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Abstract 
The business environment, especially in the supply chain, is virtually 

fluctuating and is entangled with a lot of problems. Accordingly, a tailored 

mechanism should be adopted to deal with these problems. To do so, supply 
chains must take precautionary measures such as storing products and holding 

safety stock, etc. Given the importance of storage in supply chains, warehouses 

and depots should be carefully taken into account and located in such a way 

that their best performance is warranted. In this regard, this paper addresses a 
robust Multi-Objective multi-product model to design a distribution system 

under operational risks and disruption considerations. In the proposed model, 

the objective functions include minimizing the total distribution system cost, 
the total environmental impacts caused by supply chain along with minimizing 

the maximum lost sales in customer zones, while taking into consideration 

possible complete multiple disruptions in facilities and routes between them. 

Besides, a ε-constraint method is utilized to convert the Multi-Objective 
problem to a single objective model. In this paper, a two-stage robust 

possibilistic programming approach is deployed to cope with the uncertainty 

and disruption risks in the proposed model. Eventually, a real automotive case 
study is applied to the proposed model, via which the applicability and 

performance of the proposed model are endorsed. Results indicate that 

considering operational and disruption risks in the supply chain using two-
stage robust optimization will require high costs but it will lead to economic 

savings and technical advantages in the long term. 
Keywords: Warehouse, robust optimization, uncertainty, fuzzy logic, 

disruption, distribution network design. 

 

1- Introduction  
A distribution chain is a system, consisting of suppliers, warehouses, depots, distribution centers 

(DC), retailers, and customers. More precisely, in a distribution system, products are supplied, 
transported, and delivered to customers to meet specific objectives such as minimizing total 

distribution cost, total distance traveled, etc. Thus, an efficient distribution network management can 

remarkably improve the system performance by reducing the total system costs and rectifying 

competitive conditions in the business environment (Ouhimmou et al, 2019). The distribution system 
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design problem predominantly encompasses location-allocation decisions and routing sub-problem. 
Relevant studies include determining optimal shipping routes from supply nodes to demand nodes so 

that customers’ demands are fulfilled, and the total distribution costs including inventory, shortages, 

facilities, and transportation costs are minimized (Abareshi & Zaferanieh, 2019; Diabat et al, 2017).  

Nowadays, warehouses have a substantial share of costs in the distribution network. In this 
manner, supply chain management is interested in investigating the location of this component in the 

logistics network (Le et al, 2019). Warehouses have a direct effect on operational costs in 

manufacturing systems and also can impress on demand levels in service chains. Warehouses and 
depots are one of the most outstanding components and echelons of the distribution network (Reyes et 

al, 2019). Accordingly, they should be carefully taken into account and located in such a way that 

their best performance is warranted. Indeed, by optimizing a distribution network design problem, 
optimal location and allocation decisions can be made for warehouses and depots. Given the fact that 

the business environment is virtually fluctuating and also is entangled with a lot of difficult 

conditions, the planning of the distribution will be troublesome and costly for companies. Distribution 

systems may also confront shortages in such cases (Abdel-Basset et al, 2019). As regards any shortage 
of products in customer zones eventuates in the dissatisfaction as well as reducing company credit, an 

expedient program should be adopted to deal with uncertainty and prevent shortages (DuHadway et 

al, 2019). One of the essential principles of designing an efficient distribution network is to observe 
environmental aspects and create less pollution in the transportation process, holding, operations, etc. 

Due to the global warming and the need for environmental conservation, supply chain network design 

needs to be green to minimize environmental damage in addition to achieving minimum cost (Rad & 
Nahavandi, 2018). 

In accordance with the above-mentioned discussions, some corrective actions have been taken to 

enhance the performance of the distribution network in this study as follows. Given the significance 

of product shortage in the distribution network, the shortage variable was defined for customer zones, 
and also the unit cost of the shortage was considered to be a high deficit to reduce the lost sales. As 

mentioned before, there is a need to optimize transportation, holding, operational, and establishment 

processes to reduce air pollution and take into account environmental considerations. To this end, we 
try to manage the distribution system in a way that minimizes the total environmental impact. This 

article is also able to establish social justice by minimizing the maximum lost sales in customer zones. 

a two-stage robust possibilistic programming (TSRPP) approach is employed to cope with 

operational and disruption risks in the proposed model. Notably, robust optimization fortifies model to 
determine stable decisions for the investigated supply chain. Also, all possible disruptions risks in the 

investigated supply chain are considered using discrete and independent scenarios and counteracted 

by a two-stage modeling approach. It is notable to say that disruptions risks are considered in facilities 
and routes between them. Lastly, a real-world automotive case study is applied to appraise the 

applicability and performance of the study framework. 

This paper is organized as follows. In section 2, we review pertinent literature on distribution 
network design, as well as stochastic, robust, and fuzzy programming models. Next, in Section 3, we 

state the problem and propose MILP mathematical formulation. Section 4 explains the solution 

method to solve the mathematical model. In section 5, the computational results of the model 

execution based on a real-world case study are presented. Finally, conclusions are provided, and 
avenues for further research are suggested in section 6. 

 

2- literature review 
In this section, a review of relevant researches in the area of facility location-allocation problems 

(FLAP) and supply chain network design (SCND) under operational and disruption risks are wisely 

provided. For a detailed overview of  FLAP  and distribution network design, please see (Farahani et 

al, 2013; Klose & Drexl, 2005b; Melo et al, 2009). Jafari et al (2010b) proposed a Multi-Objective 
model in distribution centers location-allocation problems using fuzzy programming. The relationship 

between distribution facilities is considered in this study. Klose & Drexl (2005b) introduced a facility 

location model for designing an efficient distribution system. Facility location-allocation decisions 
cover the core topics of distribution system design. Barreto et al (2007b) proposed a facility location-

routing problem (LRP) based on a clustering approach. The FLRP includes both facility location-
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allocation and vehicle routing decisions simultaneously. In this study, they considered a two-level 
distribution system design and aimed to determine distribution centers and routes among them. Prins 

et al (2007b) used a hybrid Lagrangian relaxation algorithm to solve an FLRP. They aimed to 

minimize distribution system cost along with determining optimal routing decisions. (Chen et al, 

2008) aimed to solve an FLP using a combination of the ant colony and Lagrangian relaxation 
algorithms. Lin (2009b) presented a FLAP considering customer service level concerns under 

uncertainty using chance constraint programming to minimize total cost and meeting customers’ 

demands. Vincent et al (2010b) used a heuristic algorithm to determine optimal decisions in an FLRP 
under capacity considerations. Zarandi et al (2011b) presented a fuzzy capacitated FLRP that includes 

location-allocation and routing decisions to locate depots among a set of candidate nodes. Notably, a 

time window is taken into account to ensure customer satisfaction in this study. Küçükdeniz et al 
(2012b) proposed a fuzzy FLAP under uncertainty using convex optimization. In this study, a 

combination of clustering and fuzzy programming is utilized to solve the problem. Contardo et al 

(2013) proposed an FLRP that is solved using an exact cut-and-column algorithm. Nadizadeh & 

Nasab (2014b) presented an FLRP under uncertainty using a fuzzy programming approach that is 
solved using heuristic algorithms. In this study, the transportation vehicles and other facilities are 

under capacity considerations and the supply chain (SC) aims to meet customer’s demands with the 

lowest risk. (Rahmani & MirHassani, 2014b) proposed a facility location problem that aimed to take 
optimal strategic and operational decisions to satisfy customer’s demands along with minimizing the 

total system cost. The presented model is solved using heuristic algorithms. Khalili et al (2015) 

applied an extended queue theory-based model to locate warehouses with capacity considerations in a 
fuzzy environment optimally, and the study mainly aims to minimize the total cost. Diabat (2016b) 

discussed a location inventory problem with exclusive sourcing strategies taking into account capacity 

considerations. Nadizadeh & Kafash (2019b) presented an FLRP in a fuzzy environment with 

concurrent specified demands. This study aims to minimize the total distribution costs, including 
routing, opening, and employing of facilities. Khatami Firouzabadi et al (2019b) proposed a hybrid 

model to make tactical decisions in a glassware manufacturing company. In this study also some 

MADM techniques are applied. 
The model efforts in the area of SCND under disruption and operational risks have mostly focus 

on different strategies to weaken the destructive impacts of various threats on the SC. Supply chain 

management (SCM) must take precautionary measures such as storing products and holding safety 

stock, multiple sourcing, providing backup facilities to cope with disruption risk, which are 
considered as SC resilience strategies. Silva & De la Figuera (2007b) discussed SCND using 

backlogging probabilities. In this study, also queue theory is applied, and the customer’s demands 

considered as a parameter with inherent risk. The problem was solved using an adaptive metaheuristic 
algorithm. (Garcia-Herreros et al, 2014) proposed a resilient SC taking into account facilities with 

disruption risks. the developed model has based on DCs with complete and partial disruption, which 

are modeled using a two-stage stochastic programming approach. (Fattahi et al, 2017) designed a 
resilient and responsive SC under uncertainty and disruption, considering customers with high 

sensitivity to delivery time. They proposed a MILP model that customers demand depends on their 

adopter facilities and the lead times. (Ghavamifar et al, 2018) presented a competitive and resilient SC 

under disruption risks. In the proposed model, a Bi-Level Multi-Objective Programming (MOP) 
approach is applied to design a competitive SC. (Diabat et al, 2019) developed a perishable product 

SCND taking into account facilities' reliability and disruption risks. They utilized robust optimization 

and multi-criteria decision making (MCDM) to design a resilient supply chain under disruption 
considerations. (Zahiri et al, 2017) presented a pharmaceutical SCND under uncertainty and 

disruption considerations applying environmental and social concerns. They utilized a robust hybrid 

approach to cope with the operational risks within the specified framework. 
A more detailed classification of the literature on distribution network design is illustrated in Table 

1 by considering six characteristics, including type of facilities, number and type of objective 

functions, sourcing methodology, modeling considerations, and solution approach. Table 1 

demonstrates some results as follows. Most facility location problems were costly optimized, and little 
attention has been paid to other objectives, including minimum total distance, etc. In the reviewed 

articles, the type of sourcing was often considered single; the mathematical model was mostly 
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formulated in a deterministic space. Finally, the approach adopted to solve the problem is often 
metaheuristic. 

 
Table 1. Overview of literature on distribution network design under risk  

Reference  
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The proposed research is a Multi-Objective, Stochastic, multiplicative, capacitated, and multiple 

sourcing FLAP that is solved using an exact methodology. This study takes into account minimizing 

distribution system costs, total distances traveled by transportation facilities, and establishing social 
justice in the distribution of end products. In the mathematical model, shortages are calculated in all 

echelons of the distribution system. We also seek to minimize the maximum shortages occurring in 

different customer zones to establish social justice in the distribution system. Considering the 
significant influence of uncertainty and disruption risks on the different facilities, routes among them, 

product demand, and other parameters, attempts have been made to cope with the operational and 

disruption risks in the presented framework by developing a two-stage robust possibilistic approach. 
The research gaps are extracted as follows. First, the design of a multi-period distribution network, 

including warehouses, depots, and distribution centers have not been widely discussed in the 

literature. Second, only a few studies consider disruption in facilities and roots between them 

simultaneously. Third, only some recent studies take into account disruption and operational risks at 
the same time. Fourth, most of the available studies do not investigate social justice or social impact 

in the distribution of products in customer zones. Sixth, only a few studies discussed designing a 

resilient distribution network that can cope with disruptions at the least cost and damage. 
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Given the above-mentioned gaps, this paper extends the study area by presenting a novel multi-
period, multi-product distribution network design problem, which is a Multi-Objective model to 

optimize the total distribution network cost, the total environmental impact and maximum lost sale in 

customer zones. This study takes into account disruption and operational risks by applying a two-

stage stochastic programming approach and a robust possibilistic optimization simultaneously. In this 
study, it is assumed that if a facility or a rout is disrupted, it won’t be accessible and cannot be 

recovered. The model decisions include locating central warehouses and urban depots as well as 

determining the amount of product shipped between facilities, the amount of inventory that should be 
kept in some facilities, and finally, the number of lost sales for different products in each market 

zones. 

 

2-1- Major contributions in the proposed model 

Based on the reviewed papers, we apply some significant contributions to this study. Table 2 

illustrates the main contributions considered in the proposed model. First, we take into account 

simultaneous disruption in facilities, including suppliers  cluster, central warehouses, urban depots, 

distribution centers, customer zones,  and routes among them (multiple disruptions). The mentioned 

contributions are applied in constraint (10-13). It should be noted that the impact of disruption risk on 

the capacities of each facility is considered with a complete disruption approach, which means a 

disrupted facility will be Inaccessible. These contributions are considered in constraint (16-25). We 

also tried to establish social justice in distribution through minimizing the expected maximum lost 

sale based on disruption scenarios between customer zones, which is applied in term (6). The next 

contribution enforces coping with the uncertainty using a hybrid two-stage robust possibilistic 

programming, which is wholly discussed in section 4-1. 

Table 2. Major contributions of this study 

Contribution The intended purpose 

Considering the  disruption in facilities and 
routes among them simultaneously (multiple 

disruptions) 

 
Providing supply chain preparedness to counter 

disruption risk 

Considering complete disruption in different 

facilities 

Taking into account the consequences of supply 

chain disruption risk  

Suggesting Minimizing the  maximum lost sales 

at customer zones as a new objective function 

The establishment of social justice in product 

distribution between different customer zones  

Coping with uncertainty by applying a hybrid 

two-stage robust possibilistic programming 

Preventing problem infeasibility and taking into 

account all possible scenarios for the costs of 

establishment and variable costs. 

 

3-Problem statement and mathematical formulation 
In this section, we first present the problem description and related assumptions. Next, the problem 

is formulated using a mixed-integer linear programming (MILP) approach.  

The problem studied in this paper is based on a real-world case. We examine the network design of 
a forward distribution system that is multi-product, multi-level, multi-period, and multi-stage that is 

vulnerable to operational and disruption risk. As illustrated in figure 1, the distribution system under 

investigation consists of different customer zones (CZs), distribution centers (DCs), urban depots 
(UDs), central warehouses (CWs), and a supplier cluster. The distribution network entails forward 

flows of products. In the flow of items, central warehouses receive parts from supplier clusters to pack 

the products and serve urban depots. Authorized products will be shipped from urban depots to the 

applicant distribution centers. Finally, distribution centers will serve customer zones.  
It is assumed that suppliers, central warehouses, urban depots, distribution centers are vulnerable 

to operational and disruption risks. In other words, disruption risk can completely or partially affect 

all parameters related to different distribution facilities. To reduce the effects of operational risks, we 
applied a hybrid robust possibilistic programming model to minimize the total distribution system 
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cost, comprising costs for lost sales, inventory, transportation, and facility establishment. We also aim 
to minimize the total environmental impact, and the maximum lost sales occur in customer zones.  

Here, a two-stage stochastic programming model is utilized to mitigate disruption risks on the route to 

facilities and in them. The first stage determines the strategic decisions related to the opening of CWs 

and UDs. The second stage involves determining operational decisions, including allocating CWs to 
UDs, UDs to DCs, and finally, DCs to CZs. It also includes assessing the number of products 

transmitted among different nodes of the distribution chain, the inventory amount that should be held 

in CWs, UDs and DCs considering disruption in facilities and routes. The disruption scenarios 
investigated in this study are such that if a route or a facility is disrupted, then it would no longer be 

accessible. 

Figure 1 indicates the investigated multi-level distribution system. In the structure of the above-
mentioned distribution system, several routes are taken into account between facilities. Notably, only 

a single route can be selected among the available routes.     

 
Fig 1. Conceptual model of the distribution system 

   The conceptual questions raised in this study are as follows, which should be answered in the 

section of results: 

 Are distributed products classified independently or considered as family products in the 

problem? 

 How to allocate distribution centers to urban depots to satisfy customer demand? 

 Are the selected candidate locations suitable for the establishment of new central warehouses 
and urban depots? 

 Should the problem be investigated in the space of certainty or uncertainty? 

 Is there a need to create new central warehouses? 

The presented framework determines some strategic and operational decisions as follows: 

 Determining number and location of central warehouses and urban depots that can be 

established among a set of potential locations 

 Allocation of customer zones to distribution centers, distribution centers to the urban depots, 
urban depots to central warehouses to meet customers’ demands 

 Determining amounts of transmission between facilities, quantities of inventories and lost 

sales  

 Reducing the cost of opening facilities, holding, transportation, and lost sales 

 Establishing justice in supplying parts needed by different customer zones 

 Considering the minimum distance traveled between facilities 

 
 The following further assumptions regarding the problem formulation should be taken into account:  

 Locations are in discrete space. 

 Only a single route between facilities can be chosen. 
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 Facilities are capacitated in the distribution system to provide service. 

 The supply and production capacity of the facilities are different 

 In each district, a maximum of one distribution center can exist. 

 By increasing cargo volume, transfer costs will increase. 

 The cost of opening facilities, the location of the supplier cluster, and customers are known. 

 The shortage is allowed in customer zones that are considered as lost sales. 

 The customer has the possibility of early delivery of the product, which is subject to holding 

products. 

 The input of the model is known. Therefore, the model is definite and static. 
 

Given the fact that suppliers are obliged to send all of the parts to the central warehouses in the 

concerned distribution network, so there is no need to define the index of the supplier, and only the 
total flow of parts shipped from all suppliers to a central warehouse is defined. 

 

3-1- Model formulation  
   The following sets, parameters, and decision variables are employed to formulate the proposed 

distribution network design under operational risks and disruption considerations. It should be noted 

that the beneficiaries of this research are two companies, IKCO and ISACO. Consequently, the model 
formulation of this research is carried out from their perspective. 

 

3-1-1- Sets and Indices 

I Set of potential locations for central warehouses indexed by i 𝑖∈𝐼 
J Set of potential locations for urban depots indexed by j j∈J 

K Set of different types of product indexed by k 𝑘∈𝐾 
L Set of authorized distribution centers indexed by l l∈L 

M Set of indexed customer zones mindexed by  m∈M 
R Set of routes indexed by r r∈R 
S Set of disruption scenarios indexed by s s∈S 

T Set of time periods indexed by t t∈T 
 

3-1-2-Parameters 

Technical parameters 

maxLD  Maximum number of depots that can be establishedurban  
maxCW  Maximum number of openable central warehouses that can be established 

s
jtHCD  Holding capacity of urban depot  j in period  t  under scenario s (m3) 

s
ltHCE  Holding capacity of distribution centers l  in period  t  under scenario s (m3) 

s
itHCW  Holding capacity of central warehouse i  in period  t  under scenario s (m3) 

s
ktSCS  Shipping capacity of product k  at supplier  cluster in period  s under scenario  t (ton) 

s
kitSCW  

Shipping capacity of  product k  at central warehouse i  in period   s under scenario  t 
(ton) 

s
kjtSCD  Shipping capacity of  product k  at urban depot j in period  s under scenario  t (ton) 

s
kltSCE  Shipping capacity of  product k  at distribution center l  in period  s under scenario  t ( nto ) 

s
kitACW  iveeRec  capacity of  product k  at central warehouse i  in period  s under scenario  t ( ont ) 

s
kjtACD  iveeRec  capacity of  product k  at urban depot j in period  s under scenario  t (ton) 
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s
kltACE  iveeRec  capacity of  product k  at distribution center l  in period  s under scenario  t (ton) 

s
kmtDEC  Demand of  product k  at customer zone m  in period  s under scenario  t (ton) 

Vk The volume occupied by a product k (m3/ton) 

dijr Distance between central warehouse i and urban depot  j by route r (Km) 

djlr Distance between urban depot j and distribution center l  by route r (Km) 

dlmr Distance between distribution center l  and customer zone m by route r (Km) 

s
t  A binary parameter, equal to 1 if supplier cluster is disrupted in period t s under scenario ; 

0, otherwise. 

s
it  A binary parameter, equal to 1 if central warehouse i is disrupted in period t under 

s scenario ; 0, otherwise. 
s
jt  A binary parameter, equal to 1 if urban depot  j is disrupted in period t s under scenario ; 

0, otherwise. 
s
lt

  A binary parameter, equal to 1 if distribution center l  is disrupted in period t under 

s scenario ; 0, otherwise. 

s
irt  A binary parameter, equal to 1 if route r between supplier cluster and central warehouse i 

is disrupted in period t s under scenario ; 0, otherwise. 
s
ijrt  A binary parameter, equal to 1 if route r between central warehouse i and urban depot  j 

is disrupted in period t s under scenario ; 0, otherwise. 

s
jlrt

  
A binary parameter, equal to 1 if route r between urban depot  j and distribution center l  
is disrupted in period t s under scenario ; 0, otherwise. 

s
lmrt

  A binary parameter, equal to 1 if route r between distribution center l  and customer zone 

m is disrupted in period t s under scenario ; 0, otherwise. 

 

Economic parameters 

jFOD  Fixed cost of opening urban depot  j (million rials) 

iFOW  Fixed cost of opening central warehouse m (million rials) 

s
kjtHOD  

Unit cost of holding product k at urban depot  j in sunder scenario   tperiod  (million rials 

/ ton)  

s
kltHOE  

Unit cost of holding product k at distribution center   l in period s under scenariot   
(million rials / ton) 

s
kitHOW  

Unit cost of holding product k at central warehouse i   in period   scenariounder t  
s(million rial / ton) 

s
kijrtTWD  

Unit transportation cost of product from  k  central warehouse ti  o urban depot j by route 

r in period t  s under scenario  (million rials / ton.km) 

s
kjlrtTDE  

Unit transportation cost of product from  k  urban depot  j to distribution center l   by 

route r in period t  s under scenario  (million rials / ton.km) 

s
klmrtTEC  

Unit transportation cost of product   k from distribution center tl  o customer zone m  by 

route r in period t  s under scenario  (million rials / ton.km) 

s
kirtTSW  

Unit transportation cost of product k  from supplier cluster to central warehouse i   by 

route r  in period t   s under scenario  (million rials / ton.km) 

s
kmtSHCE  

Unit cost of  lost sales for product  k  at  customer zone  m  in period t under scenario s  
(million rials / ton) 

 

Environmental parameters 

EODj  Unit environmental impact associated with establishing urban depot  j (amount / ton) 

EOWi  Unit environmental impact associated with establishing central warehouse  i  (amount / 

ton) 

s
kitEHW  

Unit environmental impact of holding product k at central warehouse i in period t  under 

scenario s  (amount / ton) 
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s
kjtEHD  

Unit environmental impact of holding product k at urban depot  j in period t  under 
scenario s  (amount / ton) 

s
kltEHE  

Unit environmental impact of holding product k at distribution center l  in period  t  

under scenario s  (amount / ton) 

s
kijrtETWD  Unit environmental impact of shipping product from  k  central warehouse ti  o urban 

depot j by route r in period t  s under scenario  (million rial / ton.km) 

s
kjlrtETDE  Unit environmental impact of shipping product from  k  urban depot  j to distribution 

center l   by route r in period t  s under scenario  (million rial / ton.km) 

s
klmrtETEC  

Unit environmental impact of shipping product   k from distribution center tl  o 

customer zone m  by route r in period t  s under scenario  (million rial / ton.km) 

s
kirtETSW  

Unit environmental impact of shipping product k  from supplier cluster to central 
warehouse i   by route r  in period t   s under scenario  (million rial / ton.km) 

 

3-1-3- Decision variables 

s
klmrtFEC  

Quantity of product k shipped from distribution center l  to customer zone m  by route r 
in period t s under scenario  (ton) 

s
kijrtFWD  

Quantity of product k shipped from central warehouse i  to urban depot j by route r in 
period t s under scenario  (ton) 

s
kjlrtFDE  

Quantity of product k shipped from urban depot j to distribution center l by route r  in 

period t s under scenario  (ton) 

s
kirtFSW  

Quantity of product k shipped from supplier to central warehouse i by route r in period t 
s under scenario  (ton) 

s
kitIW  

Inventory of product k at central warehouse i in period t s under scenario  (ton) 

s
kjtID  

Inventory of product k at urban depot  j in period t s under scenario  (ton) 

s
kltIE  

Inventory of product k at distribution center l  in period t s under scenario  (ton) 

s
kmtSLC  

Lost sale of product k at customer zone m in period t s under scenario  (ton) 

jOD  A binary variable equal to 1 if urban depot  j is established; 0, otherwise. 

iOW  A binary variable equal to 1 if central warehouse i  is established; 0, otherwise. 

s
ijrtWD  

A binary variable equal to 1 if urban depot  j is allocated to central warehouse i  by 

route r in period t s under scenario ; 0, otherwise. 

s
jlrtDE  

A binary variable equal to 1 if distribution center l is allocated to urban depot  j by route 
r in period t under  s scenario ; 0, otherwise. 

s
lmrtEC  

A binary variable equal to 1 if customer zone m is allocated to distribution center l by 
route r in period t s under scenario ; 0, otherwise. 

 

After applying the two-stage modeling procedure (Sabet et al, 2019) to our problem, the mathematical 

model is then as follows: 

3-1-4- Objective functions 

Total cost 

   The objective function (1) guarantees the minimization of the total distribution costs, including 

transportation, establishment, holding, and shortage costs. 
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(1) 

( s s s s

j j i i s kjt kjt klt klt

j J i I s S k K j J t T k K l L t T

s s s s s s

kit kit kirt kirt kijrt kijrt ijr

k K i I t T k K i I r R t T k K i I j J r R t T

s

klmrt

Min TC FOD OD FOW OW HOD ID HOE IE

HOW IW TSW FSW TWD FWD d

TEC

        

           

    

  



    

  

)

s s s

klmrt lmr kjlrt kjlrt jlr

k K l L m M r R t T k K j J l L r R t T

s s

kmt kmt

k K m M t T

FEC d TDE FDE d

SHCE SLC

         

  





 



 

Total environmental impact 

The total environmental impact, including transportation (TTEs), establishment (TOE), and 
holding (THEs) impacts are defined as the second objective function by terms (2-5). 

(2)  s s s
s S

MinTEI TOE TTE THE



    

 (3)  

s s s s
o kirt kirt kijrt kijrt ij

k K i I r R t T k K i I j J r R t T

s s s s
klmrt klmrt lm kjlrt kjlrt jl

k K l L m M r R t T k K j J l L r R t T

TTE ETSW FSW ETWD FWD d

ETEC FEC d ETDE FDE d

        

         

 

 

        

         

 

(4) 
s s s s s s
kjt kjt klt klt kit kit

k K j J t T k K l L t T k K i I t T

THEo EHOD ID EHOE IE EHOW IW

        

         

(5) j j i i
j J i I

TOE EOD OD EOW OW

 

   

 

Establishing social justice 

   One of the most essential considerations in distribution network design is to ensure fairness in the 

distribution of products to customer zones. To aim this, we tried to minimize the expected maximum 

lost sale based on disruption scenarios between customer zones and establish social justice through 

the non-linear term (6). This objective function is a nonlinear term, and it should be linearized to 

reduce problem complexity. 

(6) 

s
s kmt

m k K s S t T

SLCMinMax
  

   

3-1-5- Constraints 

(7) l L , s S    1s

jlrt

r R

DE


 

(8) ,j J s S    1s

ijrt

r R

WD


 

(9) ,m M s S    1s

lmrt

r R

EC


 

(10) , ,j J l L s S         1 1 1s s s s

jlrt j jt lt jlrtDE OD       
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(11) , ,i I j J s S         1 1 1s s s s

ijrt i it jt ijrtWD OW       

(12) , ,i I j J s S         1 1 1s s s s

ijrt j it jt ijrtWD OD       

(13) , ,i I j J s S        1 1s s s

lmrt lt lmrtEC     

(14)  
max

j

j J

OD LD


 

(15)  
max

i

i I

OW CW


 

(16) , ,k K t T s S       1s s

kirt kt t

i I r R

FSW SCS
 

  

(17) , , ,k K i I t T s S       1s s

kijrt kit it i

j J r R

FWD SCW OW
 

  

(18) , , ,k K j J t T s S         1s s

kjlrt kjt jt j

l L r R

FDE SCD OD
 

  

(19) , , ,k K l L t T s S         1s s

klmrt klt lt

m M r R

FEC SCE
 

 
 

(20) , , ,k K i I t T s S       1s s

kirt kit it i

r R

FSW ACW OW


  

(21) , , ,k K j J t T s S         1s s

kijrt kjt jt j

i I r R

FWD ACD OD
 

  

(22) , , ,k K l L t T s S         1s s

kjlrt klt lt

l L r R

FDE ACE
 

 
 

(23) , ,j J t T s S       1s s

k kjt jt jt j

k K

V ID HCD OD


  

(24) , ,i I t T s S       1s s

k kit it it i

k K

V IW HCW OW


  



87 
 

(25) , ,l L t T s S       1s s

k klt lt lt

k K

V IE HCE


  

(26) , ,j J l L s S     
s s

kjlrt jl

k K r R t T

FDE BM DE
  

 

(27) , ,i I j J s S     
s s

kijrt ij

k K r R t T

FWD BM WD
  

 

(28) i I  
s

kirt i

k K r R t T s S

FSW BM OW
   

 

(29) , ,l L m M s S      
s s

klmrt lm

k K r R t T

FEC BM EC
  


 

(30) , ,i I j J s S      
s s

kijrt ij

k K r R t T

FWD BM WD
  

 

(31) , ,j J l L s S      
s s

kjlrt jl

k K r R t T

FDE BM DE
  

 

(32) , , ,k K m M t T s S       
s s s

klmrt kmt kmt

l L r R

FEC SLC DEC
 

 
 

(33) , , ,k K l L t T s S        1

s s s s

klt klt kjlrt klmrt

j J r R m M r R

IE IE FDE FEC

   

    

(34) , , ,k K j J t T s S       
1

s s s s

kjt kjt kijrt kjlrt

i I r R l L r R

ID ID FWD FDE

   

    

(35) , , , ,k K i I t T s S      1

s s s s

kit kit kirt kijrt

r R j J r R

IW IW FSW FWD

  

    

(36) 
, , , ,

, ,

i I j J k K l L

m M s S t T

       

     
 

, , , , , , ,

0

s s s s s s s
klmrt kijrt kjlrt kirt kit kjt klt

s
kmt

FEC FWD FDE FSW IW ID IE

SLC 
 

(37) 
, , , , ,

,

i I j J l L m M r R

s S t T

         

   
  , , , , 0,1s s s

j i ijrt jlrt lmrtOD OW WD DE EC  
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   Constraints (7-9) ensure that between supplier cluster and each central warehouse, each central 
warehouse and urban depot and finally each urban depot and distribution center, one root is allocated. 

Constraint (10) enforces that if an existing distribution center is allocated to an opened urban depot, 

facilities and routes between them are not disrupted. Constraints (11-13) state the same condition as 

the constraint (10) between echelons supplier cluster and central warehouse, central warehouse and 
urban depot, distribution center, and customer zone. Constraints (14-15) stipulate the maximum 

number of urban depots and central warehouses that can be established. Constraints (16-19) provide 

that the transportation amounts must not exceed the shipping or supply capacity of supplier cluster, 
central warehouses, urban depots, and distribution centers considering complete disruption risk in 

facilities. Constraints (20-22) stipulate that the number of products that are shipped to a facility must 

not exceed the receiving capacity of that facility considering complete disruption risk in facilities. 
Constraints (23-25) provide that Inventory amounts kept by a facility must not exceed the holding 

capacity of that facility considering complete disruption risk in facilities. Constraints (26-31) 

guarantee that products cannot be shipped from a facility to another facility to which it is not 

assigned. Constraint (32) provides demand satisfaction for customer zones. Constraints (33-35) are 
inventory balance equations for central warehouses, urban depots, and distribution centers. 

Constraints (36-37) provide binary and non-negativity restrictions on the decision variables. 

 

4- Solution approach 
The optimization model proposed in the previous section is entangled with a series of the 

problems, including (1) the third objective function is taken into account a non-linear term and should 

be converted into a linear form, (2) Some parameters in the proposed model are affected by 

uncertainty, for which an appropriate method is needed to be employed to cope with such operational 
risks, (3) the proposed model encompasses two objective functions. Accordingly, we should exploit a 

Multi-Objective programming  (MOP) method to solve the model. 

The following actions took place to tackle the above-mentioned problems: 

 The maxi-min objective function as a non-linear term has been converted into a linear form by 

applying an appropriate procedure 

 A two-stage robust possibilistic programming model is utilized to capture the operational risks 

 To convert the proposed Multi-Objective model into single-objective one, ɛ-constraint method 
is deployed. 

 

4-1- linearization approach 
   As mentioned before, the objective function (3) is considered as a non-linear term that destroys the 

linearity condition of the proposed model. The nonlinear term can be converted into the linear one by 

applying the constraints (38-39) as follows: 
 

(38)  Min SV 

(39) m M  
s

s kmt
k K s S t T

SLC SV

  

    

 

4-2- The implementation of MOP 

4-2-1- ɛ-constraint method  

   MOP enables Multi-Objective problems to be optimized over a feasible region. Different 

approaches are proposed to transform a Multi-Objective problem into single-objective such as no-

preference methods,  priori methods, posteriori methods, interactive methods, etc. In this study, the ɛ-
constraint method is employed to convert the Multi-Objective model into a single objective 

formulation.  

   An exclusive benefit of applying the ɛ-constraint method in Multi-Objective problems is that by 

restraining efficient solutions, Pareto frontier can be easily obtained. ɛ-constraint is a powerful method 
with tangible success in MOP, notably in SCND problems (Olivares-Benitez et al, 2013). In multi-

objective problems, objectives are either minimization or maximization. Solving multi-objective 

problems using ɛ constraint includes a methodology as follows: First, we must determine the objective 
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function with the highest priority and consider it as the main objective, and then we must define the 
acceptable ɛ bounds for the remaining objectives. In fact, in the ɛ-constraint method, one objective 

function is optimized while ɛ bounds restrict the other objective functions. Consequently, we will 

define a new single objective problem (Dehghani et al, 2018a). Lower ɛ bounds are considered for the 

objective functions of maximizing, and upper ɛ bounds are provided for the minimization objective 
functions. we apply mathematical expressions as follows:  

Suppose that a Multi-Objective problem is generally defined as follows: 

 

1 1, ..., ,... ,

, ...,

. :

k j

j n

Min f f f

Max f f

S t X





 (40) 

 

  represents the feasible region that can be defined by equality and, or inequality constraints. If 
the objective function fk  is identified as the highest priority objective in Multi-Objective problem and 

the vector ɛ is defined as ɛ bounds for other objective functions. The Multi-Objective problem is 

solved using the ɛ-constraint method as follows: 
 

1 1 1 1

1 1 1 1

,...,

,....,

,.....,

k

k k

k k j j

j j n n

Min f

f f

f f

f f

X

 

   

   

   

   



 (41) 

Where the vector of upper and lower ɛ bounds, 1 2( , ,..., )n    ,  Specifies the upper limit 

for minimization objective functions and the lower limit for objective functions of maximizing. It 

should be noted that by altering the epsilon bound vector along the Pareto frontier and making a new 

optimization problem for each new vector, the Pareto optimal set can be achieved. 

 

Determining upper and lower ɛ bounds 

At each iteration of the ɛ-constraint method, lower and upper ɛ bounds are determined as follows. 
Suppose that objective function fk has the highest priority for the decision-maker. First, we solve a 

single objective problem based on fk as objective function and technical constraints as follows: 

 

kMin f

X 
 (42) 

 
Consider vector X* as an optimal solution for the above-mentioned problem, so Znadir will be 

obtained for both objectives of maximizing and minimizing as follows: 

 
*( )Nadir

i iZ f X  1,2,..., 1, 1,...,i k k n     (43) 

After that, we will optimize objective functions independently except fk to determine the optimal 
objective functions vector Z* as follows: 

* *( )i iZ f x  1,2,..., 1, 1,...,i k k n     (44) 

   Upper ɛ bounds vector, 1 2 1( , ,..., )k    ,  indicates the maximum value that each objective of 

minimizing can have. Suppose that the problem is executed in n iterations, upper ɛ bounds are 

determined in each iteration r as follows: 
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 * *nadir

i i i i

r
Z Z Z

n
     1,2,..., 1i k    (45) 

Lower ɛ bounds vector, 1 2( , ,..., )k n    , specifies the minimum value that each objective of 

maximizing can have. Suppose we have n iterations; lower ɛ bounds are determined in each iteration r 

as follows: 

 *nadir nadir

i i i i

r
Z Z Z

n
     1,...,i k n    (46) 

As mentioned before, the Pareto optimal set can be achieved by altering the ɛ bounds vector along 

the Pareto frontier.  It is noteworthy that the generation of points on the Pareto frontier is illustrated in 

the section of results. 

 

4-3- Robust optimization method 
In this section, we apply a robust optimization approach to extend the proposed deterministic 

model in a robust formulation. Robust optimization techniques are efficient approaches to cope with 

different operational risks, especially in situations of inappropriate historical data or lack of 
knowledge to estimate the probability distributions of uncertain parameters. 

In this study, a robust possibilistic method is provided to cope with the uncertainty of variable 

costs, fixed opening costs, demands, capacities, and other parameters of distribution network design 
model that are faced to uncertainty. For this purpose, we used the research carried out in 2012 by 

Pishvae et.al the robust possibilistic applied in this study, was based on an optimistic approach, so the 

objective function was significantly increased, but instead, maximum lost sales of products at 

customer zones was decreased. It should be noted that robustness was applied throughout the 
constraints, but only the most critical objective function, or in other words, minimization of the total 

distribution system costs (Dehghani et al, 2018b; Pishvaee et al, 2012b; Zokaee et al, 2017).   

   To work more convenient, the deterministic distribution network design problem studied in this 
paper (excluding second and third objective function) can be compactly formulated as follows: 

 

 

1 1 2 2

1 1 2 2

1 1 2 2

. :

0,1 0

Min Z FY CX

S t

A X D A X D Y

B X S B X S Y

C X P C X P Y

Y X

 

 

 

 

 

 (47) 

   Where the vectors F, C, D1, D2, S1, S2, P1, and P2 indicate the fixed opening, variable transmission, 

holding and shortage costs, requirements for available facilities like distribution centers and customer 

zones, requirements for facilities that need opening, holding capacities for available facilities, holding 
capacities for facilities that require opening, shipping capacities for available facilities, shipping 

capacities for facilities that require opening, respectively. The matrices A1, A2, B1, B2, C1, and C2, are 

technical coefficient matrices of constraints. Additional vector Y and X define the binary opening 

variable and continuous inventory and flow variables, respectively. It should be noted that to apply the 
robust optimization to the proposed model, it is first necessary to convert the Multi-Objective problem 

to a single-objective problem using the ɛ-constraint method, then the robust optimization process can 

be executed.  
   Now consider vectors F, C,  and technical coefficient matrices D1, D2, S1, S2, P1, P2 that represent 

the capacity and demand of facilities are the uncertain parameters in the formulation of the 

deterministic model. The expected value operator has been used to model the first objective function 
and the necessity measure to cope with chance constraints, including uncertain parameters that can be 

defined by triangular possibility distribution or triangular fuzzy number. Figure 2 illustrates that a 

membership function defines a triangular fuzzy number. 
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Fig 2. The triangular possibility distribution of fuzzy parameter   

Based on the above-mentioned discussions, the FLAP chance constraint programming model can 
be stated for an optimistic formulation as follows: 

   

   

   
 

1 1 2 2

1 1 2 2

1 1 2 2

. :

0,1 0

Min Z E F Y E C X

S t

Pos A X D Pos A X D Y

Pos B X S Pos B X S Y

Pos C X P Pos C X P Y

Y X

       

   

   

   

 

 

 

 

 (48) 

The equivalent crisp model of the above formulation can be stated as follows: 

 

(1) (2) (3) (1) (2) (3)

(1) (2) (1) (2)

1 1 1 2 2 2

(3) (1) (3) (1)

1 1 1 2 2 2

(3) (1) (3) (1)

1 1 1 2 2 2

[ ]
3 3

. :

(1 ) ( (1 ) )

(1 ) ( (1 ) )

(1 ) ( (1 ) )
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   In formulation (49), it is assumed that chance constraints should be satisfied with the confidence 
level that are parameters, and DM should determine these two parameters greater than 0.5, but 

determining confidence levels cause lowering mathematical accuracy.  

    Based on (Pishvaee et al, 2012a), the most accurate mathematical model for robust possibilistic 

FLAP can be formulated as follows: 
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In formulation (50), the first term in the objective function represents the expected value of z that 

results in the minimization of the expected total distribution system cost. The second term, 

max min( )Z Z , illustrates the difference between the two extreme possible values of the objective 

function in which zmax and zmin can be defined as follows: 

 

max (3) (3)

min (1) (1)

Z f y c x

Z f y c x

 

 
 (51) 

 
  indicates the importance weight of this difference that is determined by DM. The third term,

(2) (1) (2)

1 1 1 1(1 )D D D       , considers the confidence level of each chance constraints in which 
1  is 

the unit penalty of the possible infeasibility of each constraint including an imprecise parameter (D1) 

and the term (2) (1) (2)

1 1 1(1 )D D D       indicates the difference between the worst-case value of an 

uncertain parameter and the value that is used in chance constraint programming. Other terms and 

parameters in objective function can be defined as the third term, but in some terms that are related to 

facilities that require opening, an opening variable y and Confidence level variables  or   are 

multiplied.  

As it can be seen in the formulation (50), when parameters are assumed to be imprecise, the 

linearity of the chance constraints and the first objective function is destroyed in the proposed robust 

possibilistic programming model. The non-linear terms can be converted into the linear by defining 
some new auxiliary variables and adding several constraints to the primary model. To reduce the 

complexity of the non-linear problem and also easier to solve the model by exact algorithm, let w1 and 

w2 be auxiliary variables(vectors) that are defined as follows: 

1

2

.

.

W y

W y

 

 
 (52) 

Then the nonlinear formulation (50) can be converted to an equivalent linear as follows: 

  (3) (1) (2) (3) (2) (1)
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Where m is a predefined sufficient large number, which is called Big M in the literature. Also, the 
newly added constraints enforce that auxiliary variable vector w1 is equal to zero when y=0; and is 

equal to   when y=1, the auxiliary variable vector w2 also has the same condition. 

 

5- Model implementation and numerical results 
   In this section, we demonstrate an application of our proposed mathematical model. The proposed 

model was optimally solved using CPLEX solver from the GAMS 24.1.1 optimization package on a 

computer with the following specifications: Intel Core i7 3610QM 2.3GHz and 8GB RAMDDR3 

under win 10.  
 

5-1- Case problem 
   Iran Khodro Company (IKCO) is an Iranian automotive corporation involved in the production and 

distribution of automobiles. IKCO was established in 1962, and it produced over 798,000 passenger 

cars in 2018. Vehicles manufactured by the company include Samand, Peugeot and Renault cars, 

trucks, and buses. ISACO is a subsidiary of Iran Khodro, which is involved in the distribution of spare 
parts of the automobiles manufactured by IKCO, which is selected for the study. At present, providing 

spare parts for automobiles is a must-have for the automotive industry. Customers are continually 

asking companies for spare parts, and their demand should be satisfied. It is a competitive advantage 
for a company to satisfy customer demand as soon as possible and with the best quality. Customer 

satisfaction is possible if the company has a highly efficient distribution network to distribute spare 

parts. In this paper, we want to optimize the distribution system of ISACO to establish social justice 

for customer zones.  
   We applied the presented framework in this paper to redesign the distribution system. The main 

stimulation that drove ISACO to optimally design its distribution network are as follows. First, 

ISACO tends to new infrastructures and distribution facilities like urban depots to make the 
distribution process faster and cheaper. also, the company aims to enter new markets such as middle 

east. moreover, high risks of uncertainty in different facilities and distribution elements (such as 

sanctions, currency fluctuations, etc.) encourage ISACO to make its distribution network more robust 
to such operational risks. Besides, the profitability and cost efficiency of producing products through 

assessment results justifies the redesign of the distribution network. ISACO has 31 main customer 

zones throughout the country and also has nearly 250 authorized dealers and trusted retailers as 

distribution centers all over the country. In this study, we want to optimize the distribution network of 
ISACO in Tehran province, which consists of 22 districts.  

   Here, a distribution system providing and supplying products to known customers is considered. 

ISACO is the main and official spare parts supplier for IKCO products, so its performance should be 
acceptable. ISACO must provide the parts from trusted suppliers and then, at the time of need, satisfy 

customer’s demand through their distribution network.  

   In this research, we are looking to implement FLAP and trying to optimize ISACO spare parts 
distribution system. The central core of ISACO is located on the 13 km stretch of Karaj makhsous 

road, and it could be considered as a central warehouse. Spare parts are shipped from this core to 

various urban depots of the company throughout the country. then from these depots, the distribution 

of parts to official dealerships and retailers is done. Then, through the authorized dealers and trusted 
retailers, or generally through the official distribution centers, the products will be available to the 

applicant customers. The distribution of the authorized dealers and trusted retailers in Tehran are 

shown in figures 3 and 4. 
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Fig 3. Distribution of authorized dealers 

 
Fig 4. Distribution of trusted retailers 

 
   In this article, we limit the study area to Tehran city, and it’s 22 districts. Due to the high cost of 

distribution, transportation, and storage of parts, ISACO has always been looking for the optimal 

locations of distribution facilities. due to the increase in IKCO production capacities and demand for 
spare parts from consumers, ISACO always sought to increase distribution capacities by increasing 

the number of central warehouses and urban depots.  

ISACO distribution system is consists of five echelons, including part suppliers, CWs, UDs, 

authorized DCs, and CZs, as illustrated in figure1. 
   In this paper, we aim to estimate parameters close to the real-world case. Accordingly, all distances 

are accurately calculated using Google Map, unit shipping costs are estimated with a general 

approximation based on the average costs in authorized transportation companies, unit holding costs 
are determined based on the average costs of similar industrial depots, fixed opening cost of facilities 

in different districts are estimated based on the size of premises and request of industrial facility 

manufacturers, unit Shortage costs are determined based on interviews with the experts and customer 
relationship management department. In this study, demands are approximately calculated based on 

statistics provided by the Ministry of Industry, Mine, and Trade. Also holding capacities were 

determined based on information from similar industries and according to expert opinions and supply 

capacity as a percentage of maintenance capacity, moreover, supply capacity is considered based on 
historical data. In the section stochastic programming, to generate a fuzzy triangular number for a 

parameter, the first dimension of the fuzzy number is also the real-world parameters, but DM 

estimated the second and third dimensions of fuzzy numbers. 
 

5-1-1-Determining values for indexes according to the case study 

 Set of potential locations for urban depots: 

Urban depots can be established in all 22 districts of Tehran, but the analysis is very complicated in 

all of the districts. So, using the multi-criteria decision-making methods, we select the five highest 
priority districts as potential locations for urban depots. 

 Set of potential locations for central warehouses: 

The central warehouses can also be established in most industrial areas of Tehran under the 

location requirements considerations, but to simplify model calculations based on the Topsis method, 
we consider three points as potential locations to establish central warehouses. These potential regions 

are Karaj makhsous road, Abbas Abad industrial region, and KHAVARAN industrial region. 

 Set of products: 

Due to the wide variety of products, we categorized the products into four categories, including 
consumable parts, engine parts, hulk parts, and electronic parts. 

 Set of distribution centers: 

Distribution centers, including all authorized distributors and trusted retailers of ISACO and 

IKCO, which the number is estimated at 120. To avoid increasing problem dimensions, after 

removing the dealership and combining the demand of the nearby stores, finally, we consider 6 points 
that are six superiors made by ISACO as candidate locations. 

 Set of planning horizons or time periods: 
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Considering that warehouses and depots capacity is on a monthly basis, each time period is 
regarded as a month. The problem is executed in five months. 

Set of customer zones: 

Considering that all applicants in the 22 districts of Tehran are admitted as customers of the 

distribution system, to simplify the analysis, the customer zones are grouped into six clusters. 

Based on the above description, the sizes of real-world case study dataset are illustrated in table 2  
 

Table 2. Specifications of case study dataset 

|𝐼| |𝐽| |𝐾| |𝐿| |𝑀| |𝑅| |𝑆| |𝑇| 
3 5 4 6 6 5 5 5 

 

   According to the above-mentioned case study, the locations of existing and candidate facilities and 

market zones involved in the distribution network of ISACO in Tehran are illustrated in figure 5. 
 

 

Fig 5. Locations of different existing and candidate facilities involved in ISACO’s distribution network 

 

5-2- Evaluation and implementation 
   We implemented the proposed model to determine optimal distribution network design decisions for 
ISACO Company. Figure 6 illustrates the optimal location-allocation decisions for central 

warehouses, urban depots, distribution centers, and customer zones. The optimal solution requires 

establishing a central warehouse in Makhsous road industrial estate. The new urban depots are located 
in districts 2,4 and 15. The demands of customer clusters are allocated to existing distribution centers. 

All of the location-allocation decisions are illustrated in figures 6 and 7. 
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Fig 6. Optimal location and allocation decisions based on the most probable disruption scenario 

 

 
Fig 7. Optimal location and allocation decisions based on the most probable disruption scenario 

5-2-1-Sensitivity Analysis  

5-2-1-1- Pareto frontiers based on the partial robust model 
   Multi-objective problem formulation is justifiable if there is a remarkable conflict among the 

objective functions. Therefore, if there is no conflict among objective functions, we need to rethink 

mathematical modeling and convert the problem to a single objective one. To this aim, we must have 
just a single objective and consider the remained objectives as new constraints. 

   Based on the above-mentioned content, to investigate the conflict between each objective function 

pairs, we plot each objective in terms of another objective and examine the behavior of the graph. The 

two objective pairs conflict if the plotted Pareto frontier behave strictly increasing or strictly 
decreasing (Wang et al, 2018). In this regard, given that we have three objective functions, we must 

plot 3 Pareto frontiers, based on the results of the ɛ-constraint method. It should be noted that by 

altering the epsilon bound vector along the Pareto frontier and making a new optimization problem for 
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each new vector, the Pareto optimal set can be achieved (Dehghani et al, 2018a). The generation of 
different points of the Pareto frontier using different values of the upper and lower ɛ bounds are 

illustrated as follows: 

   Figure 8 investigates the conflict between first and second objective functions. Given that the 

illustrated Pareto frontier behaves strictly decreasing in figure 8, there is a significant conflict between 
the total distribution system cost and the total environmental impact. The more we spend budget on 

the distribution network, the more we can cope with lost sales or holding of inventory, which 

naturally leads to a reduction in the transportation of parts and, therefore, the environmental impact. 
 

 
Fig 8. Conflict between the total distribution system cost and the total environmental impact 

   Figure 9 shows the conflict between the first and third objective function. Given that the illustrated 

Pareto frontier behaves strictly decreasing in figure 9, there is a remarkable conflict between the total 

distribution system cost and the minimum of a maximum lost sale. In fact, the more we spend budget 
on the distribution network, the more we can deal with the shortages and also holding of inventory, 

which naturally leads to a reduction in the minimum of the maximum lost sale in customer zones. 

 

 
Fig 9. Conflict between the total distribution system cost and the minimum of a maximum lost sale 

   Figure 10 investigates the conflict between the second and third objective function. Given that the 

represented Pareto frontier behaves strictly increasing in figure 10, there is a significant conflict 

between the total environmental impact and the minimum of the maximum lost sale. Indeed, the more 
shortages occur, due to the high shortage costs, the distribution network tries to transport more 

products to different echelons of the distribution system, which will increase the total environmental 

impact. 
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Fig 10. Conflict between the total environmental impact and the minimum of a maximum lost sale 

5-2-1-2-Analysis of the impacts of shipping capacity and holding capacity 

   After solving the model, to check the behavior of the model against variations, we need to execute 

the sensitivity analysis. For this purpose, we need to evaluate the results of varying some specific 
parameters in the model. Those parameters can be investigated to the analysis that are exogenous, and 

the company has no control over them. Under the rules of ISACO corporation, the distribution centers 

of ISACO are usually left to real people, and therefore companies cannot accurately monitor the status 

of these centers at any given time, and thus parameters such as holding capacity and shipping capacity 
of distribution centers are considered exogenous parameters in this problem, and the model behavior 

can be investigated by varying them. 

   Figure 11 illustrates how changes in the shipping capacity of distribution centers can influence all 
three objective functions, including the total distribution system cost, the total environmental impact, 

and the minimum of the maximum lost sale. By increasing the shipping capacity of distribution 

centers, the system will be gradually reduced to a minimum, the total distribution system cost, and the 

total environmental impact, which is quite logical, because the more products are distributed by 
distribution centers, the less system will face shortages and the cost of lost sales will decrease. On the 

other hand, distribution centers will provide more inventory of products, resulting in less need for 

transportation, and also the total environmental impact will reduce. 
 

 

Fig 11. The impact of varying the shipping capacity of distribution centers on objectives 

   Figure 12 illustrates how changes in the holding capacity of distribution centers can influence all 

three objective functions. By increasing the holding capacity of distribution centers, both the total 
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distribution system cost and the minimum of the maximum lost sale will decrease, which is logical. 
The total environmental impact doesn’t have an apparent behavior.  The reduction of the first and 

third objective is because the more the holding capacity increases, the less system will face lost sales. 

Also, shortage costs will decrease, moreover, distributors will hold more stock, and consequently, 

there will be less need for transportation, and the total environmental impact will decrease.  
 

 

Fig 12. The impact of varying the holding capacity of distribution centers on objectives 

Given that the sensitivity analysis results are entirely reasonable, the proposed model can be 

considered to be valid and appropriate. 

 

5-2-1-3- Examining model complexity 

   The model complexity can be examined based on a variety of aspects, including the number of 

binary variables, the value considered for big m as a parameter, problem dimensions, the execution 
time, etc. In this study, we consider the complexity of the proposed partial robust model based on 

execution time, and we aim to investigate the model complexity by varying problem dimensions and 

also parameter Big M. As illustrated in figures 13-14 and Table 3, by increasing the problem 
dimension or the considered value for big M, the problem execution time and consequently the model 

complexity increases so that when we want to execute the proposed model in a large scale, it is not 

possible to solve the model using ordinary computers and processors. 

 
Table 3. Considering the model complexity 

Run Big M Execution time Run Dimension Execution time 

1 10^6 0.0363 1 6×5×3×4×5×6 0.0363 

2 10^7 0.047916 2 7×6×4×5×6×7 0.042108 

3 10^8 0.059416 3 8×7×5×6×7×8 0.052214 

4 10^9 0.102789 4 9×8×6×7×8×9 0.068922 

5 10^10 0.171658 5 10×9×7×8×9×10 0.080639 

6 10^11 0.192257 6 11×10×8×9×10×11 0.087897 
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Fig 13. The effect of varying the Big M in terms of 

execution time on the model complexity 

 

Fig 14. The effect of varying the Big M in terms of 

execution time on the model complexity 

5-2-2- The achievement of the proposed two-stage robust formulation 

   This section aims to discuss how the developed two-stage robust possibilistic programming model 
can assist in decreasing the total distribution cost, the total weighted distance traveled, and the 

maximum lost sales for customer zones in ISACO. Mathematical modeling in the above-mentioned 

problem has been accomplished based on three approaches, including deterministic, partial robust, 
and impartial robust optimization.  

   Figure 15 investigates the results of optimized three objective functions based on deterministic, 

partial robust, and impartial robust approaches. The impartial robust method leads to the highest 

amount of total distribution cost and total weighted distance traveled in the distribution network, and 
also the lowest minimum of the maximum lost sale in customer zones. Altogether, utilizing robust 

possibilistic programming causes better performance than the deterministic approach. Based on the 

comparisons and the nature of minimization in objective functions, the partial robust approach has the 
best performance in the proposed model, and this method is considered as the basis of modeling in 

this research. Therefore, all analysis are executed based on the results of partial robust. 

 

 

Fig 15. Comparing the performance of the deterministic, partial robust and impartial robust approaches 

5-3- Investigating the validation of the proposed model 
   After the model implementation and obtaining results, we must examine the validity and accuracy 

of the proposed mathematical model. To this aim, there are some procedures, including simulation 

process, statistical analysis, expert opinions, and group decision making, Comparing the results of the  
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model with historical data, etc. In this study, the infeasibility simulation process and expert opinions 
are utilized to validate the proposed model.  

 

5-3-1-Infeasibility simulation process 

   In this paper, we used a simulation process to validate both deterministic and partial robust models. 
To this aim, we consider all parameters of the model as a triangular fuzzy number, and we replace all 

parameters with their fuzzy expected values. In this case, we execute both robust and deterministic 

models and consider the solutions as the model basis. The simulation experiment was executed in 200 
runs and parameters D(l,k,t), D(i,k,t), S(i,t), P(i,k,t), P(k,t) were randomly generated in each execution.    

In each iteration, given the minimization nature of the objective functions, we add infeasibility 

penalties to basic values of objective functions using logical unit penalty rates (Dehghani et al, 
2018a). The basic values, the values per simulation iteration, the mean and standard deviation for all 

three simulated objective functions are represented as follows: 

Table 5 illustrates the calculated values for objective functions based on the partial robust and 

deterministic approaches in the primary model. 

Table 5. Calculated values for objective functions based on the primary problem 

Problem condition Economic (108) Environmental (104) Social justice 

deterministic 17716 9059 32388 

partial robust 23031 18276 14559 

 
   Figure 16 illustrates the average simulated objective functions based on both deterministic and 

partial robust model are so close to their basic values but merely relying on the amount of the average 

simulated objective functions cannot prove the validity of a mathematical model and in fact, can only 
be claimed by examining the standard deviation values of the simulated objective functions. 

    For the next step, the standard deviation will be determined for simulated objective functions based 

on both deterministic and partial robust models. If the standard deviation values are acceptable, we 

can verify the model validation. 
 

              
 

Fig 16. Comparing the average simulated objective functions with basic values 

   Figure 17 enforces that the calculated standard deviation values for the simulated objective 

functions in the partial robust model are lower than the standard deviation values in the deterministic 

model, so the presented mathematical model is valid, and this paper can be cited. 
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Fig 17. Determining the standard deviation of all simulated objectives  

5-3-2- Expert opinions and historical data 

   After the model implementation, numerical and managerial results were obtained, and this 

information was provided in the form of a detailed report to executives in both ISACO and IKCO 

companies. After reviewing the results by experts and comparing the behavior of the mathematical 
model with the behavior of historical data, the company experts confirmed that the model presented in 

this research is significantly valid and accurate. Experts acknowledged that the numerical results of 

this study would be useful to extend and redesign the current distribution system. 
 

6-Conclusion 
   This paper studied the SCND problem for a five-echelon forward distribution system, which is 

vulnerable to uncertainty and disruption risks. We presented a novel two-stage robust possibilistic 

programming model that can be utilized to minimize the total distribution system cost, the total 

environmental impact, and the minimum of the maximum lost sale occurred in customer zones, which 
is converted to a single objective model using an Epsilon single-minded restriction. The robust model 

enables the distribution system to cope with uncertainty, and operational risks, and the disruption 

considerations are applied using two-stage stochastic programming. It should be noted that we take 
into account simultaneous disruption in facilities, including supplier clusters, central warehouses, 

urban depots, distribution centers, customer zones, and routes among them (multiple disruptions). 

   The model decisions include locating central warehouses,  and urban depots, and determining the 
amount of different products transport between various nodes of the network, and the number of lost 

sales for different products in each market zone. Also, the possibility of complete disruption of 

facilities and their limited capacity were considered. We used real data based on a real-world case 

study to examine the performance of the proposed model in designing an efficient forward 
distribution network involved in the distribution of the spare parts of automobiles. Based on the 

numerical results, we found that Although the two-stage partial robust approach in the short term can 

appreciably increase all three objective functions to cope with uncertainty and disruption, it will be 
useful in the long run by reducing the costs of dealing with operational and disruption risk as well as 

decreasing shortage costs. 

   Despite the critical and useful insights from the model implementation, our study is not without 
limitations. For example, distribution systems are always vulnerable to random disruptions. Thus, it 

can be incorporated into various resilience strategies into the proposed model to cope with 

disruptions. Resilience strategies can include the fortification of facilities against disruptions, 

outsourcing, multiple sourcing, considering excess capacity, providing backup facilities, etc. Besides, 
taking into account different concepts such as sustainability can be interesting future research 

avenues. The inclusion of the social consideration dimension of sustainability in this model can also 

provide additional and useful insights. Moreover, the shortage of products can be considered as a 

problem
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backlog, and the company should be committed to compensate these shortages as soon as possible. 
Most of the previous studies on supply chain network design under operational and disruption risks 

have focused on introducing and using various strategies to deal with disruption risks at facilities 

while there is scanty literature on measurement of the network resiliency, so based on the mentioned 

limitation in supply chain network design under risk, some network resiliency measures such as node 
criticality, flow complexity and node complexity should be taken into account. Incorporating 

operational decisions such as scheduling and travel times into our proposed model also can be proper 

further research. It should be noted that in our model for large sizes, considering appropriate solution 
approaches, including lagrangian relaxation and Benders decomposition, is another future research.   
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