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Abstract 
In this paper, a bi-objective multi-product single-vendor single-buyer supply chain 

problem is studied under green vendor-managed inventory (VMI) policy based on 

the economic production quantity (EPQ) model. To bring the model closer to real-
world supply chain, four constraints of model including backordering cost, number 

of orders, production budget and warehouse space are considered stochastic. In 

addition to holding, ordering and backordering costs of the VMI chain, the unused 
storage space cost is also added to the total cost of the chain. To observe 

environmental requirements and decrease the adverse effects of greenhouse gases 

emissions (GHGs) on the earth and human’s life, green supply chain is utilized to 
reduce the GHGs emissions through storage and transportation activities in the 

second objective function. Three multi-objective decision making methods namely, 

LP-metric, Goal attainment and multi-choice goal programming with utility 

function (MCGP-U) are implemented in different sizes to solve the presented 
model as well. Two multi-criteria decision making (MCDM) approach and 

statistical analysis are applied to compare the outcomes of three proposed solving 

methods. GAMS/BARON software is utilized to minimize the values of the 
objective functions. At the end, numerical examples are presented to represent the 

application of the mentioned methodology. To come up with more insights, 

sensitivity analysis is executed on the main parameters of proposed model.   
Keywords: Economic production quantity (EPQ), vendor-managed inventory 

(VMI), greenhouse gases (GHGs) emissions, stochastic programming, bi-objective 

non-linear model. 

 

1- Introduction 
In today's progressively competitive business world, companies are trying to increase customer’s 

satisfaction by reducing their costs and increasing customer’s service levels. For instance, 

accommodating supply with demand, decreasing stock-outs, and increasing customer delivery times 

would be appropriate in this case. In this way, the success of companies is related to the efficient flow 
of products to customers, and without coordinated decisions between their members, the success of 

companies would not be achieved (Fugate, Sahin, & Mentzer, 2006). As a result, the supply chain is 

used to communicate among supply chain members. In today’s global markets, supply chain 

management (SCM) plays a crucial role to make a long-term cooperative relationship among 
organizations and companies in order to gain either a tensionless constant source of supply and 

demand of products, or optimum profit from each other, as well as reliability to achieve better 

performances and (Simchi-Levi, Kaminsky, Simchi-Levi, & Shankar, 2007). 
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   Inventory is one of the important factors in SCM. In a supply chain, unpleasant or fluctuating 
inventory, leads to Bullwhip effect and Double marginalization and eventually undermines supply 

chain’s performance and may even contributes to the failure of companies (Disney, & Towill, 2003). 

Among several strategies of collaboration and coordination between supply chain (SC) partners, 

vendor-managed inventory (VMI) has been successfully implemented in many companies (Disney, & 
Towill, 2002). It has been used widely in recent years because of its profits. It accelerates the supply 

chain, improve the profitability for both vendors and customers, and remove the effects of bullwhip in 

supply chain management. The benefits of VMI are well recognized by successful retail businesses 
such as Wal-Mart, JC Penney, and Dillard Department Stores (Dong & Xu, 2002). Successful VMI 

implementation in retailing are more observable in the apparel industry. For example, VF Corporation 

was able to increase the sales of its men’s jeans by 20% through the adoption of a replenishment 
system based on point-of-sales data and VMI principles (Kaipia & Tanskanen, 2013). All of this 

evidence proves that the potential advantages of the VMI partnerships have a powerful effect and can 

be mentioned as a significant tool in order to reduce inventory costs for supply chain members and 

enhance customer service levels (Achabal, McIntyre, Smith, & Kalyanam, 2007). 
The gradual increases of global warming and climate change have enforced industries and 

governments to reduce their greenhouse gases emissions to improve environmental sustainability. 

Nowadays, several businesses have launched to perform green supply chain management and pay 
attention to environmental issues and measure their vendors’ environmental performance. Inventory 

management and transportation are the major activities of supply chain that create the significant 

amount of greenhouse gases emissions in numerous studies. In reality, inventory control is a crucial 
activity in many types of organization (Tsou, Hsu, Chen, & Yeh, 2010). The inventory management 

of a company depends on the frequency of it transportation and storage process, so it is one of the 

main determinants of the greenhouse gases created in supply chain (Schaefer & Konur, 2015). As a 

result, current research aims to reduce the greenhouse gases emissions released through transportation 
and storage activities. In recent studies (Büyüközkan, & Cifci, 2013; Bonney, & Jaber, 2011; Zanoni, 

Mazzoldi, & Jaber, 2014), merging environmental requirements with inventory and logistics systems 

has been strongly emphasized. A joint consequence among these models is that the efficiency of an 
inventory policy becomes sensitive when greenhouse gases (GHGs) emissions are considered. On the 

other hand, extending the traditional EPQ model by adding effective constraints and objective 

function, and taking into account the parameters of model in an uncertain way by using stochastic 

programming approach, bring the EPQ model closer to real-world conditions. 
In the next section, First, a brief review of research done on the effects of implementing VMI 

policy on whole supply chain is represented, and then some research worked on the environmental 

effects due to greenhouse gases emissions on inventory management are presented.  

2- Literature review  
Cetinkaya & Lee (2000) proposed a harmonized inventory and transportation analytical model 

Applicable in VMI systems. In particular, they considered a vendor who satisfied a sequence of 
retailers' demand in a particular geographic area. Ideally, these demands must be shipped 

immediately.  Dong & Xu (2002) evaluated the effects of VMI on a supply channel. In a nutshell, they 

showed that VMI is found to reduce total costs of the channel system and it could increase the 
profitability of both vendor and buyer in the chain system. Yao, Evers, Dresner (2007) developed an 

analytical model that examines the effects of supply chain's parameters on cost savings. They used 

common initiatives, such as VMI system. The results of the model showed that the benefits, in the 

form of reducing inventory costs, might have been created according to the ratio of product integrity 
to the supplier's ordering costs to the buyer and the proportion of transportation cost to the buyer. The 

results also illustrated that vendor and buyer have equal share in the amount of benefits. Razmi, Rad, 

Sangari (2010) provided a two-echelon supply chain, including single buyer-single supplier assuming 
that the supplier meets only one buyer as the contract party. They compared the performance of the 

traditional system with VMI system and showed that VMI is a better approach than the traditional 

model and causes lower cost in all conditions. Pasandideh, Niaki, & Roozbeh Nia (2010) proposed a 

two-level economic order quantity (EOQ) model for a single supplier-single retailer in a supply chain 
under VMI policy. An analytical model has been investigated to examine the impact of important 

supply chain’s parameters on reducing costs in an integrated supply chain under backlogged shortage, 
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and the results of the analysis have been compared before and after implementation of VMI. Roozbeh 
Nia, Hemmati Far, & Niaki (2013) introduced fuzzy multi-products, multi-constraints economic order 

quantity (EOQ), including a single vendor-single buyer under VMI policy with the goal of minimizing 

total cost of supply chain. Ant colony optimization algorithm were used to find the near optimal 

solutions. In order to validate the obtained results a genetic algorithm (GA) and a differential 
evolution were presented. Bakeshlu, Sadeghi, Poorbagheri, & Taghizadeh (2014) presented a bi-

objective two-echelon single vendor-single retailer model under VMI Policy with shortage. The first 

objective function was to minimize the inventory costs, and the second objective function aimed to 
minimize the warehouse space. Limits on the number of orders and budget were also presented to 

bring the model closer to reality. Particle Swarm Optimization (PSO) metaheuristic algorithm was 

implemented to solve the model. Sadeghi & Niaki. (2015) presented a bi-objective vendor-managed 
inventory model under two-echelon consisting of single vendor-multi retailers in which demand was 

considered fuzzy by using trapezoidal fuzzy number. The first goal was minimizing inventory costs 

and the second goal minimized the storage space. In this model, Limits on the number of orders and 

budget were applied in constraints. Non-dominated sorting genetic algorithm-II (NSGA-II), multi-
objective evolutionary algorithm (MOEA), and non-dominated ranking genetic algorithm (NRGA) 

were implemented to solve the model. Park, Yoo, & Park (2016) proposed an inventory routing 

problem with lost sales under a vendor-managed inventory strategy in a two-echelon supply chain 
consisting of a single manufacturer and multiple retailers. They used Genetic algorithm (GA) to 

determine either replenishment times and quantities, or vehicle routes while maximizing the supply 

chain profits. Alfares & Attia (2017) proposed integration between quality control and inventory 
control in supply chain management. They presented vendor-managed inventory (VMI) and a 

consignment stock (CS) partnership with several buyers, and considered three different levels of 

supply, including VMI–CS system, traditional system, and integrated system. They also considered 

the cost of inspection errors. The products produced by the vendor were not perfect and the proportion 
of them was defective and the quality inspection of these items was done by buyers. Han, Lu, & 

Zhang (2017) proposed an indirect VMI problem in a three-echelon supply chain in which distributors 

(third-party logistics companies) took responsibility to balance between a vendor (manufacturer) and 
multiple buyers (manufacturers). They used vertex enumeration algorithm to solve their three-echelon 

decision making model. Bonny & Juber (2011) examined the importance of inventory control systems 

to considerate environmental concerns, and presented that the traditional Economic order quantity 

(EOQ) model does not have enough efficiency to cover some of the inventory models. Roozbeh Nia, 
Hemmati Far, & Niaki (2015) presented a multi-product single vendor-single buyer economic order 

quantity model under backorder and green approach.  In their model, they used limited-capacity 

pallets to transport items. To implement the green approach, they used tax costs for greenhouse gas 
(GHG) and limitation on GHG emissions. In order to find a near optimal solution, the integrated of 

genetic and imperialist algorithms was proposed, and they also implemented the genetic algorithm to 

evaluate the results. Jiang, Li, Qu, & Cheng (2015) proposed a green VMI model with considering 
both environmental and economic goals. They compared their model with traditional VMI model. The 

impacts of important factors of carbon emissions and carbon cap were examined analytically on the 

optimal decisions, the carbon emissions and the total costs of supply chain. Karimi, Niknamfar, 

Pasandideh (2016) merged a two-level newsboy problem (NP) supply chain model with the supplier 
selection problem. In order to apply the green approach, the greenhouse gas emissions that are 

released by the various types of selected vehicles were limited. Alvarado, Paquet, Chaabane, & 

Amodeo (2016) considered the impacts of environmental regulations on businesses and inventory 
control systems, and provided demand for both manufacturing and remanufacturing, due to 

differences in costs and emissions of greenhouse gases. They used the Markov decision to solve the 

model. Mokhtari & Rezvan. (2017) presented a single supplier multi-buyer multi-product model, 
under the green supply chain and the VMI model. The shortage was allowed in the form of partial 

backorder, and the goal was to find the amount of economic production and the maximum level of 

shortage. The total greenhouse gas emissions have been modeled as a green constraint. To solve the 

model, a decomposition based analytical approach was proposed. Gharaei et al. (2018) presented an 
Outer Approximation with Equality Relaxation and Augmented Penalty (OA/ER/AP) in order to solve 

an integrated multi-product multi-buyer green supply chain under the penalty and VMI-CS policies 

considering real stochastic constraints. Furthermore, the model distinguished between the financial 
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and non-financial elements of holding costs in which the first and second, included space investment, 
and the expenditure allocated to physical storage, movement, and security of the products, 

respectively. Detcharat Sumrit (2019) developed VMI supply chain in healthcare system using fuzzy 

multi-criteria decision-making approach (MCDM) to determine the best potential supplier which has 

been performed in one of prominent public hospitals in Thailand as a case study. Three MCDM 
framework were presented, included Fuzzy Delphi approach to determine the suitable assessment 

criteria for VMI supplier selection, Fuzzy Step-wise Weight Assessment Ration Analysis (SWARA) 

method to select the relative importance weight of assessment criteria, and Fuzzy Complex 
Proportional Assessment of Alternatives (COPRAS) to collate, classify and determine the best 

allocated supplier. Stellingwerf et al. (2019) investigated VMI as a cooperative policy in order to 

reduce economic and environmental impacts of transportation, and eventually increased the efficiency 
of environmental sector of the supply chain. In this study, the Shapley value (a commonly used CGT 

approach) was used to allocate the financial profits in a way that gives consideration to the partners' 

contributions to the expenses and carbon dioxide emissions reduction. The method was carried out to 

assess the distribution of economic and environmental advantages of vendor-managed inventory 
between collaborative supermarket chains in the Netherlands. Golpîra (2020) introduced a 

comprehensive integrated model using the VMI strategy formulating a general multi project multi-

resource multi-supplier CSC network design with a facility location problem. This paper scheduled 
the resources of network in terms of timing and delivery associated with determining suitable 

suppliers and appropriate potential locations confined to only certified facilities in a capacitated 

system. Taleizadeh et al. (2020) developed a two integrated vendor managed inventory system 
considering partial backordering and limited warehouse capacity for the buyer along with continuous 

review and periodic review replenishment policies under stochastic demand. This paper, moreover 

included the comparison between the new proposed integrated system and traditional retailer managed 

inventory systems. Among several papers worked on VMI models, the papers are categorized based 
on different fields of VMI in table 1. 

 
Table 1. Some studies on VMI problem 

Studies Green Level Deteriorating Bi-

Objective 

Routing 

Problem 

Stochastic 

programming 

Solution 

method 

Akbari 
kaasgari et al. 

(2017) 

 Bi- level     GA and PSO 

Bakeshlu et al. 
(2014) 

 Bi- level     PSO 

Bazan et al. 
(2015) 

 Bi- level      

Darwish and 
Odah 

 Bi- level     KKT 

Gharaei et al. 
(2018) 

 Bi- level     (OA/ER/AP) 

Golpira et al. 
(2017) 

 Bi-level      

Golpîra (2020)  Multi-level      
Han et al. 

(2017) 
 Tri- level     VEA 

Hemmati et al. 

(2017) 

 Bi- level     Exact solution 

procedure 
Jiang et al. 

(2015) 

 Bi- level      

Khan et al. 
(2016) 

 Bi- level      

Kleywegt et al. 
(2002) 

      approximation 
methods 

Lee and Kim 

(2014) 

 Bi- level      

Liao et al. 
(2011) 

 Bi- level     GA algorithm 

Lu et al. (2015)  Bi- level    Stochastic 
demand 

 

Mokhtari and  Bi- level     DBA approach 
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Rezvan  (2017) 
Pasandideh et 

al. (2011) 
 Bi- level     GA algorithm 

Pasandideh et 
al. (2014) 

 Bi- level     Lexicographic 
max–min 

approach 
Rabbani et al. 

(2018) 
      SA and Tabu 

search 
Radha and 

Praveen 
Prakash (2016) 

 Bi- level     GA and KT 
optimization 

Rahim et al. 
(2016) 

 Bi- level      

Sadeghi et al. 
(2013) 

 Bi- level     PSO and GA 

Sadeghi et al. 
(2014) 

 Tri- level     HBA 

Sadeghi et al. 
(2014) 

 Bi- level     NSGA-II 

Sadeghi and 
Akhavan Niaki 

(2015) 

 Bi- level     NSGA-II and 
NRGA 

Sadeghi et al. 
(2016) 

 Bi- level     Hybrid ICA 

Setak and 
Daneshfar 

(2014) 

 Bi- level      

Soni et al. 
(2018) 

       

Taleizadeh et 
al. (2015) 

 Bi- level     Concavity of the 
profit functions 

Taleizadeh et 
al. (2020) 

 Bi- level    Stochastic 
demand 

Efficient 
algorithms 

Tat et al. 
(2015) 

 Bi- level      

Xiao and Rao 
(2016) 

 Tri- level     Fuzzy GA 

Xiao and Xu 

(2013) 

 Bi- level      

Yu et al. 
(2012) 

 Bi- level    Demand  

Yu et al. 
(2013) 

 Bi- level     The hybrid 
algorithm DP, 

GA and 
analytical 
methods 

 
Zhu et al. 

(2007) 
 Tri- level      

Current 
research 

 Bi-level     MODM 
methods 

SA (simulated annealing); (PSO) Partial swarm optimization; (NSGA-II) Non dominated sorting genetic algorithm; DBA 
(Decomposition based analytical); Genetic algorithm (GA); Kuhn Tucker (KT); imperialist competitive algorithm (ICA); 

Vertex enumeration algorithm (VEA); Karush-Kuhn-Tucker (KKT); dynamic programming (DP); hybrid bat algorithm 
(HBA); non-dominated ranking genetic algorithm. 

 

   Despite many research carried out in the field of VMI, a small number of these studies have 
considered green supply chain in VMI models with regard to EPQ models, especially within the 

context of stochastic programming. Also, there are parameters in VMI models that should be 

considered non-deterministic in order to bring the model closer to reality, but most of the previous 
studies examined the VMI supply chain under deterministic environment, or considered uncertainty 

only for a small number of parameters. As a result, as considering VMI supply chain with regard to 

main parameters can improve this chain, in this research, we try to cover the mentioned gap in 

previous studies. 

Solution 

method 

Stochastic 

programming 

Routing 

Problem 

Bi-

Objective 

Deteriorating Level Green Studies 

 

Table 1. Continued 
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In the current research, we have inspired by the works of Pasandideh, Niaki, & Hemmati Far 
(2014), a bi-objective vendor-managed inventory (VMI) model is proposed to manage the inventory 

of supply chain with multi-product multi-constraint economic production quantity (EPQ) model and 

shortage at two-level of supply chain, consisting of single vendor-single buyer under green approach 

of supply chain. To propose the model closer to reality and make it more practical, various stochastic 
constraints are considered. The problem is formulated as a non-linear programming model to 

minimize the total inventory costs of supply chain including holding cost, ordering cost, backordering 

cost and the cost of unused storage space, and also the emissions of greenhouse gases should be 
minimized in the second objective function of model. Three exact methods of multi objective decision 

making are developed to solve the non-linear programming (NLP) optimization. To compare solving 

methods, two approaches of multiple-criteria decision making (MCDM) methods and statistical 
analysis are used.  

To be more specific, the contribution of this research is that some constraints of model are 

considered stochastic, also unused storage space cost is added to total inventory costs in the first 

objective function that these works have not been done in literature related to VMI models. In 
addition, we consider green approach in the second objective function of our model, which aims to 

minimize greenhouse gases emissions in the two processes of storage and transportation. As a result, a 

combination of stochastic programming, green supply chain management (GSCM), vendor-managed 
inventory (VMI), and a bi-objective mathematical model is considered in this paper, which has not 

been attended in similar studies. Furthermore, we have implemented different solving methods and 

compared them one another that other researchers have not done in the same literature.  
The overall structure of the remainder of the research is organized as follows. The third section, 

describes the problem and assumptions in more details. In the fourth section, the bi-level 

mathematical model is formulated as a non-linear programming. In the fifth section, solution methods 

and some numerical examples are presented. In the sixth section, computational results and 
comparisons are presented. Also, the sensitivity analysis is implemented in section 6 to investigate the 

effect of changes of the important parameters on the mentioned problem, and conclusions are 

presented in section 7. 

 

3- Problem definition 
This study is relevant to a green supply chain with multi-products multi-constraints using the EPQ 

model. A bi-objective model at a two-echelon supply chain includes single vendor-single buyer under 

VMI policy is proposed. To make the model more practical, the shortage is allowed and backordered. 

Orders are carried by trucks from vendor to buyer. Therefore, fossil fuels which released from the 

trucks cause significant amount of greenhouse gases emissions during transportation process. In 
addition, considerable amounts of greenhouse gases are released while holding products in 

warehouse. As a result, in this paper, we focus on reducing the greenhouse gases emissions that are 

released through transportation and storage activities in the second objective function to make a kind 
of green supply chain (GSC). An additional cost for unused storage space is also added to the total 

cost of VMI system including ordering, holding and backordering costs. The objective of this paper is 

to determine order quantities of products, total amount of each product shipped by each truck and the 
maximum backorder level per cycle, such that the total cost of VMI system and greenhouse gases 

emissions are minimized, while the mentioned constraints are satisfied. The number of orders and the 

capacity of trucks are also limited. Because there is no definitive sight for some data in real-world, in 

this research, we use stochastic programming to create more realistic answers. Thus, some constraints 
of model including maximum total allowable backordering cost, maximum allowable number of 

orders, total production budget and total storage space available for all products are considered 

stochastic. 

3-1- Assumptions 
The following assumptions are used for the mathematical formulation of the model: 

(a) There is a multi-product single vendor-single buyer supply chain with several trucks. 

(b) Shortage is allowed for all products and backordered. 

(c) Orders are shipped by trucks with limited capacity. 
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(d) Lead time is assumed zero. 
(e) The selling prices of all products in the planning horizon are fixed (discounts are not 

allowed). 

(f) The production rate for all products is continuous and finite. 

(g) The rate of customer's demand for all products is deterministic and permanent. 
(h) The time-independent fixed backorder cost per unit and the linear backorder cost per unit per 

time are limited and considered stochastic to be closer to reality. 

(i) Total storage space available for all products in the vendor's warehouse is limited and 
considered stochastic to become more realistic. 

(j) To bring the model closer to reality, budget constraint is considered stochastic. 

(k) The total number of orders for all products is limited and stochastic. 
(l) The buyer's order quantity of an item is limited by upper and lower bounds. 

(m) The cost of unused storage space is added to the EPQ inventory system costs. 

 

4- Problem formulation 
   Pasandideh et al. (2014) studied the vendor-managed inventory problem at a two echelon supply 

chain system, consisting of a vendor and a buyer in which the vendor is responsible to manage the 
buyer’s inventory. They considered the multi-product economic production quantity under three 

constraints of storage capacity, number of orders and available budget. In the current study, their 

model is developed to minimize the total inventory cost of the VMI chain, including ordering, 
holding, backordering and unused storage space costs in the first objective function, while another 

new objective function is added to create a kind of green supply chain (GSC) in which greenhouse 

gases emissions released through storage and transportation activities should be minimized. Four new 
stochastic constraints are also added to bring the model closer to real-world supply chain. The 

stochastic constraints include limitation on the backordering cost, number of orders, storage space and 

available production budget. Before presenting the mathematical model, we will introduce the indices, 

parameters and decision variables of proposed model. 
 

4-1- Notations 

Index and sets  

𝐼 Set of trucks (𝑖𝐼) 
𝐽 Set of products (𝑗𝐽) 

Parameters  

𝐿𝑗  Lower bound on the order quantity of product 𝑗 

𝑈𝑗 Upper bound on the order quantity of product 𝑗 

𝐷𝑗  Buyer’s demand rate of product 𝑗 

𝑃𝑗 Vendor’s production rate of product 𝑗  

𝐶𝑗  Variable production cost for each unit of product 𝑗 

𝜋1 Fixed backorder cost per unit (time independent) 

𝜋2 Linear backorder cost per unit per time unit 

𝐴𝑗𝑆  Vendor’s fixed ordering cost per unit of product 𝑗 

𝐴𝑗𝐵  Buyer’s fixed ordering cost per unit of product 𝑗 

ℎ𝑗𝐵 Holding cost per unit of product j stored in buyer's warehouse in a 

period 

𝐹 Maximum available storage space for all products 

𝑓𝑗  Space occupied by each unit of product 𝑗 

𝑀𝐴𝐵𝐶 Maximum total allowable backordering cost 

𝑁𝑜𝑟𝑑𝑒𝑟 Maximum allowable number of orders 

𝐵𝑢𝑑𝑔𝑒𝑡 Total available budget to produce products 

𝑤 Unused storage space cost (per unit) 

𝑐𝑎𝑝𝑖 Capacity of truck 𝑖 to transport products from vendor to buyer 

𝛾0 Fixed amount of greenhouse gases emissions in holding products in 

warehouse 
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𝛾𝑗 The variable amount of greenhouse gases emissions in holding 

product 𝑗 in warehouse 

𝜃0 The fixed amount of greenhouse gases emissions in transporting 

products when trucks are empty 

𝜃𝑖 The variable amount of greenhouse gases emissions in transporting 

products by truck 𝑖 
𝑇𝑂𝐶 Total ordering cost of products 

𝑇𝐻𝐶 Total holding cost of products 

𝑇𝐵𝐶 Total backordering cost of products 

𝑇𝑈𝐶 Total cost of unused storage space 

𝑇𝐵𝑉𝑀𝐼 Total cost of buyer’s inventory in the VMI chain 

𝑇𝑆𝑉𝑀𝐼  Total cost of vendor’s inventory in the VMI chain 

𝑇𝐶𝑉𝑀𝐼  Total cost of the VMI chain 

𝑇𝐴𝐺𝐻𝐺  Total amount of greenhouse gases emissions 

Variables  

𝑄𝑗 Order quantity of product 𝑗  

𝑍𝑖𝑗 The amount of product 𝑗 shipped by truck 𝑖 

𝑏𝑗 Maximum backorder level of product 𝑗 in a cycle of the VMI chain 

According to the above description of notations, the problem is formulated as a mathematical model 

in the next subsection. 

4-2- The buyer's and vendor's total cost of VMI chain 
   In the EPQ model with shortage under the VMI policy, the vendor (supplier) is responsible for 

managing and controlling the inventory by specifying the time and quantities of order, and lead time. 
As a result, all costs of the VMI chain including the cost of ordering, holding, backordering and 

unused storage space are paid by the vendor and the buyer does not play any role in paying the costs 

of VMI chain. Referring to Pasandideh et al. (2014), we have: 

𝑇𝐵𝑉𝑀𝐼 = 0 (1) 

𝑇𝑆𝑉𝑀𝐼 = 𝑇𝑂𝐶 + 𝑇𝐻𝐶 + 𝑇𝐵𝐶 + 𝑇𝑈𝐶 (2) 

Referring to Tersine (1993), the total ordering cost, total holding cost and total backordering cost are 

formulated in the next subsection. 

 

4-2-1- Total ordering cost (𝑻𝑶𝑪) 

   The total ordering cost of product j includes the vendor's and buyer's ordering cost according to the 

number of cycles and obtained by: 

𝑇𝑂𝐶 = ∑ (
𝐷𝑗𝐴𝑗𝑆

𝑄𝑗
+
𝐷𝑗𝐴𝑗𝐵

𝑄𝑗
)𝑗∈𝐽   

 (3)                                                                      

 

4-2-2- Total holding cost (𝑻𝑯𝑪) 

   The buyer's total holding cost of products due to the upper area of the inventory graph and the 

number of cycles per year is as follows: 

𝑇𝐻𝐶 =∑ℎ𝑗𝐵

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

 

(4)                                                                     

4-2-3- Total backordering cost (𝑻𝑩𝑪) 
   Due to the permissibility of shortages in the form of backlogged, its costs is divided into two 

dependent and independent of time categories. Independent annual shortage cost is determined based 
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on the amount of shortage in a cycle and the number of cycles, but the time-dependent shortage cost is 
obtained according to the lower area of the inventory graph and the number of annual cycles. 

Therefore, the annual total backordering cost of products is as follows: 

𝑇𝐵𝐶 =∑

(

 
𝜋2𝑏𝑗

2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)

+
𝜋1𝑏𝑗𝐷𝑗

𝑄𝑗
)

 

𝑗∈𝐽

 

(5)                                                                                                                                      

 

4-2-4- Total unused storage space cost (𝑻𝑼𝑪) 

   Referring to Khalilpourazari (2016), unused storage space cost is considered as follows: 

𝑇𝑈𝐶 = 𝑤(𝐹 −∑(𝑓𝑗𝑄𝑗 (1 −
𝐷𝑗

𝑃𝑗
) − 𝑏𝑗)

𝑗∈𝐽

) 

(6)                                                              

4-3- Total amounts of greenhouse gases (GHGs) emissions (𝑻𝑨𝑮𝑯𝑮) 
   Referring to Jiang et al. (2015), to make a type of green supply chain (GSC), the total amounts of 

GHGs emissions can be formulated as follows: 

𝑇𝐴𝐺𝐻𝐺 =

(

 
 
𝛾0 +∑𝛾𝑗

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

+ 𝜃0 +∑∑𝜃𝑖𝑍𝑖𝑗
𝐷𝑗

𝑃𝑗
𝑗∈𝐽𝑖∈𝐼

)

 
 

 

 

(7) 

 

 

𝜃0 + (𝜃𝑖 × 𝑍𝑖𝑗) is the amount of greenhouse gases emissions when product 𝑗 is shipped by the 

truck 𝑖, 𝜃0 is the amount of greenhouse gases emissions when truck is empty, and 𝜃𝑖 is the variable 

factor of greenhouse gases emissions in transporting products, which depends on the fossil fuels 

quantity released by truck 𝑖 and orders quantity of product 𝑗 shipped by truck 𝑖. 𝛾0 +

𝛾𝑗 (
[𝑄𝑗(1−

𝐷𝑗

𝑃𝑗
)−𝑏𝑗]

2

2𝑄𝑗(1−
𝐷𝑗

𝑃𝑗
)

) is The amount of greenhouse gases emissions in holding product j in warehouse, 

𝛾0 is the fixed amount of greenhouse gases emissions, 𝛾𝑗 is the variable factor of greenhouse gases 

emissions in holding product 𝑗 in warehouse, and 
[𝑄𝑗(1−

𝐷𝑗

𝑃𝑗
)−𝑏𝑗]

2

2𝑄𝑗(1−
𝐷𝑗

𝑃𝑗
)

 is the average of inventory in 

warehouse. 

4-4- Total costs of VMI chain and amounts of GHGs emissions 
   Based on equations (1) to (7), the total costs of VMI chain as first objective function, and total 

amounts of GHGs emissions as second objective function are as follows: 
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𝑇𝐶𝑉𝑀𝐼 = 𝑇𝐵𝑉𝑀𝐼 + 𝑇𝑆𝑉𝑀𝐼

= 𝑚𝑖𝑛∑(
𝐷𝑗𝐴𝑗𝑆

𝑄𝑗
+
𝐷𝑗𝐴𝑗𝐵

𝑄𝑗
)

𝑗∈𝐽

+∑ℎ𝑗𝐵

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

+∑

(

 
𝜋2𝑏𝑗

2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)

+
𝜋1𝑏𝑗𝐷𝑗

𝑄𝑗
)

 + 𝑤(𝐹 −∑(𝑓𝑗𝑄𝑗 (1 −
𝐷𝑗

𝑃𝑗
) − 𝑏𝑗)

𝑗∈𝐽

)

𝑗∈𝐽

 

(8) 

𝑇𝐴𝐺𝐻𝐺 =

(

 
 
𝛾0 +∑𝛾𝑗

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

+ 𝜃0 +∑∑𝜃𝑖𝑍𝑖𝑗
𝐷𝑗

𝑃𝑗
𝑗∈𝐽𝑖∈𝐼

)

 
 

 

(9) 

 

4-5- The mathematical model 
   Referring to economic production quantity model (EPQ) (Tersine, 1993), in this section, based on 
Equations. (1) to (9), the multi-item multi-constraint bi-objective EPQ model under green VMI policy 

becomes: 

 

𝑍1 = 𝑚𝑖𝑛∑(
𝐷𝑗𝐴𝑗𝑆

𝑄𝑗
+
𝐷𝑗𝐴𝑗𝐵

𝑄𝑗
)

𝑗∈𝐽

+∑ℎ𝑗𝐵

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

+∑

(

 
𝜋2𝑏𝑗

2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)

+
𝜋1𝑏𝑗𝐷𝑗

𝑄𝑗
)

 + 𝑤(𝐹 −∑(𝑓𝑗𝑄𝑗 (1 −
𝐷𝑗

𝑃𝑗
) − 𝑏𝑗)

𝑗∈𝐽

)

𝑗∈𝐽

 

 

(10) 

𝑍2 = 𝑚𝑖𝑛

(

 
 
𝛾0 +∑𝛾𝑗

(

 
 
[𝑄𝑗 (1 −

𝐷𝑗
𝑃𝑗
)]
2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)
)

 
 

𝑗∈𝐽

+ 𝜃0 +∑∑𝜃𝑖𝑍𝑖𝑗
𝐷𝑗

𝑃𝑗
𝑗∈𝐽𝑖∈𝐼

)

 
 

 (11) 

𝑝𝑟𝑜𝑏

{
 

 
∑

(

 
𝜋2𝑏𝑗

2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)

+
𝜋1𝑏𝑗𝐷𝑗

𝑄𝑗
)

 ≤ 𝑀𝐴𝐵𝐶

𝑗∈𝐽
}
 

 
≥ 𝛼 (12) 

𝑝𝑟𝑜𝑏{∑(𝑓𝑗𝑄𝑗 (1 −
𝐷𝑗

𝑃𝑗
) − 𝑏𝑗)

𝑗∈𝐽

≤ 𝐹} ≥ 𝛼 (13) 

𝑝𝑟𝑜𝑏{∑(
𝐷𝑗

𝑄𝑗
)

𝑗∈𝐽

≤ 𝑁𝑜𝑟𝑑𝑒𝑟} ≥ 𝛼 (14) 
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𝑝𝑟𝑜𝑏{∑(𝐶𝑗𝑄𝑗)

𝑗∈𝐽

≤ 𝐵𝑢𝑑𝑔𝑒𝑡} ≥ 𝛼 (15) 

𝐿𝑗 ≤ 𝑄𝑗 ≤ 𝑈𝑗 ∀ 𝑗 ∈ 𝐽 (16) 

𝑏𝑗 ≤ 𝑄𝑗 ∀ 𝑗 ∈ 𝐽 (17) 

𝑄𝑗 ≤∑𝑍𝑖𝑗
𝑖∈𝐼

 ∀ 𝑗 ∈ 𝐽 (18) 

∑𝑍𝑖𝑗 ≤ 𝑐𝑎𝑝𝑖
𝑗∈𝐽

 ∀ 𝑖 ∈ 𝐼 (19) 

𝑄𝑗, 𝑍𝑖,𝑗 > 0 ∀ 𝑗 ∈ 𝐽, ∀ 𝑖 ∈ 𝐼  (20) 

𝑏𝑗 ≥ 0 ∀ 𝑗 ∈ 𝐽 (21) 

 
   The first objective function (1) aims to minimize the total cost of VMI chain including ordering 

cost, holding cost, fixed and linear backordering costs and unused storage space cost, respectively. 

The second objective in Equation (11) aims to minimize the total amounts of GHGs emissions, 
including the amounts of greenhouse gases emissions in holding products in warehouse and the 

amounts of greenhouse gases emissions in transporting products by trucks from vendor to buyer, 

respectively. Equation (12) is a stochastic backordering costs constraint, where we assume that the 

backordering costs follow a normal distribution with mean µ𝑀𝐴𝐵𝐶  and standard deviation 𝜎𝑀𝐴𝐵𝐶 . To 

put it another way, this constrain becomes: 

∑

(

 
𝜋2𝑏𝑗

2

2𝑄𝑗 (1 −
𝐷𝑗
𝑃𝑗
)

+
𝜋1𝑏𝑗𝐷𝑗

𝑄𝑗
)

 

𝑗∈𝐽

+ 𝑍𝛼𝜎𝑀𝐴𝐵𝐶 ≤ µ𝑀𝐴𝐵𝐶  

 (22)                                                 

 

   Where, 𝑍𝛼 is the upper 𝛼-percentile point of the standard normal distribution. In equation (13) 
storage space constraint is considered stochastic, because in some cases, the supplier tends to lease 

warehouse to storage his products, but there may be uncertainty in the amount of storage space for 

storing products or the supplier may be the owner of the warehouse and tends to produce other 
products and store them in storage, in addition to the current products or he may be desirable to use 

part of the warehouse space for other activities, such as production besides storing products, there are 

uncertainty in the above conditions. Therefore, the storage space constraint can be considered 
stochastic, and similar to the previous constraint it becomes: 

∑(𝑓𝑗𝑄𝑗 (1 −
𝐷𝑗

𝑃𝑗
) − 𝑏𝑗)

𝑗∈𝐽

+ 𝑍𝛼𝜎𝐹 ≤ µ𝐹 
   (23)                                                 

 

   In equations (14) and (15) budget and the number of orders constraints are considered stochastic and 
similar to equation (12) we have: 

 

∑(𝐶𝑗𝑄𝑗)

𝑗∈𝐽

+ 𝑍𝛼𝜎𝐵𝑢𝑑𝑔𝑒𝑡 ≤ µ𝐵𝑢𝑑𝑔𝑒𝑡  
   (24)                                                 

∑(
𝐷𝑗

𝑄𝑗
)

𝑗∈𝐽

+ 𝑍𝛼𝜎𝑁𝑜𝑟𝑑𝑒𝑟 ≤ µ𝑁𝑜𝑟𝑑𝑒𝑟  
   (25) 

   Equation (16) indicates the bounds on the buyer’s order quantity of product 𝑗. Equation (17) ensures 

that the maximum backorder level of product 𝑗 in a cycle should be equal or less than the quantity of 

the buyer's orders. Equation (18) guarantees that 𝑗th product carried by 𝑚 trucks should be more than 

or equal to the buyer's order quantity of product 𝑗. Equation (19) indicates the limited capacity of 

trucks. Equations (20) and (21) limit the decision variables of the model. The goal is to find the 

economic order quantity of product 𝑗 (𝑄𝑗), the maximum backorder level of product 𝑗 (𝑏𝑗), and the 
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total amount of product 𝑗 shipped by truck 𝑖 (𝑍𝑖𝑗), in a cycle of VMI chain, such that the total cost of 

the VMI chain in the first objective described in equation (10), and the total greenhouse gases 

emissions in the second objective function given in equation (11) are minimized, while the model 

constraints are satisfied. 
 

5- The proposed solution methods  
   In numerous decision-making problems in real environment, we will be faced with a variety of goals 

and criteria, and all these goals and criteria could be proposed in the multi-criteria decision making 

space. A multi-objective optimization problem is a subset of a multi-criteria decision making in an 
uncountable (continuous) space. The proposed model in section 4.5 is a constrained multi-objective 

problem. Multi-objective problems are relevant to the optimization of multiple (vector of objectives), 

conflicting, and incommensurable objective functions issue to limit exposing the application of multi-
objective optimization problems. Since both objective functions aim to minimize the problem, the 

multi-objective optimization problem can be formulated as follows: 

min {𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑘(𝑥)} (26) 

𝑋𝑅𝑛 (27) 

Subject to:  

𝑋𝑥                                   (𝑋 is a feasible set; 𝑋 is unrestricted in sign) (28) 

𝑘 ≥ 2                                  (The number of objectives) (29) 

 

   Where 𝑘 determines the number of objectives by assuming that 𝑘 is equal or more than 2, and the 

set 𝑥 is the feasible set of decision vectors. In order to optimize different and sometimes conflicting 

objective functions simultaneously, there are two general approaches: It can be used by combining the 

values of different objective functions and obtaining a fitness value, and eventually converting the 
problem into a single-objective function, or it is possible to use Pareto optimal solution to obtain 

answers that optimize the objective functions in a way that guarantee the rationality of a decision. 

There are different methods to solve multi-objective optimization problems such as multi-objective 

decision making (MODM) techniques, non-dominated sorting genetic algorithm-II (NSGA-II), multi-
objective particle swarm optimization (MOPSO), strength Pareto evolutionary algorithm (SPEA-2), 

etc. In this research, MODM techniques are used to convert the multiple objectives into a single 

objective optimization problem. 

5-1- MODM techniques 
   Generally, approaches used in multi-objective decision-making methods are based on the time and 

type of information received from decision makers, and are classified into four categories: in the first 

category, there are methods that don't receive information from decision makers during the resolution 
process, the LP metrics, global criteria, the Maxi-Min and the Filtering/displaced ideal solution (DIS) 

are placed in this category. The approach used in the second category consists of the goal 

programming, the lexicography/preemptive optimization, converting objectives into constraints, the 
goal attainment and the utility function that begins by getting initial information from the decision 

maker before solving the problem. In the third category, the analyst obtains information from the 

decision maker, interactively during the problem solving process, including Geoffrion method and 

satisfactory goals method. In the fourth category information, the preferences of decision maker for 
different solution methods will be achieved at the final stages of the resolution process, consists of the 

multi-criteria simplex method, the minimum deviation method, and the De Novo programming. In 

this section, there are three multi objective decision making (MODM) techniques, including LP-
metrics, Goal attainment and Multi-choice goal programming with utility function. All of these 

methods are solved by a non-linear programming solver (i.e., Baron Solver) in Gams software. 

 

5-1-1- Goal attainment 

   In this section, goal attainment method of Gembicki (1994), which is the modified form of the goal 

programming method is utilized to solve the multi-objective problem. In this technique, similar to the 
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goal programming method, the desirable solution is affected by the vector of goal and the vector of 
weighting specified by the decision maker. In contrast to the interactive multi-objective methods, 

Goal attainment technique is a one-stage approach which works with fewer variables. Thus, compared 

to other methods, this method has less computational complexity. Consequently, due to the high 

capability of this method in terms of computational time, it is one of the best MODM methods to 
solve our green VMI supply chain problem in the form of nonlinear program. Goal attainment 

technique has been successfully implemented to solve a number of real-world multi-objective 

optimization problems in reliability optimization (Azaron et al., 2007a), project management (Azaron 
et al., 2007b) and production systems (Azaron et al., 2006), and we use this technique to solve the 

stochastic green VMI supply chain problem. This method demonstrates a set of designed goals 𝐹∗ =
{𝐹1

∗, 𝐹2
∗,… , 𝐹𝑘

∗} which is associated with a set of objectives, 𝐹(𝑥) = {𝐹1(𝑥), 𝐹2(𝑥), … , 𝐹𝑘(𝑥)}. This 

method involves setting up a goal and weight, 𝑏𝑖 and 𝑤𝑖 (𝑤𝑖 ≥ 0), for 𝑖=1,2, for the two introduced 

objective functions. The 𝑤𝑖 described the relative under-attainment of the 𝑏𝑖. For under-attainment of 

the goals, a smaller 𝑤𝑖 is related to the more significant objectives. When 𝑤𝑖 reaches 0, then the 

objective function associated with, must be fully satisfied or the associated objective function value 

should be less than or equal to its goal 𝑏𝑖. The general mathematical formulation of this method 

obtained by: 

min𝑍 (30) 

Subject to:  

𝐹𝑖(𝑥) − 𝑤𝑖𝑍 ≤ 𝑏𝑖 (31) 

𝑖 = 1,2, … , 𝑘 (32) 

𝑋𝑥                        ( x is a feasible set; X  is unrestricted in sign( (33) 

𝑘 is the number of objectives, 𝐹𝑖(𝑥) is the 𝑖th objective function, 𝑍 is the free variable of the 

problem that indicates the maximum objective deviation from the goal and must be minimized, 𝑤𝑖 is 

the normalized weight of the 𝑖th objective function, so that ∑ 𝑤𝑖
𝑘
𝑖=1 = 1, and 𝑏𝑖 is the ideal solution 

for the 𝑖th objective function.  In fact, this method is a min-max method that minimizes the maximum 

objective deviation from the goal. The optimal solution using this formulation is sensitive to 𝑏 and 𝑤. 

According to the values for 𝑏, it is possible that the optimal solution is not influenced remarkably by 

𝑤. 

 

5-1-2- Multi-Choice Goal Programming with Utility Function (MCGP-U) 
   We use multi-choice goal programming with utility function (MCGP-U) technique, which is a 

combination of multi-Choice Goal programming and utility function approaches to solve the multi-

objective problem presented by Chang (2011) for the first time. This method, presented a novel theory 
of level achieving in the utility functions to substitute the aspiration level with scalar value in classical 

goal programming (GP) and multi-choice goal programming (MCGP) for multiple objective 

problems. Also, this method can be used as measuring tools to give assistance to decision makers 
make the best/suitable policy associated with their goals with the highest level of utility obtained. 

Moreover, it can improve the practical utility of MCGP in solving more real-world 

decision/management problems. It is for the first time that we use this technique to solve a multi-

objective stochastic green VMI supply chain problem. In this method, according to the type of 
objective functions of problem, left linear utility function (LLUF) and right linear utility function 

(RLUF) are used. In this research based on the objective functions, we use LLUF to formulate 

MCGP-U. Therefore, we have: 

min𝑍 =∑[𝑤𝑖(𝑑𝑖
+ + 𝑑𝑖

−) + 𝛽𝑖𝑓𝑖
−]

𝑘

𝑖=1

 

(34) 

Subject to:  

𝜆𝑖 ≤
𝑔𝑖,𝑚𝑎𝑥 − 𝑦𝑖

𝑔𝑖,𝑚𝑎𝑥 − 𝑔𝑖,𝑚𝑖𝑛
 𝑖 = 1,2, … , 𝑘 (35) 

𝑓𝑖(𝑥) − 𝑑𝑖
+ + 𝑑𝑖

− = 𝑦𝑖 𝑖 = 1,2, … , 𝑘 (36) 

𝑔𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑔𝑖,𝑚𝑎𝑥 𝑖 = 1,2, … , 𝑘 (37) 

𝜆𝑖 + 𝑓𝑖
− = 1 𝑖 = 1,2, … , 𝑘 (38) 
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𝑑𝑖
+, 𝑑𝑖

−, 𝑓𝑖
− , 𝜆𝑖 ≥ 0 𝑖 = 1,2, … , 𝑘 (39) 

𝑋𝑥 (𝑥 is a feasible set; 𝑋 is unrestricted in sign( (40) 

   Where 𝑑𝑖
+ and 𝑑𝑖

− are the positive and negative deviations attached to the 𝑖th goal. 𝑤𝑖  and 𝛽𝑖 are 

weights attached to deviations 𝑑𝑖
+, 𝑑𝑖

−and 𝑓𝑖
−. 𝑦𝑖 is the continuous variable with a range of interval 

values 𝑔𝑖,𝑚𝑖𝑛 ≤ 𝑦𝑖 ≤ 𝑔𝑖,𝑚𝑎𝑥, 𝑔𝑖,𝑚𝑎𝑥 and 𝑔𝑖,𝑚𝑖𝑛 are the upper and lower bounds of 𝑦𝑖. 𝜆𝑖 is the utility 

value of the 𝑖th goal and 𝑘 is the number of objective functions.  

 

5-1-3- Linear Programming-metrics method (LP-metrics) 
   As the model proposed by current study is a multi-objective, non-linear programming model with 

conflicting objective functions, it was decided to apply the LP-metrics method that is useful and 

simple in execution introduced by Zeleny (1982), Duckstein & Opricovic (1980) and Szidarovszky et 
al. (1986). So far, several multi criteria decision making (MCDM) methods have been developed and 

investigated to solve multi-objective problems with inconsistent objective functions. One of the 

reasons we used the LP-metrics method is that LP-metrics approach is one of the well-known methods 

and widely used for solving the problems of this kind. In the Linear Programming (LP)-metrics 
method, a multi-objective problem is solved by optimizing each objective function separately, and 

then converting the problem to a single-objective optimization. By using LP-metrics method, the 

difference between any present solutions and the optimal solution are minimized (Branker et al., 
2008). The mathematical formulation of this method is defined by: 

𝑚𝑖𝑛 𝑍 = (∑𝑤𝑖 |
𝐹𝑖(𝑥) − 𝐹𝑖

∗

𝐹𝑖
∗ |

𝑝𝑘

𝑖=1

)

1/𝑝

 

(41) 

Subject to:  

𝑋𝑥                                                                                     For 1 ≤ 𝑝 ≤   (42) 

(𝑥 is a feasible set; 𝑋 is unrestricted in sign(  

𝑘 represents the number of objective functions, 𝐹𝑖(𝑥) is the 𝑖th objective function, 𝐹𝑖
∗ presents the 

ideal solution for optimizing the 𝑖th objective function. 0 ≤ 𝑤𝑖 ≤ 1 (∑ 𝑤𝑖
𝑘
𝑖=1 = 1) represents the 

relative weight of components involved in the objective function (Mirzapour et al., 2011). The value 

of 𝑤𝑖 are given by decision maker’s measures. 𝑝 is a parameter that controls the deviation of the 

objective function from the ideal solution. There are different values for 𝑝. values 1, 2 or ∞ are 

usually considered for it. The value of 𝑝 demonstrates the type of metric. For 𝑝=1, we obtain the 

Manhattan metric and for 𝑝=∞, we obtain the Tchebycheff metric. In this study, we consider 𝑝=1. 

Whatever the amount of 𝑝 is considered lower, the problem shows the lower sensitivity to the 

difference from the optimal level. According to the above mathematical formulation mentioned, 

single objective function of our model (𝑍) can now be formulated by: 

𝑚𝑖𝑛 𝑍 = 𝑤1 ×
𝐹1 − 𝐹1

∗

𝐹1
∗ + 𝑤2 ×

𝐹2 − 𝐹2
∗

𝐹2
∗  

(43) 

   By considering this single objective function and our model constraints, a single-objective, non-
linear programming model can be acquired and solved by a non-linear programming solver (i.e., 

Baron Solver) in Gams software. It is noted that the 𝐹1 and 𝐹2 minimize the first and second objective 

functions, respectively. 𝐹1
∗ and 𝐹2

∗ are the ideal solution for optimizing the first and second objective 

functions, respectively.  𝑤1 and 𝑤2 represent the relative weights of the first and second objective 
functions, respectively. 

 

6- Computational results, comparisons and sensitivity analysis 
   In this section, first, three mentioned approaches are implemented on a set of 30 test problems, and 

then are compared in terms of the three comparison criteria, including the first objective function, the 
second objective function, and computational time (CPU time). Afterward, statistical analysis and 

MCDM approach that aim to specify significant differences among the proposed algorithms are 

applied. Finally, sensitivity analysis is investigated.  
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6-1- Comparison results 
   Referring to Roozbeh Nia et al. (2015), different dimensions and parameter values of the numerical 

example are used to solve the model presented in table 2 and table 3, respectively. It should be noted 

that we use uniform distribution to produce data in table 3. In order to evaluate and compare three 
proposed methods, 30 test problems in different sizes are designed and three mentioned methods are 

implemented to obtain solutions in terms of three considered evaluation criteria that shown in table 4. 

The results in this table show that in average, LP-metrics, MCGP-U, and Goal attainment have the 
best performance in terms of the first objective function, the second objective function, and CPU time 

criteria, respectively. Note that the solving methods are implemented using GAMS/Baron software 

(win32, 24. 1. 2) on a pc with 2.2 GHz Intel Core 2 Duo CPU, and 4 GB of RAM memory.  In 

addition, the performance of methods in the first and second objective function and CPU time is 

shown in figures 1, 2, and 3, respectively. 

Table 2. Numerical examples with different dimensions 

Numerical examples 𝑖, 𝑗 Numerical examples 𝑖, 𝑗 

1 20,60 16 10,55 

2 20,50 17 10,55 

3 20,90 18 10,55 

4 20,90 19 10,50 

5 20,80 20 5,50 

6 20,80 21 5,50 

7 20,80 22 20,120 

8 10,70 23 20,120 

9 10,70 24 20,115 

10 10,70 25 20,115 

11 10,65 26 20,115 

12 10,65 27 20,110 

13 10,60 28 20,110 

14 10,60 29 15,100 

15 10,60 30 15,100 

 

Table 3. Parameters and values 

Parameters values 

𝐿𝑗 Uniform (5,40) 
 

𝑈𝑗 Uniform (100,700) 
 

𝐷𝑗 Uniform (800,1700) 
 

𝐴𝑗𝑆 Uniform (20,40) 
 

𝐴𝑗𝐵 Uniform (20,50) 
 

ℎ𝑗𝐵 Uniform (12,20) 

 

𝐶𝑗 Uniform (10,30) 
 

𝑃𝑗 Uniform (2000,10000) 
 

𝑓𝑗 Uniform (1,8) 
 

𝑐𝑎𝑝𝑖 Uniform (270,1000) 

 

𝜃𝑖 Uniform (10,40) 
 

𝛾𝑗 Uniform (20,50) 
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Table 4. Results of numerical examples solved by GAMS 

Solving 

method 

LP metric   Goal attainment   MCGP-U   

Numerical 

examples 

𝑍1 

 

 

𝑍2 

 

CPU 

Time (s) 

𝑍1 

 

𝑍2 

 

CPU 

Time (s) 

𝑍1 

 

𝑍2 

 

CPU Time 

(s) 

1 497503.819 41956.909 0.713 497281.207 42023.300 0.293 497544.298 41953.717 2.419 

2 285225.148 6421494.787 156.973 2660482.216 6410977.367 30.452 285225.017 6421429.249 233.586 

3 285225.188 6420006.530 356.142 2633906.054 6411036.490 20.333 285224.986 6419922.346 1.577 

4 285225.092 6419956.811 403.04 2630605.951 6411027.797 30.385 285224.986 6419913.709 126.591 

5 444007.422 5375525.963 89.018 1325442.241 5366821.106 23.012 444007.258 5375471.623 151.51 

6 470392.037 5376561.796 29.018 5644908.302 5367796.179 21.312 470376.651 5376557.854 251.507 

7 390761.542 5519270.829 32.86 10446190 5507671.460 6.067 390761.449 5519272.216 1015.507 

8 294533.779 2312938.579 15.192 1239844.509 2301869.429 0.828 294533.277 2312924.400 10.383 

9 465801.677 2309756.074 11.804 1406817.431 2301949.524 0.711 465801.565 2309752.004 6.5 

10 598948.419 2455511.201 2.774 3947421.679 2449238.167 1.04 598948.528 2455510.755 275.009 

11 599573.964 2365862.119 4.295 1359547.566 2359980.999 1.223 599573.882 2365862.595 44.463 

12 609400.659 2366186.028 8.172 1325927.326 2360397.351 1.161 609401.068 2366182.614 3.23 

13 588196.451 2215253.818 7.178 1151763.518 2209510.370 0.929 588196.661 2215252.907 0.286 

14 632183.901 2473558.371 4.933 1260565.547 2468433.514 0.851 632184.288 2473556.389 11.308 

15 819956.754 2472378.858 7.037 1509162.383 2467737.941 0.844 819957.055 2472377.968 136.53 

16 827321.593 2227418.254 3.611 1438533.321 2223334.743 0.86 827319.093 2227431.574 63.071 

17 929322.380 2816967.189 8.291 2625414.644 2812859.743 0.948 2816977.586 929319.509 5.127 

18 1083425.026 2817132.655 4.758 1852411.734 2812859.743 0.694 1083425.328 2817131.660 4.214 

19 1074836.123 2548684.732 4.13 1884736.185 2544782.500 0.615 1074837.274 2548681.978 6.629 

20 1074843.897 2549628.538 2.337 1903194.241 2545715.201 0.82 1074837.154 2549638.583 5.667 

21 1211859.410 1388304.383 2.158 2197318.814 1380857.711 0.719 1211859.675 1388304.094 1.831 

22 1566046.920 11454140 261.82 3300667.421 11450030 129.392 1566046.964 11454140 4.084 

23 1121775.034 11033200 261.402 2857830.085 11031120 45.781 1121775.157 11033200 3.259 

24 1110984.63 10802680 148.221 2607595.457 10800680 48.69 1110984.753 10802670 4.982 

25 800249.448 10375600 27.691 1441142.69 10371450 19.729 800250.010 10375560 2.666 

26 324858.316 10808010 618.25 1618208.364 10800640 41.734 500000.534 10803330 6.147 

27 345709.184 10087640 806.314 1658671.977 10080510 2.143 500002.521 10083210 4.218 

28 703409.567 10466280 242.618 1378994.486 10461130 3.103 2228247.130 10461220 2.833 

29 770031.498 7814799.983 30.625 1495752.920 7808788.46 0.941 770038.555 7814770.875 8.383 

30 1026810.535 7814274.665 47.173 1900040.943 7807700.871 29.796 1026817.473 7814247.727 2.842 

Average 117.6039 5398879 718233.2 15.97426 5392795 2293562 77.39358 5337518 838941.9 

 

  
Fig 1. Results of LP-metrics, Goal attainment and MCGP-U methods in first objective function 
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Fig 2. Results of LP-metric, Goal attainment and MCGP-U methods in second objective function 

 

 
Fig3. Results of LP-metric, Goal attainment and MCGP-U methods in CPU time (s) 

 

 

6-1-1- Comparison based on MADM technique 

In this section, the technique for order preference by similarity to ideal solution (TOPSIS) is 
employed to compare three solving methods by using the first objective function, the second objective 

function and CPU time criteria, in order to find a method with the best performance. 

6-1-1-1- The technique for order preference by similarity to ideal solution (TOPSIS) 

The technique for order preference by similarity to ideal solution which first was introduced by 
Hwang & Yoon (1981) and developed by Yoon (1987) and Hwang et al. (1993), is one of the multi-

criteria decision-making methods which is used to rank a set of alternatives, and choose the best 

alternative which have the farthest distance from the negative-ideal solution and the shortest distance 

from the positive-ideal solution. Positive-ideal solution seeks to minimize the cost criteria or 
maximize the profit criteria. On the other hand, the negative-ideal solution seeks to maximize the cost 

criteria or minimize the benefit criteria. The TOPSIS method consists of six steps which are explained 

below. 
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Table 5. The means of results prepared by algorithms 

 𝑍1 𝑍2 CPU time (s) 

LP-metric 718233.2 5398879 117.6039 

Goal attainment 2293562 5392795 15.97426 

MCGP-U 838941.9 5337518 77.39358 

 

 
1. The first step 

   To compare the alternatives LP-metrics, Goal attainment and MCGP-U, the means of four criteria 

presented in table 5, should be normalized using Euclidean norm which calculated in equation (44). 

𝑛𝑖𝑗 =
𝑟𝑖𝑗

√∑ 𝑟𝑖𝑗
23

𝑖=1
2

 
𝑗 = 1,2,3 

 

(44) 

 

Where 𝑖 and j are the indices related to the alternatives and attributes, respectively. 𝑛𝑖𝑗 is a 

normalized score for 𝑖th alternatives and jth attributes, 𝑟𝑖𝑗 is the score for the 𝑖th alternatives, 

according to the 𝑗th attributes. The normalized values are presented in table 6. 

Table 6. The normalized values 

 𝑍1 𝑍2 CPU time (s) 

LP-metric 0.282146273 0.579756846 0.830017474 

Goal attainment 0.900988662 0.579103518 0.112742136 

MCGP-U 0.32956473 0.573167615 0.546223584 

 

2. The second step 

   According to the weights assigned to the attributes in table 7, the normalized scores are weighted, in 

which the equal weights are considered for three attributes. 

Table 7. The weighted normalized values 

 𝑍1 𝑍2 CPU time (s) 

LP-metric 0.094048758 0.193252282 0.276672491 

Goal attainment 0.300329554 0.193034506 0.037580712 

MCGP-U 0.10985491 0.191055872 0.182074528 

 

 

3. The third step 

     Positive-ideal and negative-ideal solutions are calculated based on the normalized weighted values, 

so that 𝐴+=[0.094048758, 0.191055872, 0.037580712] is the best value of the jth attribute among all 

alternatives and 𝐴−=[0.300329554, 0.193252282, 0.276672491] is the worst value of the jth attribute 

among all alternatives.  

4. The fourth step 
   The Euclidean distances of each alternative from the positive-ideal and negative-ideal solutions are 

shown in table 8 which calculated as follows: 

𝑑𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

3

𝑗=1

 

 

𝑖 = 1,2,3 

 

(45) 
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𝑑𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

3

𝑗=1

 

 

𝑖 = 1,2,3 

 
(46) 

   Where, 𝑑𝑖
+ is the Euclidean distances of each alternative from the positive-ideal solutions, 𝑑𝑖

− is the 

Euclidean distances of each alternative from the negative-ideal solutions, 𝑣𝑖𝑗 is the normalized 

weighted values, 𝑣𝑗
+  is the vector of the best values of each attribute, and 𝑣𝑗

− is the vector of the worst 

values of each attribute. 

Table 8. The distance of alternatives from the positive-ideal and negative-ideal solutions 

 Positive-ideal solutions  Negative-ideal solutions 

LP-metric Distance 0.239101868  0.206280796 

Goal attainment Distance 0.206290286  0.239091878 

MCGP-U Distance 0.145355761  0.212683307 

 

5. The fifth step 

   Finally, in order to rank alternatives, the closeness index (𝐶𝐿+) for each alternative is calculated in 

table 9 by using equation (47). 

𝐶𝐿+ =
𝑑𝑖
−

𝑑𝑖
−+𝑑𝑖

+    (47) 

𝐶𝐿+ determines the closeness of each alternative from the ideal solution, so the alternative with the 

highest 𝐶𝐿+ has the best performance and should be selected as the best alternative. As 𝐶𝐿+ for LP-

metrics, Goal attainment and MCGP-U are 0.463154, 0.536824, and 0.594023, respectively, it can be 

concluded that MCGP-U has better efficiency than Goal attainment and LP-metrics, and Goal 
attainment has better performance than LP-metrics. It should be noted that bigger values of the three 

mentioned criteria are preferred.  

Table 9. Results of TOPSIS method 

 LP-metrics  Goal attainment  MCGP-U 

TOPSIS 0.463154 ≤ 0.536824 ≤ 0.594023 

 

6-1-2- Statistical analysis 
   In this section, the differences between the three presented methods in terms of the means of the 

employed criteria are statistically investigated. For each criterion, a single-factor analysis of variance 

(ANOVA) is utilized to test the equality of the means of criterion gained by the methods against the 
inequality of the means in order to specify whether there are significant differences between the 

solution methods in terms of the employed criteria when the standard deviations are uncertain. In each 

experiment, the two hypotheses are: 

{
𝐻0: µ1 = µ2 = µ3
𝐻1: µ1 ≠ µ2 ≠ µ3

 
(48) 

  

   On the one hand, the null hypothesis in (48), representing the equality of the means of the methods 
in terms of a particular criterion, indicates no significant differences between them. On the other hand, 

the opposite situation is speculated by alternative hypothesis in (48). In this paper, the MINITAB 

software is employed to execute the Tukey’s test. Three ANOVA experiments are designed according 

to the data results in Table 4, each for one criterion.  

6-1-2-1- First objective function criterion 
Table 10 provided the outputs of the single-factor analysis of variance by the Tukey’s multiple 

comparison tests for the first objective function (𝑍1) criterion.  
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Table 10. Single-factor analysis of variance by the Tukey’s multiple comparison tests for the first objective 

function criterion 

Source DF Adjusted SS Adjusted MS F-value p-value Test result 

Method 2 4.74418×1013 2.37209×1013 18.71 0.000 null 

Error 87 1.10292×1014 1.2677×1012 ---- ---- hypothesis 

Total 89 1.57734×1014 ---- ---- ---- is rejected 

   Confidence 

level = 95% 

   

 

According to table 10, the p-value resulted from ANOVA, is less than 0.05. This implies that null 
hypotheses of equality of the first objective function is rejected at 95% confidence level, and 

significant differences are existed between the performances of LP-metrics, Goal attainment and 

MCGP-U methods in terms of the first objective function. In this case, when the solution methods 
generate significantly different outcome, in order to find out how the solution methods vary from each 

other, a post hoc analysis, such as the Tukey’s multiple comparison test is performed (Montgomery et 

al., 1973). Table 11 displays the ranking of the solution methods in terms of the first objective 

function, according to the results of Tukey’s test. 

Table 11. Ranking the solution methods in terms of the first objective function criterion 

Method N Mean Rank St Dev 95% CI Grouping 

Goal 

attainment 

30 2306679 

 

3 1835059 

 

(1898094,2715264) A 

LP-metrics 30 707947 1 336925 (299362,1116532) B 

MCGP-U 30 832679 2 567635 (424094,1241264) B 

According to the results obtained by table 11, LP-metrics and MCGP-U are in the same group and 

Goal attainment is different from them. That means there is no significant difference between the LP-

metrics and MCGP-U in terms of the first objective function, but significant differences are existed 

between the Goal attainment and two other solution methods in terms of the first objective function. 
Also, since lower value of the first objective function is preferred, the results of table 11 indicate that 

LP-metrics has remarkably the best performance in terms of the first objective function criterion 

among the mentioned solution methods. The results of the Tukey’s multiple comparison tests in an 
analogical manner are expressed in figures 4 and 5. Figure 4 depicts the lower and upper limits of the 

criteria generated by each solution method presented in box plots. Basically, if the boxes do not cross 

each other, a significant difference is existed between the solution methods. According to figure 4, 
since significant overlap exists between the boxes related to LP-metrics and MCGP-U, there is no 

significant difference between them, but, as no overlap is observed between the boxes of the Goal 

attainment and two other mentioned solution methods, significant differences are existed between the 

Goal attainment and two other mentioned solution methods in terms of the first objective function 
criterion. According to figure 5, if an interval does not contain zero, the corresponding methods are 

significantly different. As a result, Goal attainment is significantly different from LP-metrics and 

MCGP-U in terms of the first objective function criteria, but there is no significant difference between 
LP-metrics and MCGP-U in terms of the first objective function criterion. It can be concluded that 

LP-metrics and MCGP-U are in the same group.  
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Fig 4. Boxplot of the average of the first objective function of the solution methods 

 
Fig 5. Tukey’s simultaneous 95 percent intervals for the first objective function comparison 

 

  

6-1-2-2- Second objective function criterion 

Table 12 provided the outputs of the single-factor analysis of variance by the Tukey’s multiple 

comparison test for the second objective function (𝑍2) criterion. 

Table 12. Single-factor analysis of variance by the Tukey’s multiple comparison tests for the second objective 

function criterion 

 Source DF Adjusted SS Adjusted MS F-value p-value Test result 

Method 2 73447785230 36723892615 0.00 0.997 null 

Error 87 1.12971×1015 1.29645×1013 ---- ---- hypothesis 

Total 89 1.12798×1015 ---- ---- ---- is not 

rejected 

   Confidence 

level = 95% 

   

   According to table 12, the p-value resulted from the ANOVA is more than 0.05, expressing that null 
hypotheses of equality of the first objective function is not rejected at 95% confidence level, and 

significant differences are not existed between the performances of LP-metrics, Goal attainment and 
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MCGP-U methods in terms of the second objective function. Table 13 displays the ranking of the 

solution methods in terms of the second objective function, according to the results of Tukey’s test. 

Table 13. Ranking the solution methods in terms of the second objective function criterion 

Method N Mean Rank St Dev 95% CI Grouping 

Goal 

attainment 

30 5312298 

 

2 3580247 (4005683,6618912) 

 

A 

LP-metrics 30 5318366 3 3580219 (4011751,6624981) A 

MCGP-U 30 5254960 1 3641052 (3948345,6561574) A 

   Based on the results obtained by table 13, all of the solution methods are in the same group and that 

means there is no significant difference between them. Also, since lower value of the second objective 

function is preferred, the results of table 13 indicate that MCGP-U has remarkably the best 
performance in terms of the second objective function criterion among the mentioned solution 

methods. Figures 6 and 7 express the results of the Tukey’s multiple comparison tests in an analogical 

manner. According to figure 6, since the boxes cross each other, a significant difference is not existed 
between the solution methods. According to figure 7, since an interval contains zero, there is no 

significant difference between the three methods in terms of the second objective function criterion. 

 

Fig 6. Boxplot of the average of the second objective function of the solution methods 

 

Fig 7. Tukey’s simultaneous 95 percent intervals for the second objective function comparison 

 

6-1-2-3- CPU time criterion 

   Table 14 provides the outputs of the single-factor analysis of variance by the Tukey’s multiple 

comparison tests for the CPU time criterion.  
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Table 14. Single-factor analysis of variance by the Tukey’s multiple comparison tests for the CPU time criterion 

Source DF Adjusted SS Adjusted MS F-value p-value Test result 

Method 2 166560 83280 3.20 0.046 null 

Error 87 2264653 26030 ---- ---- hypothesis 

Total 89 2431214 ---- ---- ---- is rejected 

   Confidence 

level = 95% 

   

    According to table 14, p-value resulted from the ANOVA is less than 0.05 indicating that null 

hypotheses of equality of the CPU time is rejected at 95% confidence level, and significant 

differences exist between the performances of LP-metrics, Goal attainment, and MCGP-U methods in 

terms of the CPU time. So, the Tukey’s multiple comparison test is performed to find out how the 
solution methods vary from each other. According to the results of Tukey’s test, table 15 displays the 

ranking of the solution methods in terms of the CPU time  

Table 15. Ranking the solution methods in terms of the first objective function criterion 

Method N Mean Rank St Dev 95% CI Grouping 

Goal 

attainment 

30 15.51 

 

1 26.47 (-43.03, 74.06) A 

LP-metrics 30 120.0 3 198.9 (61.4, 178.5) B 

MCGP-U 30 79.9 2 194.5 (21.3, 138.4) A,B 

   According to the results obtained by table 15, LP-metrics and MCGP-U are in the same group, 
whereas Goal attainment and MCGP-U are in the same group. That means there is no significant 

difference between the LP-metrics and MCGP-U function in terms of CPU time criterion. Also, 

significant differences are not existed between the Goal attainment and MCGP-U in terms of CPU 

time, but there are significant differences between the Goal attainment and LP-metrics, and they are 
not in the same group. Also, since lower value of the CPU time is preferred, the results of table 15 

indicate that Goal attainment has remarkably the best performance in terms of the CPU time criterion 

among the mentioned solution methods. Figures 8 and 9, express the results of the Tukey’s multiple 
comparison tests in an analogical manner. According to figure 8, since significant overlap exists 

between the boxes related to LP-metrics and MCGP-U, there is no significant difference between 

them. Also, figure 8 shows that there is no significant difference between Goal attainment and 

MCGP-U. In contrast, based on figure 8, as no overlap is observed between the boxes of the Goal 
attainment and LP-metrics, significant differences are existed between them in terms of the CPU time 

criterion. Figure 9, expresses the same conclusion as well as figure 8.  

 

Fig 8. Boxplot of the average of the CPU time of the solution methods 
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Fig 9. Tukey’s simultaneous 95 percent intervals for the second objective function comparison 

 

6-3- Sensitivity analysis 
   In this section, sensitivity analysis is used to investigate the effects of some changes of parameters 
of model on the first and second objective functions. For this purpose, changes in parameters 

including:  µ𝑁𝑜𝑟𝑑𝑒𝑟 , 𝜎𝑁𝑜𝑟𝑑𝑒𝑟
2 , µ𝐹 , 𝜎𝐹

2, µ𝑀𝐴𝐵𝐶  and 𝜎𝑀𝐴𝐵𝐶
2  are evaluated at -20%, -10%, +10%, +20% 

rates. GAMS software is used to perform sensitivity analysis. The results are presented in table 16 and 

figures 10-21.  

Table 16. Results of sensitivity analysis 

Parameters Change (%) 𝑍1 𝑍2 

 -20 1598655.273 778897.631 

 -10 1578420.159 778805.635 

µ𝑀𝐴𝐵𝐶 0 1559373.196 778718.743 

 +10 1541380.499 778634.769 

 +20 1524262.642 778553.457 

    

 -20 1559363.608 778718.719 

 -10 1559363.464 778718.124 

𝜎𝑀𝐴𝐵𝐶
2  0 1559373.196 778718.743 

 +10 1559391.427 778718.801 

 +20 1559395.934 778718.845 

    

 -20 1559373.196 778718.743 

 -10 1559373.195 778718.739 

µ𝐹  0 1559373.196 778718.743 

 +10 1559373.196 778718.743 

 +20 1559373.196 778718.743 

    

 -20 1559373.195 778718.739 

 -10 1559373.193 778718.730 

𝜎𝐹
2 0 1559373.196 778718.743 

 +10 1559373.196 778718.743 

 +20 1559373.196 778718.743 

    

 -20 1559373.194 778718.742 

 -10 1559373.196 778718.743 

  µ𝑁𝑜𝑟𝑑𝑒𝑟 0 1559373.196 778718.743 

 +10 1559373.196 778718.743 

 +20 1559373.196 778718.743 

    

 -20 1559373.193 778718.730 

 -10 1559373.196 778718.743 

𝜎𝑁𝑜𝑟𝑑𝑒𝑟
2  0 1559373.196 778718.743 

 +10 1559373.196 778718.743 

 +20 1559373.195 778718.738 
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Fig 10. Change in first objective function value by the changes in 𝜇𝑀𝐴𝐵𝐶 

 
Fig 11. Change in second objective function value by the changes in 𝜇𝑀𝐴𝐵𝐶 

 
Fig 12. Change in first objective function value by the changes in 𝜎𝑀𝐴𝐵𝐶

2   
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Fig 13. Change in second objective function value by the changes in 𝜎𝑀𝐴𝐵𝐶

2  

 
Fig 14. Change in first objective function value by the changes in 𝜇𝐹 

 
Fig 15. Change in second objective function value by the changes in 𝜇𝐹 
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Fig 16. Change in first objective function value by the changes in 𝜎𝐹

2 

 

 
Fig 17. Change in second objective function value by the changes in 𝜎𝐹

2 

 

 
Fig 18. Change in first objective function value by the changes in µ𝑁𝑜𝑟𝑑𝑒𝑟 
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Fig 19. Change in second objective function value by the changes in µ𝑁𝑜𝑟𝑑𝑒𝑟 

 
Fig 20. Change in first objective function value by the changes in 𝜎𝑁𝑜𝑟𝑑𝑒𝑟

2  

 

 
Fig 21. Change in second objective function value by the changes in 𝜎𝑁𝑜𝑟𝑑𝑒𝑟

2  

 

   According to table 16, figures 10-21 and the results of the sensitivity analysis, if we change the 

value of the mean of maximum allowable backordering cost (µ𝑀𝐴𝐵𝐶 ) parameter in the range of -20 to 
+20 percent, we will have a significant impact on the values of the first and second objective 

functions. In such a way, If the value of this parameter increases, the amount of the first and second 

objective functions will be reduced. In other words, there is an inverse relationship between the mean 

of maximum allowable backordering cost (µ𝑀𝐴𝐵𝐶 ) parameter and the first and second objective 
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functions. Another important parameter examined to specify its effects on the values of the first and 

second objective functions, is the variance of maximum allowable backordering cost (𝜎𝑀𝐴𝐵𝐶
2 ). If the 

value of the variance of maximum allowable backordering cost (𝜎𝑀𝐴𝐵𝐶
2 ) parameter is changed in the 

range of -20 to +20 percent, it will display different procedures, such that if the value of 𝜎𝑀𝐴𝐵𝐶
2  

increases, the value of the first objective function will be reduced, but the effect of changes of the 

values of 𝜎𝑀𝐴𝐵𝐶
2  on the second objective function is completely different, so that the increase in 

𝜎𝑀𝐴𝐵𝐶
2  values in the initial runs, leads to a decrease in the value of the second objective function, but 

in the subsequent runs, the trend is completely inverse. Therefore,  increasing the value of 

𝜎𝑀𝐴𝐵𝐶
2  parameter, leads to an increase in the value of the second objective function. So, we can say 

that there is an inverse relationship between the 𝜎𝑀𝐴𝐵𝐶
2  parameter and the first objective function, 

while about the second objective function, in the initial runs, the relation is inverse and in the 
subsequent runs there is a direct relation between them. The two other important parameters acting 

completely different from the other parameters are the mean of maximum storage space (µ𝐹) and the 

variance of maximum storage space (𝜎𝐹
2). The effects of the changes in these two parameters in the 

range of -20 to +20 percent on the two objective functions are completely the same. Changes in these 
two parameters have vibrational effects on the values of the first and second objective functions, and 

they do not have a stable trend. In the initial run, the increase of the two mentioned parameters 

reduces the values of the first and second objective functions, but over time, increasing the values of 
these two parameters will not have any effect on the first and second objective functions. The other 

examined parameter is the mean of maximum number of orders (µ𝑁𝑜𝑟𝑑𝑒𝑟). Increasing the value of this 

parameter will have the same effect on the first and second objective functions and leads to 

fluctuations in the values of the objective functions, such that the increase in the value of the µ𝑁𝑜𝑟𝑑𝑒𝑟  
parameter initially increases the first and second objective functions values, but in subsequent runs, it 

does not have any effect on the values of the objective functions. Therefore, by increasing the value of 

the µ𝑁𝑜𝑟𝑑𝑒𝑟  parameter, the values of the first and second objective functions increase and then their 
values are constant and without any changes. The last parameter we examined, is the variance of 

maximum number of orders (𝜎𝑁𝑜𝑟𝑑𝑒𝑟
2 ) parameter, which changes of this parameter have vibrational 

effects on the values of the first and second objective functions. If we increase the value of the 

𝜎𝑁𝑜𝑟𝑑𝑒𝑟
2 ,  initially the values of both objective functions will be increased. In the subsequent runs, it 

has no effect on the first and second objective functions, and in the end runs, the reverse effect is 

between this parameter and objective functions. As a result, it can be said that among the parameters 

considered in the sensitivity analysis, the µ𝑀𝐴𝐵𝐶  and 𝜎𝑀𝐴𝐵𝐶
2  parameters have significant effects on the 

first and second objective functions. In other words, the first and second objective functions are more 
sensitive to changes in the two mentioned parameters than others, while there is no logical relation 

between changes in other examined parameters and objective functions. 

7- Conclusions 
In this paper, a bi-objective multi-item multi-constraint economic production quantity model for a 

two-echelon single vendor-single buyer green supply chain under vendor-managed inventory policy 

was proposed to minimize the total cost of the VMI chain and greenhouse gases emissions, where 
backordering shortages were allowed. Our model offered the green policy, compared to the model 

propose by Pasandideh et al. (2014), aimed to reduce greenhouse gases emissions presented in second 

objective function. In other word, GHGs emissions released through transporting orders by trucks and 
holding them in warehouse must be reduced. In addition, more technical and physical constraints were 

presented to bring our mathematical model closer to reality using stochastic programming. The bi-

objective non-linear programming was solved by GAMS software using three multi-objective 

decision making (MODM) methods, namely LP-metrics, Goal attainment and MCGP-U. To show the 
application of the solution methods, 30 numerical examples with different sizes were proposed in 

terms of first and second objective functions criteria as well as CPU Time criterion. Statistical 

analysis and MCDM technique were used to compare and analyze the performance of proposed 
methodology. The results derived from TOPSIS demonstrated that MCGP-U has better efficiency 

than Goal attainment and LP-metrics, and Goal attainment has better performance than LP-metrics in 

terms of the first objective function, the second objective function and CPU Time criteria. In addition, 

the results of statistical analysis showed that in terms of the first objective function criterion, 
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significant differences are existed between the performances of LP-metrics, Goal attainment and 
MCGP-U methods. Based on Tukey’s multiple comparison tests, there was no significant difference 

between LP-metrics and MCGP-U, but significant differences were existed between the Goal 

attainment and two other solution methods. In terms of the second objective function criterion, 

significant differences were not existed between the performances of LP-metrics, Goal attainment and 
MCGP-U methods, while significant differences were existed between the performances of LP-

metrics, Goal attainment and MCGP-U, in terms of the CPU time.  

As a future research, the following suggestions are presented: 

(a) Considering some main parameters of the problem to be fuzzy or uncertain, could be 
worthwhile. 

(b) Developing either exact methods, or meta heuristic algorithms, such as NSGA-‖, NCGA and 

MOPSO algorithms to solve the bi- objective NLP model would be effective.  
(c) To make the model more applicable, inflation and discount could be added to the model. 

(d) Pricing policies and the impact of greenhouse gases on end-customers could be considered. 

(e) The shortage could be used in the form of lost sales. 

(f) The economic order quantity model could be investigated, instead of economic production 
quantity model. 

(g) Multi-echelon supply chain, such as one vendor-one buyer, one vendor-multi buyer, multi-

vendor one-buyer and multi-vendor multi distributing centers, and multi-vendor in VMI 
system could be examined. 
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