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Abstract 

Estimation of remaining useful life (RUL) is one of most interesting subjects in 

prognostic and health management. Performing an analysis of the results of such 

estimation can increase the reliability and the safety of the system, and reduce the 
unnecessary costs. In this paper, a similarity-based combination method is 

proposed to combine several run-to-failure historical datasets in order to directly 

estimate the RUL. In this method, reference datasets are clustered and the initial 
RUL is calculated based on the artificial neural networks trained by the reference 

datasets. By using the extended Dempster-Shafer, the similarity between the initial 

RUL and the average RUL for each dataset is obtained. The proposed methodology 
is tested and validated on Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS), test-bed developed by NASA. The results of the 

evaluation show that the proposed method outperforms other methods in the 

literature. 
Keywords: Dempster-Shafer Theory, information integration, remaining useful 

life 

1-Introduction 
   Today, traditional maintenance approaches, such as preventive and corrective maintenance, are 

gradually being replaced by more advanced concepts such as reliability centered maintenance (RCM), 
condition based maintenance (CBM), structural health monitoring (SHM), and Prognosis and health 

management (PHM). 

   The most important achievement of the PHM is the capability of predicting the conditions of equipment 

degradation and estimating the remaining useful life (RUL). Accordingly, awareness of the RUL prevents 
practitioners from spending unnecessary costs and increases the availability of equipment (Ben Ali, 

Chebel-Morello, Saidi, Malinowski, & Fnaiech, 2015).  An examination of the literature in this field 

suggests that prediction is more effective than diagnosis in reducing unexpected maintenance costs and 
increasing overall reliability diagnosis (Kunche, Chen, & Pecht, 2012; Lei et al., 2018; Van Tung & 

Yang, 2009). According to ISO-13381, the prognosis is to estimate the time and risk of failure in one or 

more existing assets and to predict future failures (Kunche et al., 2012). According to the literature of 
prognostics and health management, three approaches have been proposed to estimate the useful life of 

the equipment (Van Tung & Yang, 2009): 1) Data-driven; 2) Model-based, and 3) Hybrid approach. 

   Model-based approach (Physical failure approach) is based on predetermined mathematical models of 

equipment degradation considering health and degradation.  
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   Generally, in these models, the uptime cycles of the equipment are considered as functions of failure 
state. Additionally, RUL can be estimated by obtaining information from the failure states (Lei et al., 

2018). However, the failure modes do not necessarily provide satisfactory explanations of the equipment 

degradation. Furthermore, a systematic, accurate, and reliable model for some types of equipment 

(especially when systems have a level of complexity) and its current conditions is not always available. 
To address these challenges, the data-driven approaches will be used. In these approaches, RUL is 

estimated by adjusting one or more characteristics that represent the equipment's degradation status. 

Subsequent approaches make a trade-off between accuracy and applicability. Often, the transit time, in 
which an indicator overruns the pre-determined threshold, is considered as the moment in which complete 

equipment breakdown occurs (Tobon-meja, Medjaher, Zerhouni, & Iso, 2010). The hybrid approach, 

which combines the outputs of both data-driven and model-based approaches, generally provides more 
reliable and accurate results (Lee et al., 2014). Despite the development of different methods in the data-

driven approach, various challenges remain unsolved. Perhaps, the most important challenge is to 

determine the failure threshold. Interestingly, the uncertainty of the failure threshold poses a high level of 

unreliability to the problem. In other words, how long should the equipment feature behavior be 
predicted? Besides, in machine learning approaches, we generally encounter a large volume of learning 

data sets, each of which can explain a part of the current state of the equipment. Therefore, the question 

raised from this argument is: how can we fairly deal with the information obtained from various data sets?  
   The main contribution of this paper is to provide a framework for online determination of degradation 

to estimate RUL directly without determining any threshold. There are certain features that make this 

model distinct from those available in literature and give it an edge over them. In order to introduce some 
of the novel features of this model, it must be mentioned that this model is the estimations are online, no 

thresholds are required to be determined, the whole data including the similarities and the differences of 

the test and learning data are taken into account and considered, and a novel index is defined in the 

similarity of the dataset which improved the model accuracy. This paper is then organized as follows: In 
Section 2, the literature of data-driven approaches has been reviewed. A majority of the reviewed studies 

are related to methods of integrating evidence, identifying similar patterns, measuring the similarity of the 

routes, and its applications in RUL estimation. In Section 3, the proposed framework is described in 
detail. The foundations of the proposed method are presented during the description of the model. In 

Section 4, the proposed method has been implemented. Results and discussions about validation and 

evaluation are presented in Section 5. Eventually, this paper ends with a conclusion. 

2-Related works 
   Generally, there are three basic steps for calculating RUL in data-driven approaches. 1. Determination 

of a health index representing the condition of equipment degradation. 2. Determining the condition of 
equipment degradation. 3. Determining the RUL by predicting health index, equipment degradation 

status, and time to failure of the learning data sets. Some researches take all three steps to determine RUL; 

however, others disregard the second step. The following methods are used to reduce the dimensions of 
data: extracting and selecting features such as PCA (Moghaddass & Zuo, 2014), logistic regression (Yan, 

Koc, & Lee, 2004), linear regression (Sun, Zuo, Wang, & Pecht, 2012; T. Wang, Yu, Siegel, & Lee, 

2008), exponential regression (Saxena, Goebel, Simon, & Eklund, 2008), weighted average methods (Liu, 
Gebraeel, & Shi, 2013; Ramasso, Rombaut, & Zerhouni, 2013), linear transformation of data forms (Hu, 

Youn, Wang, & Yoon, 2012; P. Wang, Youn, & Hu, 2012; Xi, Jing, Wang, & Hu, 2014), feature 

selection based on maximum accuracy of clustering (decision tree) (Ishibashi & Júnior, 2013), and 

empirical analysis (EMD) (Mosallam, Medjaher, & Zerhouni, 2016).  
   Furthermore, the following solutions have been proposed to determine the degradation status: 

Operation-regime partitioning (Heimes, 2008; T. Wang et al., 2008), k-means clustering (Ramasso et al., 

2016; Ramasso & Denoeux, 2014; Zemouri & Gouriveau, 2010), Gaussian mixture model (Lin, Chen, & 
Zhou, 2013; Ying Peng & Dong, 2011), evolving extended TS system (exTS) (El-Koujok, Gouriveau, & 

Zerhouni, 2011; Ramasso & Gouriveau, 2014), Mahalanobis distance based classifier (MD) (Tamilselvan, 

Wang, & Wang, 2012), KNN (Ramasso et al., 2013), hierarchical clustering (Mosallam et al., 2016), and 
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Fuzzy Clustering (Ramasso & Gouriveau, 2014). Finally, predictive methods are used to determine the 
RUL. In some studies, the health index has been predicted (Nie & Wan, 2015; Yu Peng, Wang, Wang, 

Liu, & Peng, 2012a), and in others, the duration of collapse is directly considered (Jianzhong, Hongfu, 

Haibin, & Pecht, 2010). Exponential regression methods (T. Wang et al., 2008), artificial neural network 

of multilayer perceptron (Jianzhong et al., 2010), Sparse Bayesian (P. Wang et al., 2012), Bayesian linear 
regression (Hu et al., 2012), backup vector machine (Xu, Wang, & Xu, 2014), case-based reasoning 

(Ramasso, 2014), instance-based learning (Khelif, Malinowski, Chebel-Morello, & Zerhouni, 2014), 

recurrent radial basis function network (RRBF network) (Zemouri & Gouriveau, 2010), hidden Markov 
model (Giantomassi et al., 2011), Echo State Network (Yu Peng, Wang, Wang, Liu, & Peng, 2012b), 

State space model (Sun et al., 2012), Deep Belief Network(Tamilselvan et al., 2012), and Fuzzy Rule-

Based System (Ishibashi & Júnior, 2013) are methods that have been considered in the literature for the 
third step. Researchers use different approaches when facing more than one learning sets. Some 

researchers use the whole collection of the learning data in a container and use the clustering algorithm to 

determine the state of deterioration or training and fit the prediction model (Javed, Gouriveau, & 

Zerhouni, 2015). But in some other studies, there are some ways to integrate information. This integration 
has been considered at the level of predictors (the combination of weak artificial networks using an 

approach like AdaBoost (Jianzhong et al., 2010)) or at the level of RUL. Integration at the level of RUL is 

based on the weight composition of the obtained RULs from each learning set, namely: RULf =
∑ wiRULi

N
i=1 , with RULf estimated to be the useful life of the final remainder. RULi is the remaining 

useful life based on each of N learning sets and wi is the assigned weight to the RUL, which is obtained 

from the i-th learning data set. Various approaches have been proposed to determine wi. These 

approaches are shown in Table 1. Considering references (T. Wang et al., 2008) and (Khelif et al., 2014), 
the Euclidean-based function was used, the most specific path for each learning unit was determined by 

the unit of testing, and the RUL is calculated according to the sum of RULs obtained from each learning 

unit. Accordingly, weights will be calculated from the similarity scale. Considering reference (Ramasso, 
2014), which is similar to the previous references, RUL is derived from the Euclidean-like weight 

composition. However, the weight composition of the minimum and maximum RULs obtained from the 

learning set is used. Considering reference (P. Wang et al., 2012), based on the model trained by each 

learning set, prediction has been made to a certain time horizon and the weight of the RULs’ composition 
is based on the Euclidean similarity between the predicted path and the achieved learning set. Considering 

references (Hu et al., 2012) and (Xu et al., 2014), the use of precision prediction and deviation of 

predictive error, obtained after teaching the prediction model for each learning set, is considered as the 
weight of each set of Learning method data. 

 
Table 1. Information integration approaches for RUL prediction 

Ref. Information integration on RUL 
level 

Weighting method (RUL coefficients in linear composition) 

(Khelif et al., 

2014; T. Wang et 
al., 2008) 

Linear combination of RULs Euclidean distance of the extracted health index with the 

reference data sets (learning datasets) 

(Ramasso, 2014) Linear combination of Maximum 
and Minimum RULs 

Euclidean distance of the extracted health index with the 
reference data sets (learning datasets) 

(P. Wang et al., 
2012) 

Linear combination of RULs Determine the combination weight using the Euclidean distance 
of the predicted path for the health index with the reference data 
sets (learning datasets) 

(Hu et al., 2012; 
Xu et al., 2014) 

Linear combination of RULs - Euclidean distance of the extracted health index with the 
reference data sets (learning datasets) 
- Prediction using the relevant learning data set, and extraction 
of prediction accuracy 
- Prediction using the relevant learning data set, and extraction 
of prediction diversity error 
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   In the proposed method of this research, PCA was used to determine a health index. By aggregation of 
learning sets, k-means clustering is used to determine the general degradation status. Moreover, the 

forecasting process is directly carried out for the duration of the decomposition; as a result, there is no 

need to determine the threshold of failure. This process is performed for each learning set. Thus, RUL 

needs to be integrated. In order to determine the weights of the composition, the extended 

Dempster-Shafer theory is used. 

3-The proposed Approach 
   Figure 1 shows the details of the proposed method. The RUL estimation takes place in two phases: 

Learning and Online RUL Estimation. In the learning phase, prediction is provided, predictors are taught, 

and degradation situations are determined. In the online RUL estimation phase, predictors and 
degradation conditions are used to estimate the RUL. In the following, the steps of each of these phases 

are discussed in detail according to figure 1. 
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Fig1. The proposed process of RUL estimation 

3-1-Learning phase 

3-1-1-Acquisition and data collection 
   In this paper, determination of RUL is based on the acquisition and collection of run to failure data. In 

other words, the required dataset, including the N implementation that runs to the failure dataset of the 

monitoring sensors equipment, is related to a specific type of equipment.  

   The structure of the used data is a dimensional T × D matrix, where T is the time or cycle run to 
complete failure and D is the number of the sensors that represent the information of the equipment status. 

In the learning phase, this data set is used to train predictor and cluster, determine the failure states, and to 

estimate the average RUL of each cluster which is equipment situation here. 
 

3-1-2-Preprocessing data and selecting features 

    In the preprocessing step, data are normalized and the outlier data are removed. Normalization of data 

helps us to improve the clustering and prediction process (Zhang, 1994) and eliminates the outlier data 
caused by unwanted events (e.g. operator error, electric fluctuations, Unexpected atmospheric conditions, 

etc.) from the analysis set. 

The following relation is used for data normalization: 
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                      (1) 
𝒚𝒅,𝒕

𝒊 =
𝒙𝒅,𝒕

𝒊 −𝒎𝒊𝒏(𝒙𝒅,𝟏
𝒊 ,𝒙𝒅,𝟐

𝒊 ,…,𝒙𝒅,𝑻
𝒊 )

𝒎𝒂𝒙(𝒙𝒅,𝟏
𝒊 ,𝒙𝒅,𝟐

𝒊 ,…,𝒙𝒅,𝑻
𝒊 )−𝒎𝒊𝒏(𝒙𝒅,𝟏

𝒊 ,𝒙𝒅,𝟐
𝒊 ,…,𝒙𝒅,𝑻

𝒊 )
 , 𝒊 = 𝟏, … , 𝑵 𝒅 = 𝟏, … , 𝑫  

   In the above equation, 𝒙𝒅,𝒕
𝒊  is the data point of the learning set i from the sensor d at time t, and 𝒚𝒅,𝒕

𝒊 is 

the normalized data of the learning set I from the sensor d at time t. After data preprocessing, the core 
features of the data set are extracted to minimize the error in the clustering process and decrease the 

computational cost by reducing the dimensions of the dataset. Here, the PCA method is used to determine 

the core features. The PCA is an orthogonal linear transformation that transfers the data to a new 

coordinate system; consequently, the largest data variance will be placed on the first coordinate axis, the 
second largest variance will be placed on the second coordinate axis, and so on. 

   This transformation is made using the D-dimensional coefficients of weights 𝑾 = (𝒘𝟏, 𝒘𝟐, … , 𝒘𝑫), 

where each linear vector 𝒚𝒕
𝒊 = (𝒚𝟏,𝒕

𝒊 , 𝒚𝟐,𝒕
𝒊 , … , 𝒚𝑫,𝒕

𝒊 ) is mapped into the new vector of the main component 

points, and D is obtained as a new property. Having transformed the PCA, the components with 

explanatory variances greater than 1 are obtained, and F (F≤D) core feature is selected. 
 

3-1-2-1-Fitness of predictive model 

   In this step, a predictive model is fitted to each of the N learning datasets. Each of these datasets can 

represent one of the failure modes and degradation trends. For this reason, their data can be used to 
predict the future trends. Here, a multi-layer perceptron neural network model is used for fitting. F, the 

main component obtained in the previous stage, is considered as the model input and RUL (T-t) is 

considered as the output (target). Therefore, the N trained neural network (𝑵𝑬𝑻𝒊) is obtained for the N 
learning set. By using the trained network sets at the testing stage, the useful life of the new data set will 

be predicted and the details will be described in the testing phase. 

 

3-1-2-2-Clustering and RUL estimation 

   Each data point in each learning dataset indicates a specific degradation state. At normal conditions, 

starting points are usually within the predetermined control limits. With increasing equipment degradation 

in the course of time, data points have been located in different channels. By clustering the set of data 
points, a tag can be assigned to each of these data points, indicating the state of the equipment at that 

specific time. In other words, the basic assumption about clustering is that the RUL of data points in a 

cluster are similar to each other. All F features in N learning datasets were clustered into U degradation 
mode of equipment. After clustering, the average useful life of the remaining cluster was calculated as 

follows: 

              (2) 
𝑨𝑹𝑼𝑳𝒖

𝒊 =
∑ (𝑻𝒊−𝒕𝒖,𝒌

𝒊 )
𝑳𝒖

𝒊

𝒍=𝟏

𝑳𝒖
𝒊   

where 𝑨𝑹𝑼𝑳𝒖
𝒊  is the average RUL of U-th cluster for i-th learning dataset,  𝑻𝒊 is the failure time of the 

learning dataset i, 𝒕𝒖,𝒍
𝒊  is the current time of the l-th data in the U-th shared cluster set in the i-th learning 

data set,  and 𝑳𝒖
𝒊  is the number of data points in the u-th cluster in the i-th learning data set. 

3-2-Testing phase 

3-2-1-RUL online estimation procedure 

At this stage, the procedure for obtaining information in the learning process, which is used for 
estimation of RUL of the equipment, is described. It is assumed that the data set contains the same data as 

the available learning process; this information is recorded by sensors up to the current time 𝒕𝒏 and the 

goal is to calculate the RUL of the equipment. The obtained data is called “test dataset”. Similar to the 

first step of the learning phase, pre-processing operation is performed on the test data. Then, using the 
coefficients obtained from the PCA algorithm in the learning process and the dimensions of the extracted 
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features, in which the explanatory variance is greater than 1, the new core feature to the testing data is 

selected. 

3-2-2-Choosing the reference dataset 

After selecting the test data feature from the N learning sets, R sets are selected as the reference 

(controls) sets to determine the initial RUL of the r-th reference: 𝑰𝑹𝑼𝑳𝒓.The selection criterion is based 

on a similarity of the Euclidean distance between the test data features and each of the N learning sets. 

This criterion is calculated as follows: 

    (3) 𝑺𝒊 =
𝟏

∑ √(𝑽𝟏𝒕
𝒊 −𝑷𝟏𝒕)

𝟐
+(𝑽𝟐𝒕

𝒊 −𝑷𝟐𝒕)
𝟐

+⋯+(𝑽𝒇𝒕
𝒊 −𝑷𝒇𝒕)

𝟐𝒎𝒊𝒏 (𝑻𝒊,𝒕𝒏)
𝒕=𝟏

𝒎𝒊𝒏 (𝑻𝒊,𝒕𝒏)

  

In the above equation, 𝑺𝒊 is a measure of the similarity between the test data and the i-th learning 

dataset, 𝑽𝒇𝒕
𝒊  is the f-th feature of the i-th learning data at time t, 𝑷𝒇𝒕 is the f-th feature of the test data in 

time t, 𝑻𝒊 is the learning lifetime of the i-th learning data and 𝒕𝒏 is the current time or the lifetime of the 

test data. After determining the value of 𝑺𝒊 for each learning data, the R learning set that has the highest 

𝑺𝒊 value is selected as the reference set. 

3-2-3-Information integration and RUL estimation 

   After choosing R reference sets, the networks associated with the selected reference sets (𝑵𝑬𝑻𝒓, 𝒓 =
𝟏, … , 𝑹) are extracted and the RULs are estimated at time 𝒕𝒏. 

   Therefore, R remaining useful lives will be obtained from the test data. In order to integrate the 

information obtained from the selected references, the improved Dempster Schaffer method, presented by 

Yager in 1987, was used (Yager, 1987). Evidence theory was introduced by Dempster (Dempster, 1967) 
and expanded by Schafer (Shafer, 1976). This theory is important in discussing current ideas about a 

situation or a system of situations. Although ideas about the events are not the same, one can examine and 

combine the current evidence of the situation with the help of this theory. Moreover, Dempster 
Schaeffer's theory is based on a belief that originates from evidence and relates to the classical probability 

model. 

   Yager defines a new function, called the ground probability mass assignment, in which q suppresses the 

null value basic assumption of the mass function, namely: q (∅) ≥0. A positive value for the probability of 

occurrence of null state means that the probability that a witness does not choose any state make mistake 

or be opposed to others, is greater than zero. 

Then, by introducing the parameter 𝜶𝒊, as an importance factor, the weight of the confidence to i-th 
witness was determined against others. Therefore, the Yager’s improved mass function was defined as 

𝒎(𝑨) = 𝜶𝒊 × 𝑶𝒊(𝑨), where 𝑶𝒊(𝑨) is the estimate of the i-th evidence from event A. Additionally, Yager 

collected the possible errors and the contradiction between the evidence in a set called 𝜣, such that 𝜣𝒊 =
𝟏 − 𝜶𝒊. Based on this parameter, there is no indication of the possibility of states and the estimate Θ of 
each control being shared with all estimates of other states. With respect to the improved mass function, 

the combination of the mass function is obtained from the following relationship: 

 
     (4) 𝒎(𝑨) =

𝒒(𝑨)

𝟏−𝒒(∅)
=

∑ [𝒎𝟏(𝑨𝟏)×𝒎𝟐(𝑨𝟐)×…×𝒎𝒊(𝑨𝒊)+𝜣𝒊𝒎𝒊]∩𝑨𝒊−𝑨

𝟏−𝒒(∅)
  

According to modified Dempster Shafer theory and the rules of its combination, it is assumed that the 

M learning set is evident and determines the overall conditions of the equipment degradation. In this case, 

𝑶𝒊(𝑼) is the normalized estimation of the i-th evidence (learning dataset i) from the event u (cluster u) 
based on the inverse distance of the initial RUL interval (IRUL) from average RUL (ARUL). This is 

shown in the below equation: 
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   (5) 

𝑶𝒊(𝒄𝒍 𝒖) =

𝟏

|𝑰𝑹𝑼𝑳𝒊−𝑨𝑹𝑼𝑳𝒖
𝒊 |

 

∑ |𝑰𝑹𝑼𝑳𝒊−𝑨𝑹𝑼𝑳𝒖
𝒊 |𝑼

𝒖=𝟏
, 𝒊 = 𝟏, … , 𝑵 , 𝒖 = 𝟏, … , 𝑼  

Moreover, in the proposed method, 𝑺𝒊 as a similarity measure is equal to importance factor 𝜶𝒊 that 

indicates the level of confidence in the i-th witness (Learning Data Set i) and 𝜣𝒊 = 𝟏 − 𝜶𝒊 = 𝟏 − 𝑺𝒊 

represents the probable errors and the contradiction between the ideas of learning sets about the state of 

equipment  degradation. In other words: 

             (6) 
𝒎(𝒄𝒍 𝒖) = 𝜶𝒊 × 𝑶𝒊(𝒖) =  𝑺𝒊

𝟏/𝑫𝒖
𝑵 

∑ 𝑫𝒖
𝑵𝑼

𝒖=𝟏

 

Therefore, the composition of the mass function is calculated from the following relation: 

(7) 
𝒎𝟏,..,𝑀(𝑐𝑙 𝑢) =

𝑞(𝑐𝑙 u)

1−q(∅)
=

∑ [m1(cl1)×m2(cl2)×…×mR(clu)+Θrmr]∩cl u−cl U

1−∑ m1(cl1).m2(cl2) … mR(clu)
⋂ Ei=ΦM

i=1

  

The value of m1,..,M(cl u) is used as the u-th cluster weight to determine the final RUL 

 m1,..,M(cl u) = weightu 

Therefore, weighted average of the RUL of the M selected reference is inserted to improve the Shafer 

Dempster method and calculate the final RUL: 

       (8) 
RUL = ∑ (weightu ×

∑ ARULu
iM

i=1

M
)U

u=1   

Figure 2 schematically demonstrates how the ( weight u ) is calculated. 

 

Fig 2. Weighting method of RUL combination 

In the following, a case study of the obtained results and a comparison of the proposed method with 

other classical methods are presented. 

4-Application and results 
   The proposed method was implemented in MATLAB 2016 software and the turbofan engine data set 

located on the site of the NASA's prediction data base was used. In the next section, the referred datasheet 

is described first, and then the results of implementing the method of clustering on this data are presented. 
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4-1- Datasets 
   The dataset consists of several multi-dimensional signal time series that are obtained by a simulation 

model developed on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). A total 

of 26 signals have been generated. 21 signals consist of sensor data. The next 3 signals show the 
specifications of the operating conditions. The remaining 2 signals indicate the motor ID and the number 

of cycles. Table 2 shows the details of the 21 sensor's signal. 

Table 2. Name and unit of the sensors 

symbol description Unit 

T2 Total temperature at fan inlet R◦ 

T24 Total temperature at LPC outlet R◦ 

T30 Total temperature at HPC outlet R◦ 

T50 Total temperature at LPT outlet R◦ 

P2 Pressure at fan inlet psia 

P15 Total pressure in bypass-duct psia 

P30 Total pressure at HPC outlet psia 

Nf Physical fan speed rpm 

Nc Physical core speed rpm 

Epr Engine pressure ratio (P50/P2) --- 

Ps30 Static pressure at HPC outlet psia 

Phi Ratio of fuel flow to Ps30 pps/psi 

NRf Corrected fan speed rpm 

NRc Corrected core speed rpm 

BPR Bypass Ratio --- 

farB Burner fuel-air ratio --- 

htBleed Bleed Enthalpy --- 

Nf_dmd Demanded fan speed rpm 

PCNfR_dmd Demanded corrected fan speed rpm 

W31 HPT coolant bleed lbm/s 

W32 LPT coolant bleed lbm/s 

 

   In each time, the series relates to a different engine from the same complex system. Each engine 

contains various components such as compressor, turbine, etc. Figure 3, illustrates the main components 

of the engine model and indicates how sub-parts are assembled. For more information about this system, 

refer to (Saxena et al., 2008). Engines worked normally at first; however, as time passed, their 
degradation progressed and eventually, they failed completely. The dataset is characterized by four 

operating conditions that are presented in 9 text files. 

   For each of the conditions, three train files, a test, and an actual RUL were provided. Each learning and 
testing dataset contains several similar units. In the learning data, the recorded signals (measurements) 

start at a similar degradation level, which is considered to be a healthy state, and stop when a failure 

occurs. The test data is incomplete, meaning that the time series was cut before the complete failure. The 
goal is to predict the useful life of the remaining units of this test data set. The real RUL data includes the 

actual RUL values of the test units. The details of the dataset are shown in table 3: 
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Table 3. C-MAPSS dataset 
Data type Operating condition 1 Operating condition 2 Operating condition 3 Operating condition 4 

Learning 
dataset 

TRAIN-FD001: 259 
learning unit 

TRAIN-FD002: 260 
learning unit 

TRAIN-FD003: 100 
learning unit 

TRAIN-FD004: 249 
learning unit 

Testing 
dataset 

TEST-FD001: 100 test 
unit 

TEST-FD002: 259 test 
unit 

TEST-FD003: 100 test 
unit 

TEST-FD004: 248 test 
unit 

Actual RUL 
RUL-FD001: 100 test 
unit 

RUL-FD002: 259 test 
unit 

RUL-FD003: 100 test 
unit 

RUL-FD004: 248 test 
unit 

 

  
 

Fig 3. Turbo fan engine (left), diagram of engine component (right) 

   The proposed process of this research is used for the learning phase from the learning data, and the test 

data is used to evaluate the RUL estimation. Sensor data is nonlinear and noisy, and the life cycle of the 

units is in a wide range (between 128 and 362 cycles). Therefore, these conditions make the prediction of 

RUL more difficult. 

4-2-Models under comparison 
To evaluate the method proposed in this paper, two models are compared below. 

1. The proposed integrated model of research 
2. The proposed model of research, regardless of the integration approach and prediction using the 

network trained for the most similar dataset to the test dataset. The latter method is called “non-

combinational” in the rest of the paper. (section 3-2-1) 

Furthermore, the results of these two models have been compared with the results of other researches 

using the first-state data set of C-MAPSS (first condition of CMAPSS dataset). 

4-3-Evaluation criteria 
   In order to evaluate and compare the performance of the proposed method, the following criteria have 

been used: 

 
1) Score: This criterion is proposed by the data provider. This criterion assigns, for any RUL prediction, 

the sn criterion formulation as follows: 

           (9) 
sn = {

e−
(rn−r̂n)

10 − 1   if (rn − r̂n) ≤ 0 

e+
(rn−r̂n)

13 − 1   if (rn − r̂n) > 0
  

   In the formula above, rn is the RUL of the n-th unit and r̂n is the estimated RUL of the n-th unit. The 

total score is obtained from the total sn of all test units: 

           (10) S = ∑ sn
N
n=1   
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Smaller values for S are better. 

2) Performance: This criterion evaluates performance as a percentage of the correct predictions. 

According to this criterion, a prediction is correct if the forecast error E = rn − r̂n is in the interval I =
[−10,13]. In other words, the forecast can be sooner or later with respect to the real RUL. Therefore, if P 

is the number of the predictions, the performance criterion is computed as follows: 

           (11) performance =
P

N
× 100  

5-Results and discussion 
   In figures 4 and 5, the actual RUL, predicted RUL, and histogram of the predictive error are presented 
for conditions 1. The left forms are from the proposed method and the right forms belong to the non-

combinational method. As observed in the histogram, the distribution of predictive errors in the non-

combinational method shows a skewness to the left, according to the error equation E = rn − r̂n . This 
asymmetry indicates the tendency of model to overestimate the RUL. 

   Generally, an over-estimation for RUL (error -E) is worse than an underestimation (E + error), which is 

presented in relations (18) and (20). However, histograms of the proposed method are more symmetric. 

Moreover, the negative tail of the histogram for the non-combinational method is higher than the 
histograms of the proposed method and shows larger errors in the overestimate. 

   Due to the consideration of more possibilities for predictive references and the combination of 

degradation states in these references in the proposed method, the predicted results are more symmetric. 
The above mentioned results are shown by the score and performance points.  

 

 
 

Fig 4. Ground truth Vs. predicted RULs for operational condition 1  

 proposed method (left) and no-combination (right) 

 

  
Fig 5. Histogram of errors for operational condition 1 - proposed method (left) and no-combination (right) 

   In table 4, the results of scoring and performance criteria for the proposed method, the non-

combinational method, and the reference methods (by using the C-MAPSS data set) are presented. 

Additionally, in each of the four data set conditions described in section 4.1, the proposed method has a 
better result in terms of both scoring and performance criteria. The first conditions of data set were used 
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to evaluate the proposed model in references mentioned in table 5. The proposed method has acceptable 
performance in two benchmark scores and performance. 

 
Table 4. Score and performance comparison with and without integration in 4 condition scenarios 

Proposed 

Method 

Score Performance 

C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4 

With 

integration 

398.1 1530 593.40 1163.9 73.1 38.22 42 26.69 

Without 

integration 

832.6 1491.7 1278.2 1411.3 53.7 42.7 24.6 19.9 

 

   Similar to this research, reference (Khelif et al., 2014) provides a similarity-based approach. In (Khelif 

et al., 2017), the RUL has been directly calculated by fitting the SVR model to learning data set and has 
better results than other researches as well. The proposed method of this study employs an integrated 

approach based on direct similarity between estimated RUL and the actual RUL of clusters to 

demonstrate the final probability of the current test present in each of the clusters. Moreover, the method 
considers the similarity between the test data set and the choice of the most similar data set and 

determines the state of degradation based on clustering. 

Table 5. score and performance comparison for proposed method with and without integration 
Method Ref. [61] Ref. [62] Ref. [51] Ref. [63] Proposed 

method 

Proposed 

method 
without 

integration 

Score 1046 N/A N/A 448.7 398.1 832.6 

Performance 48 53 54 70 73.1 50.7 

6-Conclusion 
   In this paper, a data-driven method is proposed based on a new approach to the integration of sensor 

data and the condition of equipment. The proposed method can be implemented for samples that have a 

significant number of learning run to failure data. The PCA method was used to select features, k-means 

method for clustering, and ANN method for prediction. After selecting the features, an artificial neural 
network was fitted and stored on each learning dataset. On the other hand, the average RUL for each 

dataset was estimated by clustering all the learning data sets. 

   After selecting the attributes, the similarity between acquired data set and each learning set was 
determined to estimate the RUL of the equipment. Then, a subset of the most similar collection of 

learning data is selected and the RUL is estimated by using a related network. Based on the distance of 

the obtained RUL to the calculated average RUL for each learning cluster, the probability of belonging to 
each cluster and each learning set is calculated as a reference. Based on the Yager modified algorithm for 

the rules of integrating, the final probabilities of each cluster are determined and used as the weight for 

the average RUL in each cluster. Finally, the RUL is estimated based the weighted RUL value. 

The proposed method has been implemented on C-MAPSS turbofan data set and the results show that the 
performance of this method in case of integration outperforms the prior researches. The advantages of the 

proposed method are integration of a variety of information and utilizing collections of datasets to predict 

RULs directly, without the need to consider a numerical threshold. 
   In addition, the other results of the proposed method culminate in the ability to determine the state of 

equipment degradation based on the integration of sensor information and clustering. Interested 

researchers can use other fitness models such as SVR, other similarity-determining methods such as non-

spatial spacing criteria, and other rules of evidence combination such as fuzzy integration laws of Inagaki 
(Inagaki, 1991) and zhang (Zhang, 1994) for future development.  
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