches the neighborhood. Simulated annealing (SA) 

is also a probabilistic method proposed by Kirkpatrick et al. (1983). SA starts the search procedure from 

an initial solution and creates a neighbor solution by implementing the neighborhood search structure on 

the current solution. It accepts improving solutions and a fraction of non-improving solutions with the 

hope of escaping the local optima. We decided to combine VNS and SA such that VNS is responsible for 

selecting the neighborhood structure and SA conducts the local search. Furthermore, when the main phase 

of VNS-SA stops, an improvement phase is implemented. 

   In the proposed VNS-SA, at each stage of the algorithm, a solution determining the assignment of 

specialists to labs and shifts is produced. Thereafter, the fitness function calculates the best obtainable 

profit margin for the recently produced specialists’ assignment to lab-shift combinations. Actually, this 

fitness function solves a mathematical model to find the optimal (or near optimal) assignment of patients 

to lab-shift-specialist combinations and required overtime. In other words, each solution has three parts. 

The first part, which is created, updated and determined in the body of VNS-SA, is specialists’ 

assignment to lab-shift combinations. The second part is patients’ assignment to lab-shift-specialist 

combinations, and the third part is required overtime for each specialist in each shift. Both the second and 

third parts of the solution are calculated and determined by the fitness function of VNS-SA. In the rest of 

this section, and for the sake of simplicity, specialists’ assignment to lab-shift combinations (i.e., the first 

part of solution) is called “solution”. Also all the first, second and third parts together, will be referred to 

as a “comprehensive solution”. A flowchart for the proposed algorithm is provided in Appendix A. 

 

4-1-1- Solution representation 

   To represent each solution, a table of T rows and J columns is applied. The cell in row 𝑡 and column 𝑗 

displays the lab to which specialist 𝑗 is assigned, in shift 𝑡. Figure 1 demonstrates an example with four 

shifts, three labs and six specialists. A cell value equal to zero implies that the corresponding specialist of 

that column is not assigned to any lab in the corresponding shift of that row. 

 

Specialists 
 

𝒋 = 𝟔 𝒋 = 𝟓 𝒋 = 𝟒 𝒋 = 𝟑 𝒋 = 𝟐 𝒋 = 𝟏 

0 0 3 2 0 1 𝒕 = 𝟏 

S
h

if
ts

 

0 0 2 0 1 3 𝒕 = 𝟐 

3 2 0 1 0 0 𝒕 = 𝟑 

1 3 0 0 2 0 𝒕 = 𝟒 

Fig 1. An example for solution representation in VNS-SA 

 

4-1-2- Initial solution construction 

   The initial solution must be a feasible assignment of specialists to labs and shifts such that the following 

conditions are met: 
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1. At most one specialist should be assigned to each shift-lab combination. 

2. Each specialist, in any shift, can be assigned to at most one lab. 

3. Each specialist can only be assigned to the labs of hospitals that he/she works at. 

4. The assignment of a specialist to a lab and shift is impossible if he/she is strictly unwilling to 

work at that hospital in that shift. 

5. The sum of regular hours that each specialist works should be in the predefined range of 

minimum and maximum allowable hours for that specialist. 

   Therefore, a random solution is likely infeasible. In our VNS-SA, a mathematical model (16-24) is 

applied to construct a feasible initial solution. 𝜀𝑙𝑡 is defined as a binary variable such that 𝜀𝑙𝑡 = 1 if lab 𝑙 
is empty at shift 𝑡, otherwise 𝜀𝑙𝑡 = 0. In this model, Constraint set (19) guarantees the first condition 

mentioned above. Constraint sets (20), (21) and (22) guarantee the second, third and fourth conditions, 

respectively. Finally, Constraint sets (23-24) guarantee the fifth condition. 

   Taking the above constraints into consideration does not suffice to assure a good profit margin, or even 

a feasible comprehensive solution. An inappropriate specialists’ assignment to shifts and labs (though 

feasible as the first part of solution) may result in infeasibility in determining the second and third parts of 

the comprehensive solution. Inappropriate specialists’ assignment, leading to waste of capacity, can 

obviously decrease profit margin. Also it might fail to handle the constraint that at least a predefined 

percentage of echos of each type and situation should necessarily be covered within this planning horizon 

(constraint set (5)). Hence, we defined three objective functions to increase the quality of the initial 

solution and to decrease the probability of facing infeasibility for the remaining parts of the 

comprehensive solution. Using these objective functions leads to better schedule for specialists’ 

assignment and thus better capacity utilization.  

The first objective function, as presented in equation (16), minimizes the total number of empty labs. 

The second objective function (equation (17)) maximizes compatibility between the specialty level of a 

specialist and the lab he/she is assigned to. Parameter 𝑉𝐴𝐿𝑗𝑙 is defined as the compatibility between the 

specialty level of specialist 𝑗 and the facilities provided in lab 𝑙. We defined 𝑉𝐴𝐿𝑗𝑙 in the range of [1,4] 

such that higher values of 𝑉𝐴𝐿𝑗𝑙 mean higher compatibility. Eventually, the latter objective function 

(equation (18)), maximizes average obtainable revenue. Parameter 𝐺𝑊𝑗𝑙𝑡 is defined as the estimated 

average obtainable revenue by assigning specialist 𝑗 to lab 𝑙 in shift 𝑡. The value of this parameter can be 

easily and approximately calculated considering the regular time of lab 𝑙 in shift t, types of echo that can 

be performed according to the specialty level of specialist 𝑗 and equipment level of lab 𝑙, and quickness 

level of specialist 𝑗.  

(16) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹1 = ∑ 𝜀𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

 

(17) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹2 = ∑ 𝑉𝐴𝐿𝑗𝑙Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿,𝑗∈𝐽

 

(18) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹3 = ∑ 𝐺𝑊𝑗𝑙𝑡Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿,𝑗∈𝐽

 

(19) ∀𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑗∈𝐽

+ 𝜀𝑙𝑡 = 1 

(20) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 ∑ Y𝑗𝑙𝑡

𝑙∈𝐿

≤ 1 

(21) ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑡∈𝑇

≤ 𝑇 ∑ 𝑂𝑗ℎ

ℎ∈𝐻

𝑁𝑙ℎ 

(22) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 Y𝑗𝑙𝑡 ≤  𝑀 ∑ 𝐹𝑗𝑡ℎ

ℎ∈𝐻

𝑁𝑙ℎ 
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(23) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑙∈𝐿,𝑡∈𝑇

≤ 𝑍𝑈𝑗 

(24) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑙∈𝐿,𝑡∈𝑇

≥ ZL𝑗 

(25) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 𝑌𝑗𝑙𝑡 = 0 𝑜𝑟 1  

 ∀𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 𝜀𝑙𝑡 = 0 𝑜𝑟 1 
 

   To incorporate the three defined objective functions, we used the weighted objective function approach 

and thus substituted Eq. (16-18) with Eq. (26). 

(

26) 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = 𝑤𝑒𝑖𝑔ℎ𝑡1 ∑ 𝜀𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

− 𝑤𝑒𝑖𝑔ℎ𝑡2 ∑ 𝑉𝐴𝐿𝑗𝑙Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿,𝑗∈𝐽

− 𝑤𝑒𝑖𝑔ℎ𝑡3 ∑ 𝐺𝑊𝑗𝑙𝑡Y𝑗𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿,𝑗∈𝐽

 

 

   The experience of solving a large number of test problems verified the necessity of these three objective 

functions and the significant effect of their weights on the feasibility and quality of solutions. 

 

4-1-3- Fitness function: an algorithm that determines patients’ assignment and overtime, and 

calculates the objective function 

   At each stage of VNS-SA, whenever a new solution (i.e., specialists’ assignment) is generated, a fitness 

function is called to calculate the objective function. In order to calculate the best obtainable objective 

function for the current solution, first the most appropriate patients’ assignment considering overtime 

possibility needs to be determined. The following mathematical model (27-35) is proposed to do so. 

Parameter A𝑗𝑙𝑡 demonstrates the current specialists’ assignment. A𝑗𝑙𝑡 = 1 if specialist 𝑗 is assigned to lab 𝑙 

in shift 𝑡 based on recently generated solution, otherwise A𝑗𝑙𝑡 = 0. Since the objective function and 

constraints of this model are similar to equation (1) and Constraint sets (2-8), we avoid explaining them 

again.  

 

(27)  max  ∑ 𝑊𝑖𝑏𝑋𝑖𝑏𝑙𝑡

𝑖∈𝐼,𝑏∈𝐵,𝑡∈𝑇,𝑗∈𝐽

− 𝐶𝑂 ∑ 𝑂𝐻𝑡𝑗

𝑡∈𝑇,𝑗∈𝐽

 

(28)      ∀𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 ∑ (𝑋𝑖𝑏𝑙𝑡

𝑖∈𝐼,𝑏∈𝐵

∑ A𝑗𝑙𝑡

∀𝑗 ∈𝐽

𝑃𝑖𝑗) ≤ 𝑊𝐻𝑙𝑡 + ∑ A𝑗𝑙𝑡

∀𝑗 ∈𝐽

𝑂𝐻𝑡𝑗 

(29) ∀𝑗 ∈ 𝐽 ∑ 𝑂𝐻𝑡𝑗

𝑡∈𝑇

≤ 𝑀𝑂𝑗 

(30) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽  𝑂𝐻𝑡𝑗 ≤ ∑ 𝑇𝑂𝑙𝑡A𝑗𝑙𝑡

𝑙∈𝐿

 

(31) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≥ 𝑘𝑖𝑏𝐷𝑖𝑏 

(32) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇,𝑙∈𝐿

≤ 𝐷𝑖𝑏 

(33) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 𝑋𝑖𝑏𝑙𝑡 ≤ 𝐷𝑖𝑏 ∑ 𝑆𝑖𝑗A𝑗𝑙𝑡

𝑗∈𝐽

 

(34) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇

≤ 𝐷𝑖𝑏𝐸𝑖𝑙𝑁𝑙𝑏 

(35) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 𝑋𝑖𝑏𝑙𝑡 ≥ 0, 𝑖𝑛𝑡 

 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 𝑂𝐻𝑡𝑗 ≥ 0 
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4-1-4- Neighborhood search structures 

   The ability of neighborhood structures in searching the feasible solutions area has a key impact on the 

probability of discovering good solutions. In the proposed VNS-SA, not only should we consider 

different kinds of constraints while moving from a feasible solution to another, but also we have to take 

care of the solution in order not to face infeasibility in determining patients’ assignment and calculating 

objective function. This complexity being the case, we applied 10 neighborhood structures to provide 

more chance for the algorithm to search the feasible solutions area well. Note that the solution area is the 

discrete area of specialists’ assignment to lab-shift combinations. 

   The proposed neighborhood structures are described as follows. All of them are applied on the 

specialists’ assignment table (explained in Section 4-1-1). These structures are illustrated in Appendix B. 

1. Select two specialists 𝑗1 and 𝑗2 randomly. In a randomly chosen shift 𝑡, exchange their 

corresponding cell values (i.e., their assigned labs in shift 𝑡) in the specialists’ assignment table. 

2. Select two specialists 𝑗1 and 𝑗2 randomly such that they are at the same specialty level. In a 

randomly chosen shift 𝑡, exchange their corresponding cell values in the specialists’ assignment 

table. 

3. Select three specialists 𝑗1, 𝑗2 and 𝑗3 randomly. In a randomly chosen shift 𝑡, exchange their 

corresponding cell values in the specialists’ assignment table. 

4. Select two specialists 𝑗1 and 𝑗2 randomly. In each of the two randomly chosen shifts 𝑡1 and 𝑡2, 

exchange the specialists’ corresponding cell values in the specialists’ assignment table. 

5. Select two specialists 𝑗1 and 𝑗2 randomly such that they are at the same specialty level. In each of 

the two randomly chosen shifts 𝑡1 and 𝑡2, exchange the specialists’ corresponding cell values in 

the specialists’ assignment table. 

6. Select two specialists 𝑗1 and 𝑗2 randomly. In each of the three randomly chosen shifts 𝑡1, 𝑡2 and 

𝑡3, exchange the specialists’ corresponding cell values in the specialists’ assignment table. 

7. In a randomly chosen sift 𝑡, select a part of the table randomly and flip it.  

8. In a randomly chosen sift 𝑡, select a part of the table randomly and just flip the cells 

corresponding to the highest specialized specialists.  

9. Select two specialists 𝑗1 and 𝑗2 randomly, and exchange their corresponding cell values in all 

shifts. 

10. Select two specialists 𝑗1 and 𝑗2 randomly such that they are at the same specialty level. Exchange 

their corresponding cell values in all shifts. 

Since applying repair mechanisms for the infeasible solutions of this problem is very difficult, the 

neighborhood structures were defined in a way that the probability of generating an infeasible solution 

decreases. However, it still might happen. Therefore, we imposed two conditions to be checked whenever 

a neighborhood structure is implemented. The solutions that did not satisfy these conditions were 

eliminated. 

  Condition 1: The number of empty labs should not increase. In other words, when a new value 𝑙′ 
is inserted at the intersection of row 𝑡 and column 𝑗, specialist 𝑗 should be able to perform echo 

in lab 𝑙′ in shift 𝑡 (according to parameters 𝐹𝑗𝑡ℎ and 𝑂𝑗ℎ). 

  Condition 2: The sum of regular hours each specialist works should be in the range of minimum 

and maximum allowable hours defined for him/her in advance. 

4-1-5- Improvement phase 

In the proposed algorithm, when the main phase of VNS-SA stops (the stopping criterion is discussed 

in 4-1-6), an improvement phase is implemented. Table 1 displays several rules that potentially improve 

the objective function. In each iteration of the improvement phase, one shift 𝑡 and two specialists 𝑗1 and 

𝑗2 are randomly chosen. Depending on the existing feature, the related potentially improving rule(s) are 

applied (if the generated solution meets the conditions mentioned in section 4.1.4). In case of more than 

one rule, the solution with better objective function is kept. The newly created solution is accepted only if 

it has a better objective function value. 
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Table 1. Potentially improving rules for the improvement phase 

  Feature (for the chosen shift) Potentially improving rule(s) 

1 𝑗1 and 𝑗2 are at the same specialty level 

assigned to different labs 

The lab with longer available time should be 

assigned to the specialist with higher average speed 

2 𝑗1 and 𝑗2 are at different specialty levels 

assigned to different labs 

The lab with higher equipment level is assigned to 

the higher specialized specialist 

3 𝑗1 and 𝑗2 are at the same specialty level; 

one is assigned to a lab and the other one 

is not assigned to any lab 

The lab should be assigned to the specialist with 

higher average speed 

4 𝑗1 and 𝑗2 are at different specialty levels; 

one is assigned to a lab and the other is 

not assigned to any lab 

The lab should be assigned to the specialist with 

higher average speed / The lab should be assigned 

to the higher specialized specialist 

 

4-1-6- Stopping criterion 

   In this algorithm, time limitation is chosen as the stopping criterion. A specified percentage of this 

amount of time (1 − 𝛽) is allocated to the main phase of VNS-SA, and the rest (𝛽) is allocated to the 

improvement phase. 𝛽 is tuned in section 5.2. 

 

4-2-Hybrid Particle Swarm Optimization algorithm (HPSO) 

   In the VNS-SA algorithm, which was described in the previous section, many neighborhood structures 

were defined to explore the feasible solution area of specialists’ assignment more efficiently. 

Unfortunately, they are probable to cause infeasibility both in specialists’ assignment and patients’ 

assignment, when implemented. For this reason, we developed HPSO with the heuristic idea of creating 

priority tables instead of specialists’ assignment tables. In our HPSO, we search within the continuous 

area of priority tables with the hope of eliminating the need for complicating neighborhood structures and 

getting rid of infeasible specialists’ assignment. More details are provided in Section 4.2.1.  

PSO is a population-based algorithm, which was proposed by Kennedy and Eberhart (1995). In this 

algorithm, each particle is represented by a vector in a multi-dimensional solution space. During the 

search process, these particles move around the solution space based on their own best experience (pbest) 

and the other particles’ best experience (gbest). The velocity (𝑉𝑖(𝑘)) and position (𝑋𝑖(𝑘)) of particle 𝑖 in 

𝑘𝑡ℎ iteration are calculated by the following equations, respectively.  

 

(36) 𝑉𝑖(𝑘 + 1) = 𝑤𝑉𝑖(𝑘) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑘)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑘)) 

(37) 𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) 
    

   Where, 𝑤, called inertial weight, states how the velocity of each iteration affects the velocity of the next 

iteration, and 𝑐1 and 𝑐2 are the cognition and social learning factors, respectively. In most researches, the 

values assigned to 𝑐1 and 𝑐2 are numbers close to 2. 𝑟1 and 𝑟2 are uniformly distributed random numbers 

in [0,1]. 𝑝𝑏𝑒𝑠𝑡𝑖 is the vector for the best known position of particle 𝑖, and 𝑔𝑏𝑒𝑠𝑡 is the best position 

vector of all particles in the whole population.  

   In our HPSO, similar to VNS-SA, solutions determine the specialists’ assignment to labs and shifts. In 

each iteration of HPSO, several new solutions are produced. Then a fitness function calculates the 

objective function of each particle. In fact, this function determines patients’ assignment and required 

overtime and calculates the best obtainable profit margin for the recently produced specialists’ 

assignment. Furthermore, a local search mechanism is incorporated into HPSO to improve the 

performance of the algorithm. The flowchart of HPSO is provided in Appendix C. 
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4-2-1- Encoding of particles 

   In the proposed HPSO, the particles that are created and then updated at each stage of the algorithm are 

priority tables. A priority table determines the priority of each specialist in each shift for choosing a lab or 

not performing echo in that shift.  

   Since PSO is applied for solving continuous problems, our particles are continuous priority matrices. 

Then the Smallest Position Value (SPV) technique is applied to transform a table in continuous space to 

the one in discrete space. SPV finds each specialist-shift’s priority by finding non-decreasing order of the 

continuous priority table elements. An example is displayed in figure 2. For instance, according to table b 

of Figure 2, specialist 3 has the first priority to choose his/her lab for shift 3. In the rest of this section, a 

solution refers to a continuous priority table (similar to table a of figure 2). 

 

𝒋 = 𝟓 𝒋 = 𝟒 
𝒋
= 𝟑 

𝒋
= 𝟐 

𝒋
= 𝟏 

 
 𝒋 = 𝟓 𝒋 = 𝟒 𝒋 = 𝟑 𝒋 = 𝟐 𝒋 = 𝟏  

11 12 8 10 14 𝒕 = 𝟏 

S
h

if
ts

 SPV 7.41 8.35 5.91 7.12 9.25 𝒕 = 𝟏 

S
h

if
ts

 

13 7 4 6 3 𝒕 = 𝟐  8.70 5.30 2.35 3.75 2.02 𝒕 = 𝟐 

5 2 1 15 9 𝒕 = 𝟑  3.51 2.01 0.31 9.33 6.44 𝒕 = 𝟑 

b  a 

Fig 2. Particle encoding in HPSO 

4-2-2- Initial swarm construction 

   In order to construct the initial swarm, several random continuous priority tables are generated. 

 

4-2-3- Creating a specialists’ assignment table out of a priority table 

   Here, a heuristic algorithm composed of the following phases is proposed to create a specialists’ 

assignment table out of a priority table. This algorithm also strives to assign specialists such that the 

probability of facing infeasibility in patients’ assignment decreases.  

Phase 0 (Preliminaries): In each shift, categorize labs in separate sets based on their equipment levels. 

Then, sort the labs of each set in decreasing order of their regular available time in that shift. Next, create 

a list of specialist-shift combinations that should be managed based on the priority table. 

Phase 1 (Ensuring the minimum allowable working hours for specialists): Consider the list of 

specialist-shift combinations from the beginning. For each specialist-shift combination, if the minimum 

allowable working hours of that specialist is satisfied, pass this specialist-shift and go to the next one; 

otherwise, assign a lab to that specialist in that shift (according to the assignment phase). Continue to the 

end of the list or until the minimum allowable hours for all specialists are satisfied. 

Phase 2 (Completing the solution): Consider the list of specialist-shift combinations from the 

beginning. For each specialist-shift combination, assign a lab to that specialist in that shift (according to 

the assignment phase). Continue to the end of the list or until all labs in all shifts are assigned. 

Assignment phase (For specialist 𝑗′ in shift 𝑡′): In shift 𝑡′, sort the sets of labs based on decreasing 

compatibility with specialist 𝑗′ (compatibility i.e., 𝑉𝐴𝐿𝑗𝑙 is explained in Section 4.2.1). Assign the first lab 

of this list to specialist 𝑗′ in shift 𝑡′ such that specialist 𝑗′ can work at the corresponding hospital, specialist 

𝑗′ is not reluctant to work at that hospital in that shift, and finally, maximum allowable working hours of 

specialist 𝑗′ is not exceeded. Remove that lab from the list of available labs in shift 𝑡′ and remove this 

specialist-shift from the list of specialist-shift combinations that should be managed. If no lab is assigned, 

just remove this specialist-shift from the list of specialist-shift combinations that should be managed. 

 

4-2-4-Fitness function: an algorithm that determines patients’ assignment and overtime, and 

calculates objective function 

   For calculating the objective function of each particle, first the priority table should be turned into a 

specialists’ assignment table by implementing the mechanism explained in section 4.2.3. Then the 
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function explained in section 4.1.3 is called to determine patients’ assignment and required overtime, and 

finally, calculate the objective function. 

4-2-5-Updating particles 

   According to Poli et al. (2007), a multiplier 𝑥 imposed to equation (36) can accelerate the convergence 

of PSO. If the condition represented by equation (38) is met, 𝑥 is calculated by equation (39). 

Consequently, equation (40) is applied to calculate the new velocity. Next, the positions of particles are 

updated by equation (37). 

𝐶 = 𝑐1 + 𝑐2 > 4 (38) 

𝑥 =  
2

𝐶 − 2 + √𝐶2 − 4𝐶
 (39) 

𝑉𝑖(𝑘 + 1) = 𝑥 (𝑤𝑉𝑖(𝑘) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖(𝑘) − 𝑋𝑖(𝑘)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑘) − 𝑋𝑖(𝑘))) (40) 

 

4-2-6-Local search mechanism 

   The preliminary experiments indicate that a basic PSO may be trapped in the local optima during the 

search into the solution space (Poli et al., 2007). Incorporation of a local search scheme into PSO reduces 

the probability of converging the solutions into the local optima. In each iteration of the proposed HPSO, 

a local search is performed on all particles by the following random and intelligent neighborhood 

structures. If a better solution is found in the neighborhood of a particle, the particle is substituted by this 

new solution. 

Random neighborhood structures: 

1- Choose two columns of priority table randomly, and then change their values by crossover 

operation. 

2- Choose two rows of priority table randomly, and then change their values by crossover operation. 

Intelligent neighborhood structures: 

3- Choose two specialists such that they are at the same specialty level. Exchange their priorities in 

any shift in which the specialist with higher average speed has lower priority. 

4- Choose two specialists such that they are at different specialty levels. Exchange their priorities in 

any shift in which the specialist with higher specialty level has lower priority. 

 

4-2-7-Stopping criterion 

  Similar to the previous algorithm, time limitation is chosen as the stopping criterion in HPSO.  

 

5-Lower bounding techniques 
   In this section, two lower bounding techniques are proposed for the mentioned problem.  

 

5-1- 𝐋𝐁𝟏  technique; lower bounding technique regarding patients’ assignment constraints  

   Considering the demand of echo types and total available time of specialists and labs, this technique 

estimates the highest total obtainable profit margin. In this technique, for different sets of echo types, two 

constraints should be considered: first, the total time of all performed echoes of this set is less than or 

equal to the sum of available times of all echo labs provided with the required facilities. Second, the total 

time of all performed echoes of this set is less than or equal to the sum of available times of all specialists 

with required specialty level. These sets of constraints should be considered for both echoes performed in 

regular time and echoes performed in overtime. To make it clear, the proposed model is developed for a 

simple example. Assume that 𝑈𝑖𝑏 and 𝑉𝑖𝑏 are the number of echoes of type 𝑖 in situation 𝑏 performed in 

regular time and overtime, respectively. To solve the model easier, we assumed these parameters to be 
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continues. 𝑚𝑖𝑛𝑃𝑖𝑏 is the shortest time that an echo of type 𝑖 in situation 𝑏 can be performed. Other 

parameters of the example are provided in table 2. 

 
Table 2. Parameters of the example for 𝐿𝐵1 

 Labs  Specialists 

Echo 

types 
Types 

Equipment 

for echo 

types 

Total 

regular 

available 

time for 

each b 

Total 

available 

overtime 

for each b 

 Types 

Specialty 

for echo 

type 

Total 

regular 

available 

time for 

each b 

Total 

available 

overtime 

for each b 

𝐼 = 
{1,2,3} 

1 {1,2} 𝐿𝑊1𝑏 𝐿𝑂1𝑏  1 {1} 𝑆𝑊1𝑏 𝑆𝑂1𝑏 

2 {1,3} 𝐿𝑊2𝑏 𝐿𝑂2𝑏  2 {1,2,3} 𝑆𝑊2𝑏 𝑆𝑂2𝑏 

 

   The model is developed as follows. Equation (41) maximizes the profit margin regarding overtime cost. 

Constraint set (42) accounts for the limitation on total demand of each type in each situation. Constraint 

sets (43-45) guarantee that the total times of all performed echoes of the specified sets in regular time are 

less than or equal to the sum of regular available times of all echo labs provided with the required 

facilities. Constraint sets (46-48) assure the same rule about the echoes performed in overtime. Constraint 

sets (49-50) guarantee that the total times of all performed echoes of the specified sets in regular time are 

less than or equal to the sum of regular available times of all specialists with required specialty level. 

Constraint sets (51-52) assure the same rule about the echoes performed in overtime.  

(41) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝐵1 = ∑ ∑(𝑊𝑖𝑏𝑈𝑖𝑏 + (𝑊𝑖𝑏 − 𝐶𝑂. 𝑚𝑖𝑛𝑃𝑖𝑏)𝑉𝑖𝑏)

𝐼

𝑖=1

𝐵

𝑏=1

 

(42) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 𝑈𝑖𝑏 + 𝑉𝑖𝑏 ≤ 𝐷𝑖𝑏 

(43) ∀𝑏 ∈ 𝐵 ∑ 𝑈𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑊1𝑏 + 𝐿𝑊2𝑏

 

𝑖∈{1,2,3}

 

(44) ∀𝑏 ∈ 𝐵 ∑ 𝑈𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑊1𝑏

 

𝑖∈{2}

 

(45) ∀𝑏 ∈ 𝐵 ∑ 𝑈𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑊2𝑏

 

𝑖∈{3}

 

(46) ∀𝑏 ∈ 𝐵 ∑ 𝑉𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑂1𝑏 + 𝐿𝑂2𝑏

 

𝑖∈{1,2,3}

 

(47) ∀𝑏 ∈ 𝐵 ∑ 𝑉𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑂1𝑏

 

𝑖∈{2}

 

(48) ∀𝑏 ∈ 𝐵 ∑ 𝑉𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝐿𝑂2𝑏

 

𝑖∈{3}

 

(49) ∀𝑏 ∈ 𝐵 ∑ 𝑈𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝑆𝑊1𝑏 + 𝑆𝑊2𝑏

 

𝑖∈{1,2,3}

 

(50) ∀𝑏 ∈ 𝐵 ∑ 𝑈𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝑆𝑊2𝑏

 

𝑖∈{2,3}

 

(51) ∀𝑏 ∈ 𝐵 ∑ 𝑉𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝑆𝑂1𝑏 + 𝑆𝑂2𝑏

 

𝑖∈{1,2,3}
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(52) ∀𝑏 ∈ 𝐵 ∑ 𝑉𝑖𝑏𝑚𝑖𝑛𝑃𝑖𝑏 ≤ 𝑆𝑂2𝑏

 

𝑖∈{2,3}

 

(53) 
∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 

∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵 

𝑈𝑖𝑏 ≥ 0 

𝑉𝑖𝑏 ≥ 0 

 

5-2-   𝐋𝐁𝟐 technique; lower bounding technique regarding specialists’ assignment 

constraints 
   In this technique, first, the highest obtainable revenue of assigning specialist 𝑗 to shift 𝑡 and lab 𝑙, 
named Wmax𝑗𝑙𝑡, should be calculated according to the available time of lab 𝑙 in shift 𝑡, as well as the 

specialty and quickness level of specialist 𝑗. Then the following model is solved to yield a lower bound 

for our main problem. Equation (54) maximizes the approximate revenue. Constraint sets (55-60) are 

similar to (9-14), so they are not explained again here. 

 

(54)  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝐵2 = ∑ Wmax𝑗𝑙𝑡Y𝑗𝑙𝑡

𝑗∈𝐽,𝑙∈𝐿,𝑡∈𝑇

 

(55) ∀𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑗∈𝐽

≤ 1 

(56) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 ∑ Y𝑗𝑙𝑡

𝑙∈𝐿

≤ 1 

(57) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑙∈𝐿,𝑡∈𝑇

≤ 𝑍𝑈𝑗 

(58) ∀𝑗 ∈ 𝐽 ∑ 𝑊𝐻𝑙𝑡Y𝑗𝑙𝑡

𝑙∈𝐿,𝑡∈𝑇

≥ 𝑍𝐿𝑗 

(59) ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 ∑ Y𝑗𝑙𝑡

𝑡∈𝑇

≤ 𝑇 ∑ 𝑂𝑗ℎ

ℎ∈𝐻

𝑁𝑙ℎ 

(60) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 Y𝑗𝑙𝑡 ≤  𝑀 ∑ 𝐹𝑗𝑡ℎ

ℎ∈𝐻

𝑁𝑙ℎ 

(61) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿 𝑌𝑗𝑙𝑡 = 0 𝑜𝑟 1 

 

6-Computational experiments 
   In this section, the performance of the developed MILP model, metaheuristic algorithms and lower 

bounding techniques is evaluated and compared. MILP model was coded in CPLEX 12.8 and ran on a 

computer with Intel Xenon(R) CPU E5-2690 2.6GHz (2 Processors) and 20 GB of RAM. Metaheuristic 

algorithms and lower bounding techniques were coded in Matlab R2017 and ran on a computer with 

Intel(R) Core i5-4300U CPU @ 1.90 GHz and 8 GB of RAM. 

 

6-1-Data generation 
   In this section, we explain data generation mechanism to evaluate the developed master schedules. To 

this end, we generated networks composed of |𝐻| echo departments, at the same quality level and reliable 

to each other in cooperation, while |𝐻| ∈ {1,2,3,4,5}. This size of network is appropriate and applicable 

for setting up an echocardiography network between similar hospitals such as Specialty Cardiac Hospitals 

in Tehran. To generate realistic network instances, we adjusted the parameters based on the characteristics 

of THC. Each echo department of the generated networks is equipped with |𝐿𝑏| echo labs with different 

facilities while |𝐿𝑏| is randomly generated from set {7,8,9,10,11}. There are four types of echo labs: 𝜔1 
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(regular echo labs for performing echo types 1, 2 and 3), 𝜔2 (labs provided with specific facilities of echo 

type 4), 𝜔3 (labs provided with specific facilities of echo types 5) and 𝜔4 (labs provided with all 

facilities). Each lab is categorized in one of these types with the probability of about 71%, 15%, 7%, and 

7%, respectively. A group of | 𝐽| echocardiologists, fellows, residents and heart specialists with different 

specialty and quickness levels work at these networks such that | 𝐽| = |𝐿| + 3 × |𝐻|. These specialists 

work at either one, two or even three centers. Specialists are categorized into three levels based on their 

specialty levels: 𝜈1 (specialists capable of performing echo type 1), 𝜈2 (specialists capable of performing 

echo types 1 and 2) and 𝜈3 (specialists capable of performing all echo types). Each specialist is in one of 

these types with the probability of about 35%, 35%, and 30%, respectively. The preferences of specialists 

for working in different shifts and hospitals are generated as a matrix with the density of 0.8, and nonzero 

values are generated as 𝑢𝑛𝑖𝑓[0.1,1]. 𝑢𝑛𝑖𝑓[ ] stands for uniform distribution. Maximum and minimum 

allowable hours to work for each specialist are generated as 𝑢𝑛𝑖𝑓[26,30] and 𝑢𝑛𝑖𝑓[16,20] in hour, 

respectively. Total maximum allowable overtime for each specialist is generated as 𝑢𝑛𝑖𝑓[0,3] in hour. 

We consider one week as the planning horizon. Each week consists of five days with two shifts 

(morning and evening) and one day with one shift (morning). The regular available times of echo labs in 

the morning and evening shifts are generated as 𝑢𝑛𝑖𝑓[3.5,5] and 𝑢𝑛𝑖𝑓[2,3.5] in hour, respectively. The 

maximum allowable overtime of echo labs in each shift is generated as 𝑢𝑛𝑖𝑓[0,1] in hour. Overtime cost 

per hour is assumed to be equal to 40.  

   Five major types of echos are performed in these networks. Demands of inpatients and outpatients for 

each echo type are generated in the interval reported in the first two columns of table 3. |𝐿| is the total 

number of labs. Also α is considered to be equal to 1, 1.05 and 1,1 to generate three different levels of 

demands. Generated values should be rounded to be integer. The percentage of demand that should 

necessarily be covered within this planning horizon, the revenue, and the expected duration of each echo 

type performed by different specialists are also generated in the intervals reported in table 3. It is worth 

noting that the values generated for duration of echo include the real time of echo and the required time 

for all measures just before and after echo such as preparation and writing of the report. For the sake of 

simplicity, we have normalized the values of revenue and cost. Regarding five levels for the number of 

hospitals, three levels for demand, and four test problems for each combination of them, totally, 3 × 5 ×
4 =60 network instances were generated. 

 

Table 3. Parameters of network instances 

Echo 

type 

Demand 
 Minimum percentage of 

covered demand 

Revenue 

Duration 

for 

different 

specialists 

(minute) 
Inpatients  Outpatients 

 
Inpatients  Outpatients 

1 α|𝐿𝑏|𝑢𝑛𝑖𝑓[11,16] α|𝐿|𝑢𝑛𝑖𝑓[49,54]  𝑢𝑛𝑖𝑓[0.9,0.95] 𝑢𝑛𝑖𝑓[0.4,0.45] 6 𝑢𝑛𝑖𝑓[10,20] 
2 α|𝐿𝑏|𝑢𝑛𝑖𝑓[24,29] α|𝐿|𝑢𝑛𝑖𝑓[36,41]  𝑢𝑛𝑖𝑓[0.9,095] 𝑢𝑛𝑖𝑓[0.3,0.35] 10 𝑢𝑛𝑖𝑓[25,40] 
3 α|𝐿𝑏| 𝑢𝑛𝑖𝑓[0.15,0.3] α|𝐿|𝑢𝑛𝑖𝑓[0.45,0.6]  𝑢𝑛𝑖𝑓[0.85,0.9] 𝑢𝑛𝑖𝑓[0.3,0.35] 12 𝑢𝑛𝑖𝑓[35,50] 
4 α|𝐿𝑏|𝑢𝑛𝑖𝑓[0.15,0.3] α|𝐿|𝑢𝑛𝑖𝑓[0.45,0.6]  𝑢𝑛𝑖𝑓[0.85,0.9] 𝑢𝑛𝑖𝑓[0.3,0.35] 18 𝑢𝑛𝑖𝑓[40,60] 
5 α|𝐿𝑏|𝑢𝑛𝑖𝑓[1,1.6] α|𝐿|𝑢𝑛𝑖𝑓[1.6,2.2]  𝑢𝑛𝑖𝑓[0.85,0.9] 𝑢𝑛𝑖𝑓[0.3,0.35] 22 𝑢𝑛𝑖𝑓[50,65] 

 

6-2-Parameter tuning  
   The fractional factorial experiment proposed by Taguchi (1986) was implemented to tune parameters. 

With the help of the signal-to-noise ratio (𝑆/𝑁) as a measure of variation, Taguchi method determines the 

best level of each parameter by conducting the minimum number of experiments. Sequence of 

neighborhood structures (SEQ), initial temperature of SA (𝑇0), cooling rate of SA (CR) and the 

percentage of time allocated to improvement phase (𝛽) are parameters of VNS-SA that should be tuned. 

Likewise, number of particles (𝑁𝑝), inertial weight (𝑤), and the cognition learning factor (𝑐1) are 
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parameters of HPSO that should be tuned. When the value of 𝑐1 is determined, the value of 𝑐2 is 

calculated as 𝑐2 = 4.1 − 𝑐1. We used Minitab 18 to tune the parameters. Taguchi suggested L9 as the 

fittest orthogonal array design for both algorithms in two situations |𝐻| ∈ {1,2,3} and |𝐻| ∈ {4,5}. Levels 

defined for each of these parameters and the best values for them are shown in table 4. Also 𝑆/𝑁 ratio 

plots are provided in Appendix D.  

 
Table 4. Levels and the best values of parameters set by parameter tuning 

|𝐻| ∈ {4,5}  |𝐻| ∈ {1,2,3}  

Best value Levels Parameter  Best value Levels Parameter  

A A,B,C SEQ  A A,B,C SEQ 

VNS-SA 
100 100,150,200 𝑇0  100 100,150,200 𝑇0 

0.9 0.8,0.9,0.95 CR  0.9 0.8,0.9,0.95 CR 

0.1 0.05,0.1,0.2 𝛽  0.05 0.05,0.1,0.2 𝛽 

        

5 5,10,15 𝑁𝑝  10 10,20,30 𝑁𝑝 

HPSO 1 0.5,1,1.5 𝑤  1 0.5,1,1.5 𝑤 

2 1.5,2,2.5 𝑐1  2 1.5,2,2.5 𝑐1 

 

Levels considered for the sequence of neighborhood structures in VNS-SA are defined as follows: 

A: Neighborhood structures with minor changes precede those with major changes: 𝐴 =
{1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10}. 
B: Neighborhood structures with major changes precede those with minor changes: 𝐵 =
{10 − 9 − 8 − 7 − 6 − 5 − 4 − 3 − 2 − 1}. 

C: Neighborhood structures are in decreasing order of their effectiveness (based on their 

performance in solving several problems): 𝐶 = {1 − 2 − 4 − 5 − 3 − 8 − 10 − 6 − 9 − 7}. 
   The values of other parameters of the algorithms, which are set according to the experience of solving 

many problems, are reported in table 5. Recall that 𝑤𝑒𝑖𝑔ℎ𝑡1, 𝑤𝑒𝑖𝑔ℎ𝑡2 and 𝑤𝑒𝑖𝑔ℎ𝑡3 are coefficients 

applied to find the initial solution of VNS-SA (section 4.1.2). The last three columns of this table are 

related to the models proposed for the initial solution of VNS-SA (section 4.1.2) and the fitness function 

of both algorithms (section 4.1.3). These models are not capable of reaching the optimality gap equal to 

zero in a short time, but they can find good and near optimal solutions so fast. Consequently, maximum 

computational times are required to be considered for them. 

 

Table 5. Values of other parameters of algorithms, set by experience 

 VNS-SA  HPSO 

Parameter 

(𝑤𝑒𝑖𝑔ℎ𝑡1, 

𝑤𝑒𝑖𝑔ℎ𝑡2, 

𝑤𝑒𝑖𝑔ℎ𝑡3) 

Final 

temperature 

of SA 

Number of 

iteration in each 

temperature 

Time for 

initial 

solution 

Time for 

fitness 

function 

 Time for 

fitness 

function 

Values (1000,700,20) 1 1 5 sec 1 sec  

1 s

e

c 

 

6-3-Comparing the performance of metaheuristic algorithms 

   Using the mechanism explained in 6.1, we generated 60 test problems and then ran the MILP model, 

metaheuristic algorithms and lower bounding techniques for them. To obtain a lower bound and upper 

bound/optimal solution by the MILP model, maximum computational times were considered. These 

maximum computational times, depending on the number of hospitals, were from 2 hours (for |𝐻| = 1) to 
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10 hours (for |𝐻| = 5). Also for metaheuristic algorithms, maximum computational times, depending on 

the number of hospitals, from 1000 seconds (for |𝐻| = 1) to 3600 seconds (for |𝐻| = 5) were considered.    

The results are summarized in Appendix E. Values in the column of 𝑈𝐵𝑀𝐼𝐿𝑃 are the obtained upper 

bounds by the MILP after the defined maximum computational time, or when the procedure stops with 

the “out of memory” error before this time. Also “-” in this column implies that no feasible solution could 

be found in defined maximum computational time or by the time of out of memory error. All the 

comparisons and analysis performed in this section and the next sections are based on the results provided 

in Appendix E. 

   About the computational time of metaheuristics, two notes worth to be mentioned: First, since the 

construction of CMES for a network of several hospitals requires considering a large number of echo 

labs, specialists and patients, and also due to the structure of the developed algorithms, which contain a 

mathematical model, we defined this maximum computational time empirically such that a high quality 

solution is obtainable. Second, the developed CMES does the shift scheduling and capacity allocation in a 

network of hospitals for a planning horizon of one week, which can be repeated for several weeks 

(usually for a month); thus, the defined computational times are totally acceptable.  

In order to compare the performance of metaheuristic algorithms, the results of VNS-SA and HPSO 

were normalized by equation. (62).  

 

𝑅𝑃𝐷𝑖,𝑗 =
(𝑠𝑜𝑙𝑖,𝑗 − 𝑠𝑜𝑙𝑖,𝑏𝑒𝑠𝑡)

𝑠𝑜𝑙𝑖,𝑏𝑒𝑠𝑡
× 100 

(62) 

    

   Where, 𝑖 is the index of each test problem, and 𝑗 is the index of each algorithm. 𝑠𝑜𝑙𝑖,𝑗 and 𝑠𝑜𝑙𝑖,𝑏𝑒𝑠𝑡 are 

the solution of test problem 𝑖 with algorithm 𝑗, and the best obtained solution of test problem 𝑖, 
respectively. Then a paired-t test at the 95% significance level was applied. The hypothesis test is stated 

as: 

 

{
𝐻0:  𝜇𝑉𝑁𝑆−𝑆𝐴 = 𝜇𝐻𝑃𝑆𝑂                 
 𝐻1:   𝜇𝑉𝑁𝑆−𝑆𝐴 ≠ 𝜇𝐻𝑃𝑆𝑂                 

 

    

   The results are provided in table 6. According to this table, P-value is equal to 0.000 showing that 
there is a significant difference between the performances of the two algorithms. The calculated average 

objective function obtained by these algorithms indicates that VNS-SA outperforms HPSO. Although 

HPSO had the advantage of using the priority table instead of the specialists’ assignment table to decrease 

complexity, it could not overcome VNS-SA in quality of solutions. We believe that this is due to the 

weak performance of the algorithm proposed for creating specialists’ assignment table out of the priority 

table (Section 4.2.3), and there is space to improve it as a future research. 

 

Table 6. Statistical comparison of VNS-SA and HPSO 

Average objective 

function by VNS-SA 

Average objective 

function by HPSO 

Confidence 

interval (95%) 
T-value P-value 

32441.78 31875.25 (-1.876, -1.354) -12.39 0.000 

 

6-4-Comparing the performance of the best metaheuristic algorithm (VNS-SA) with the 

upper bound obtained by the mathematical model  

   In this section, we analyze the results to prove the verification and efficiency of VNS-SA. Table 7 

summarizes the results of MILP and VNS-SA in each level of number of hospitals on the test problems 

for which MILP has stopped with a feasible solution. While VNS-SA has been able to find acceptable 
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solutions for all the test problems, MILP has failed to find feasible solutions for two, six, seven, eight and 

nine of the test problems with one, two, three, four and five hospitals, respectively. In other words, for 

53% of the test problems, MILP has stopped after the predefined computational time or due to the out of 

memory error without any feasible solution. For the test problems reflecting our idea of centralized 

scheduling in several hospitals (i.e., test problems with |𝐻| > 1), MILP has failed to find feasible 

solutions for 62% of the test problems. As the number of variables and constraints increase by 

considering more hospitals, the capability of MILP for finding feasible solution decreases. These results 

prove the dominant performance of VNS-SA over MILP, and the necessity of applying VNS-SA instead 

of MILP for centralized appointment scheduling systems. 

   MILP and VNS-SA could also be compared in terms of the time they require to find the first feasible 

solution (for those problems that MILP has stopped with a feasible solution). While VNS-SA found a 

feasible solution in a quite short time (the considered time for creating initial solution), it took a long time 

for MILP to find a feasible solution in most problems with number of hospitals greater than two. For 

example, the first feasible solution for test problem 35 was obtained after about 3000 seconds by MILP. 

However, we are not going to compare MILP and VNS-SA from this point of view here. As a matter of 

fact and according to the experiments, MILP requires a large amount of time to find a feasible solution for 

this problem and to improve it. The reason why we considered large computational time for MILP lies in 

this fact and with the hope of providing feasible solutions for more problems. Although even considering 

this large computational time, no feasible solutions were found for the majority of test problems.  

   Regarding 28 test problems for which MILP has stopped with a feasible solution, the last column of 

Appendix E shows the gap between the upper bounds of MILP and the solutions of VNS-SA. According 

to this column, although in 12 cases out of these 28 test problems MILP has provided better solutions, the 

average gap for these cases is only 0.57%, and the maximum gap is less than 1.3%. As shown in table 7, 

the average solutions of MILP, VNS-SA and the average gap between them for these 28 test problems 

show that their solutions do not differ considerably. Based on the solutions and the considered 

computational times, it can be concluded that VNS-SA can obtain a solution as good as the upper bound 

of MILP in considerably less computational time. These results verify that VNS-SA is valid, reliable, and 

from computational time aspect, reasonable. 

 
Table 7. Results of MILP and VNS-SA on problems for which MILP has stopped with a feasible solution 

|𝐻| #FS* 
Average upper bound 

of MILP (𝑈𝐵𝑀𝐼𝐿𝑃) 

Average solution of 

VNS-SA (𝑆𝑜𝑙𝑉𝑁𝑆−𝑆𝐴) 

Average Gap% 

(𝑆𝑜𝑙𝑉𝑁𝑆−𝑆𝐴 vs. 𝑈𝐵𝑀𝐼𝐿𝑃)** 

1 10 10215.6 10255.6 0.38 

2 6 22237.17 22350.67 0.52 

3 5 34685.4 34720.8 0.12 

4 4 43782.75 44414.75 1.60 

5 3 55530 55041.33 -0.88 

average 26811.68 26894.54 0.40 

*Number of problems for which MILP has stopped with a feasible solution 

** Gap (𝑆𝑜𝑙𝑉𝑁𝑆−𝑆𝐴 vs. 𝑈𝐵𝑀𝐼𝐿𝑃) = 
(𝑆𝑜𝑙𝑉𝑁𝑆−𝑆𝐴−𝑈𝐵𝑀𝐼𝐿𝑃)

𝑈𝐵𝑀𝐼𝐿𝑃
× 100 

6-5-Comparing the performance of lower bounding techniques  

   In order to compare the performance of lower bounding techniques, the results of 𝐿𝐵1 and 𝐿𝐵2 

(provided in Appendix E) were normalized by equation (62). Considering the following hypothesis test, a 

paired-t test at the 95% significance level was applied. 

 

{
𝐻0:  𝜇𝐿𝐵1 = 𝜇𝐿𝐵2                
 𝐻1:   𝜇𝐿𝐵1 ≠ 𝜇𝐿𝐵2                
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Table 8. Statistical comparison of 𝐿𝐵1 and 𝐿𝐵2 

Average lower bound 

by 𝐿𝐵1 

Average lower 

bound by 𝐿𝐵2 

Confidence interval 

(95%) 
T-value P-value 

36365.67 47437.03 (-35.44 , -29.69) -22.76 0.000 

According to table 8, since P-value is equal to 0.000, there is a significant difference in the 

performance of lower bounding techniques. Better average lower bound provided by 𝐿𝐵1, as reported in 

Table 8, shows the superiority of 𝐿𝐵1 over 𝐿𝐵2. The reason seems to be the fact that 𝐿𝐵2 does not 

consider demands. Thus, it increases the number of performed echoes with the lowest durations and the 

highest revenues without limitation. Also from computational time point of view, while 𝐿𝐵1 presents the 

lower bound in less than 0.1 second, 𝐿𝐵2 cannot reach the optimality gap equal to zero in a short time, so 

a limited computational time like 10 seconds should be considered for it.  

 

6-6-Comparing the performance of the best lower bounding technique (𝑳𝑩𝟏) with the lower 

bound obtained by the mathematical model  

   As it can be seen in Appendix E, 𝐿𝐵1 technique has provided better lower bounds for 34 instances out 

of 60 generated test problems compared to MILP. For the rest of the test problems, both 𝐿𝐵1 and MILP 

have provided equal lower bounds. To investigate if this difference is statistically significant, a paired-t 

test at the 95% significance level was applied. The hypothesis test is as follows: 

 

{
𝐻0:  𝜇

𝐿𝐵𝑀𝐼𝐿𝑃
= 𝜇

𝐿𝐵1
                

 𝐻1:   𝜇
𝐿𝐵𝑀𝐼𝐿𝑃

≠ 𝜇
𝐿𝐵1

                
 

 

Table 9. Statistical comparison of 𝐿𝐵1 and 𝑀𝐼𝐿𝑃 

Average 

lower bound 

by 𝑀𝐼𝐿𝑃 

Average 

lower bound 

by 𝐿𝐵1 

Confidence 

interval (95%) 
T-value P-value 

36804.58 36365.67 (-4.678 , -2.586) -6.95 0.000 

    

   With respect to P-value, as well as the average lower bound of MILP and 𝐿𝐵1, reported in table 9, it is 

concluded that 𝐿𝐵1 has significantly better performance in providing lower bounds for the problem. Also 

from computational time point of view, while the lower bounds provided by MILP are obtained after the 

considered large computational time, 𝐿𝐵1 presents its lower bound in less than 0.1 second for all the test 

problems. 

 

6-7-Managerial insights and model extension ideas 

Urgent cases: Since in many hospitals such as THC, an echo lab exists in the Emergency Department, we 

did not take urgent cases into account in our approaches. However, the structures of the proposed 

approaches let us incorporate them easily into the model by redefining set I such that each index 𝑖 
indicates both echo type and urgency condition. In addition, regarding 𝑊𝑖𝑏, while these coefficients can 

be simply defined as revenue of each echo type, they can be defined in many other ways such as weight 

of each echo type. Thus we can easily consider urgent patients with higher values of 𝑊𝑖𝑏 in our 

approaches.  

Higher priorities of inpatients: In the current situation of the observed echo departments, sometimes, 

high demand of outpatients may cause the schedulers ignore demands of inpatients; this makes the length 

of stay much longer, causes bed shortage and disrupts patient flow. Appropriate values for 𝑊𝑖𝑏 can give 
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higher priorities to inpatients to manage this situation. Also, by considering higher values for 𝐾𝑖𝑏 for 

inpatients, more percentage of demand of inpatients can be covered in the planning horizon.  

Educational purposes: Sometimes, for educational purposes, some specialists are required to perform a 

certain number of echos of each type. In order to incorporate this assumption into the model and our best 

metaheuristic approach (VNS-SA), the following constraint should be added to the MILP model and the 

fitness function of metaheuristic. 𝑄𝑖𝑗 is a parameter that specifies the minimum number of echos of type 𝑖 

that specialist 𝑗 should perform in the planning horizon. 

 

(63) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ∑ 𝑋𝑖𝑏𝑙𝑡

𝑡∈𝑇,𝑏∈𝐵,𝑙∈𝐿

Y𝑗𝑙𝑡 ≥ 𝑄𝑖𝑗 

 

   Since this constraint is nonlinear, it can be substituted by the following linear set of constraints in both 

MILP model and the fitness function of metaheuristic. 𝑋′𝑖𝑏𝑗𝑡 is a variable that determines the number of 

echos of type 𝑖 in situation 𝑏 performed by specialist 𝑗 in shift 𝑡. Constraint set (64) ensures that if a 

specialist is not assigned to any lab in a specific shift, the total number of echos performed by that 

specialist in that shift is equal to zero. Constraint set (65) guarantees that the number and type of echoes 

performed by any specialist in any shift are equal to the number and type of performed echoes in the lab 

to which that specialist in that shift is assigned. Constraint set (66) assures that each specialist performs 

the predefined minimum number of echos of each type. Finally, Constraint set (67) defines the required 

integer variable.  

 

(64) 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 ∑ 𝑋′𝑖𝑏𝑗𝑡

𝑏∈𝐵,𝑡∈𝑇

≤ 𝑀 ∑ Y𝑗𝑙𝑡

𝑙∈𝐿

 

(65) ∀𝑖 ∈ 𝐼, 𝑏 ∈ 𝐵, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 𝑋′𝑖𝑏𝑗𝑡 ≤ 𝑋𝑖𝑏𝑙𝑡 + 𝑀(1 − 𝑌𝑗𝑙𝑡) 

(66) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ∑ 𝑋′𝑖𝑏𝑗𝑡

𝑏∈𝐵,𝑡∈𝑇

≥ 𝑄𝑖𝑗 

(67) ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 𝑋′𝑖𝑏𝑗𝑡 ≥ 0, 𝑖𝑛𝑡 

 

Specialists’ preferences: To consider specialists’ preferences more, a second objective function to 

maximize the total satisfied specialists’ preferences or the following constraint can be added to the MILP 

model. Constraint set (68) obligates the model to satisfy a certain level of total satisfaction, referred to as 

FT.  

 

(68)    ∑ 𝐹𝑗𝑡ℎ𝑁𝑙ℎY𝑗𝑙𝑡

𝑗∈𝐽,𝑡∈𝑇,𝑙∈𝐿,ℎ∈𝐻

≥ 𝐹𝑇 

    

   Moreover, in order to incorporate this assumption into VNS-SA, two adjustments are required: 

Constraint set (68) should be added to the initial solution construction model in section 4.1.2, and 

condition 3 should be added to the conditions mentioned in section 4.1.4. 

 Condition 3: The sum of satisfied preferences of specialists should be greater than 𝐹𝑇. 

   To show the applicability of two recent model extension ideas, the results of five test problems are 

reported in table 10. Note that there is no need to change the 𝐿𝐵1 technique. These results verify the great 

performance of proposed metaheuristic and lower bounding technique for the discussed problem with 

mentioned extension ideas. 
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Table 10. Results of model extension ideas 

H 𝑈𝐵𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑀𝐼𝐿𝑃 𝐿𝐵𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑀𝐼𝐿𝑃 𝑆𝑜𝑙𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑉𝑁𝑆−𝑆𝐴 𝐿𝐵1 

1 8901 10806 9083 10091 

2 _ 26975 22661 26098.4 

3 _ 36006 30162 33452.8 

4 _ 44270 40642 44270 

5 _ 65108 53600 65057 

 

7-Conclusions 
   In the present study, we approached the appointment scheduling problem in a distributed network of 

echocardiography departments with the objective function of maximization of profit margin through 

maximizing the number of performed echoes and minimizing overtime. In this network, various types of 

inpatients/outpatients request for different types of echos. Each echo is performed by a specialist with 

related specialty level and in a lab with required facilities. In order to develop an efficient centralized 

master schedule for echocardiography networks, which we called CMES, we proposed approaches that 

are able to handle shift scheduling and capacity allocation problems simultaneously, considering the 

possibility of overtime. First, we developed a MILP model. This model requires a large amount of time 

and memory to solve the problem; however, in most cases, it cannot find any feasible solution, specialy 

when the size of the network increases. This being the case, two metaheuristic algorithms (VNS-SA and 

HPSO) with different approaches were presented to find good quality solutions in acceptable 

computational time. The novelty of the developed metaheuristics is that they only search within the 

feasible solution area of shift scheduling, and a mathematical model, as the fitness function of 

metaheuristics, solves the obtained capacity allocation problem. Furthermore, two lower bounding 

techniques (𝐿𝐵1 and 𝐿𝐵2) were developed. Based on the conducted experiments, VNS-SA was shown to 

present a better performance comparing to HPSO in terms of quality of solutions. Then, the efficiency and 

validity of VNS-SA were examined and confirmed by comparing the performance of VNS-SA and MILP. 

According to the obtained results, MILP is unable to find the solution for 62% of networks with more 

than one echo department, while VNS-SA finds good quality solutions for all the problems in reasonable 

amount of time. In addition, the performance of VNS-SA was verified due to the acceptable deviation 

from the solutions found by MILP (in those problems for which MILP stopped with a feasible solution). 

Next, the lower bounding techniques were evaluated. It was concluded that 𝐿𝐵1 is able to provide better 

lower bounds in comparison with 𝐿𝐵2 and the mathematical model. The reason of the superiority of 𝐿𝐵1 

over 𝐿𝐵2 is that it incorporates more effective factors. Finally, managerial insights and some ideas for the 

algorithm and model extension were discussed. 

   Lastly, several applicable areas for further research can be suggested. First, decisions in the operational 

level of decision making such as determining the sequence and exact appointment time for patients, 

aiming at minimization of patients’ waiting time and specialists’ idle-time can be considered. Second, 

HPSO can be enhanced in order to take advantage of its main ideas, which were eliminating the need for 

complicating neighborhood structures and getting rid of infeasible specialists’ assignments. To do so, we 

suppose that improving the algorithm proposed for creating specialists’ assignment tables out of priority 

tables is beneficial. Third, stochastic or robust approaches can be developed in case of high variability (in 

demand or duration of echo) or any similar settings in which rescheduling is critical. 
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 Appendix A: Flowchart of VNS-SA 
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Appendix B: Neighborhood structures of VNS-SA 
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Appendix C: Flowchart of HPSO 
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Appendix D : The S/N ratio plots 
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Appendix E : Results of model, metaheuristic algorithms and lower bounding techniques 
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